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9.1 Introduction

Case-based reasoning (CBR) was first formalised in the 1980s following from the
work of Schank and others on memory [1], and is based upon the fundamental
premise that similar problems are best solved with similar solutions [2]. The idea
is to learn from experience.  However, a crucial aspect of CBR lies in the term
“similar”.  The technique does not require an identical problem to have been pre-
viously solved.  Also CBR differs from many other artificial intelligence tech-
niques in that it is not model based.  This means, unlike knowledge based ap-
proaches that use rules, the developer does not have to explicitly define causalities
and relationships within the domain of interest.  For poorly understood problem
domains this is a major benefit.

CBR is a technique for managing and using knowledge that can be organised as
discrete abstractions of events or entities that are limited in time and space.  Each
such abstraction is termed a case.  Software engineering examples could be pro-
jects, design patterns or software components.  Cases are characterised by vectors
of features such as file size, number of interfaces or development method.  CBR
systems typically function by solving the new problem, often termed the target
case, through retrieving and then adapting similar cases from a repository of past
(and therefore solved) cases.  The repository is termed the case-base.

CBR is argued to offer a number of advantages over many other knowledge
management techniques, in that it:
1. avoids many of problems associated with knowledge elicitation and codifica-

tion.
2. only needs to address those problems that actually occur, whilst generative (i.e.

algorithmic) systems must handle all possible problems.
3. handles failed cases, which enable users to identify potentially high risk situa-

tions.
4. copes with poorly understood domains (for example, many aspects of software

engineering) since solutions are based upon what has actually happened as op-
posed to hypothesised models.

5. supports better collaboration with users who are often more willing to accept
solutions from analogy based systems since these are derived from a form of
reasoning akin to human problem solving.  This final advantage is particularly



important if systems are not only to be deployed, but also to have trust placed
in them.

Since the 1980s CBR has generated significant research interest and has been suc-
cessfully applied to a wide range of problem domains.  Typical applications are
diagnostic systems, for instance, CASCADE addressed solving problems with the
operating system VMS.  More recently, Alstom have deployed CBR technology,
in conjunction with data mining of past fault data, to support diagnosis of system
error messages from the on-board computers which control all the train electron-
ics.  Another application area has been legal systems, unsurprisingly, since the
concept of precedent and case law lie at the heart of many judicial systems such as
those of the UK and USA.  Design and planning are other problem domains that
have also been tackled.  For instance CADET was developed as an assistant for
mechanical designers and ARCHIE provides support for architects.  Decision sup-
port, classification (e.g. PROTOS was developed to classify hearing disorders)
and e-commerce (e.g. a last minute web-based travel booking system that uses a
CBR engine in order to overcome the problem of not always being able to exactly
match client requirements) are other problem domains that have been successfully
tackled using CBR.  Although a little dated, Watson and Marir [3] provide de-
tailed descriptions of a wide range of CBR applications.  Lists of more recent ex-
amples of applications may be found at [4, 5].

The remainder of this chapter provides more background on CBR technology
(principally from a machine learning viewpoint), reviews some specifically soft-
ware engineering applications of CBR, namely project effort prediction, defect
prediction, retrieval from component repositories and the reuse of successful past
experience. It then goes on to consider some of the outstanding challenges (e.g.
similarity measures, feature and case subset selection, dimension rescaling and
learning adaptation rules) and point to potentially fruitful areas of future work.

9.2 An Overview of Case-Based Reasoning Technology

As previously indicated, case-based reasoning has at its heart the notion of utilis-
ing the memory of past problems solved to tackle new problems1.  Problems are
organised as cases where each case comprises two parts.  These are the description
part and a solution part.  The description part is normally a vector of features that
describe the case state at the point at which the problem is solved.  The solution
part describes the solution for the specific problem and may vary in complexity
from a single value for a classification or prediction system to a set of rules or

                                                            
1 Strictly speaking some authors such as [6] differentiate between interpretetive and prob-
lem solving CBR.  Interpretetive CBR focuses upon classification rather than direct prob-
lem solving, although it could always be argued that classification can be viewed as a sub-
goal to solving another problem.  Whatever, this is not a distinction that is pursued in this
chapter.



procedures to derive a solution that might include a range of multimedia objects
such as video and sound files.

9.2.1 The Basic CBR Cycle

Aamodt and Plaza [7] helpfully identify four stages of CBR — sometimes referred
to as the R4 model — that combine to make a cyclical process:
1. Retrieve similar cases to the target problem
2. Reuse past solutions
3. Revise or adapt the suggested solutions to better fit the target problem
4. Retain the target and solution in the case-base
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Fig. 9.1 The CBR Process (Adapted from Aamodt and Plaza [7])

Figure 9.1 illustrates this cycle diagrammatically.  Central is the case-base, which
is a repository of completed cases, in other words the memory.  When a new
problem arises it must be codified in terms of the feature vector (or problem de-
scription) that is then the basis for retrieving similar cases from the case-base.



Clearly, the greater the degree of overlap of features, the more effective the simi-
larity measures and case retrieval.  Ideally the feature vectors should be identical
since CBR does not deal easily with missing values, although of course there are
many data imputation techniques that might be explored [8].  Measuring similarity
lies at the heart of CBR and many different measures have been proposed.  Irre-
spective of the measure, the objective is to rank cases in decreasing order of simi-
larity to the target and utilise the known solutions of the nearest k cases.  Choosing
a value for k is a matter of some debate but for a systematic exploration see [9].
Solutions derived from the retrieved cases can then be adapted to better fit the tar-
get case either by rules, a human expert or by a simple statistical procedure such
as a weighted mean.  In the latter case the system is often referred to as k-nearest
neighbour (k-NN) technique.  Once the target case has been completed and the
true solution known it can be retained in the case-base.  In this way the case-base
grows over time and new knowledge is added.  Of course it is important not to ne-
glect the maintenance of the case-base over time so as to prevent degradation in
relevance and consistency.

This CBR process is best illustrated by an example.  Consider the problem of a
project manager predicting how many resources to allocate for the development of
different software components.  Knowledge or memory of the past is the basis for
predicting future effort.  Here the case is a software component.  Each case will
comprise a vector of features to describe each component.  Examples of features
might include the programming language (categorical), the number of interfaces
(discrete) and the time available to develop, since severe schedule compression
may adversely affect the development effort (continuous).  Notice how the vector
can comprise features of different types.  This adds some complexity to the way in
which distance is measured.  The choice of features is arbitrary and may be driven
by both pragmatic considerations — what is easily available — and domain con-
siderations — which features best characterise the problem.  One constraint is that
the values for the features must be knowable at the time the prediction is required
which will usually militate against the use of features such as code length.  For ef-
fort prediction the solution part of the case is trivial, merely a single value denot-
ing the actual effort consumed.

For our effort prediction problem, the case-base will grow as components are
completed and the solution, i.e. the actual required amount of effort in person
hours, or whatever, becomes known.  When a new prediction problem arises, the
new component must be described in terms of the feature vector so that it can be
viewed as the target case.  The problem then becomes one of retrieving similar
cases from the case base and using the known effort values as a basis of the pre-
diction for the target case.  The prediction may be modified by the application of
rules, typically obtained from a domain expert such as an experienced project
manager, or by a simple procedure such as finding the mean.  Once the component
has been completed and the true effort value is known the case can be added to the
case-base.  In this way the case-base is enlarged over time and can also follow
trends or changes in the underlying problem domain, such as the introduction of
new technologies and programming languages.  For this reason some similarity
measures explicitly include a notion of recency so that newer cases are preferred.



9.2.2 Similarity Measures

As mentioned, measuring similarity has generated a range of different ideas.
These include:
- nearest neighbour algorithms are the most popular and are based upon straight-

forward distance measures for each feature. Each feature must be first stan-
dardised, so that the choice of unit has no influence.  Some variants of this al-
gorithm will enable the relative importance of features to be specified, although
for poorly understood problem domains this may be very problematic.  A
common algorithm is given by Aha [10]
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where (i) the features are numeric, (ii) if the features are categorical and
C1j=C2j or (iii) where the features are categorical and C1j≠C2j respec-
tively.

- manually guided induction: here an expert manually identifies key features, al-
though this reduces some of the advantages of using a CBR system in that an
expert is required.

- template retrieval: this is similar to query by example database retrieval in that
the user supplies values or ranges for a subset of the problem description vec-
tor, and all the cases that match are retrieved.

- specificity preference: here cases are preferred that match features exactly over
those that match generally.

- frequency preference: here preference is given to those cases that have been
most frequently retrieved in the past.

- recency preference: this type of algorithm favours more recently matched cases
over those that have not been matched for some period of time.

- object-oriented similarity: for complex problem domains it may be necessary to
make similarity comparisons between differently structured cases.  In the ob-
ject-oriented approach cases are represented as collections of objects (each ob-
ject has a set of feature-value pairs) organised in a hierarchy of part-of relation-
ships [11].

- fuzzy similarity: this approach uses concepts such as at-least-as-similar and
just-noticeable-difference [12] as opposed to crisp values.

These similarity measures suffer from a number of disadvantages.
First, symbolic or categorical features are problematic.  Although there are sev-

eral algorithms that have been proposed to accommodate categorical features,



these tend to be fairly crude in that they tend to adopt a Boolean approach: fea-
tures match or fail to match with no middle ground.  Note though that the fuzzy
similarity can be an exception since the linguistic concepts of, say, “quite similar”
might be applied to some categorical features, for example, comparing a feature
programming language containing the values C and C++.

A second criticism of many of these similarity measures is that they fail to take
into account information which can be derived from the structure of the data, thus,
they are weak for higher order feature relationships such as one might expect to
see exhibited in legal systems.  By contrast, the object-oriented similarity meas-
ures can still be applied to complex problem domains where it may be necessary
to assess similarity between differently structured cases.  Here, in order to con-
sider similarity it is necessary to take into account both intra- and inter-object
similarity. Intra-object similarity is based on common properties, however, the dif-
ference between two cases may reside in their differing class structures rather than
in their shared features, hence the need for a measure to take into account inter-
object similarity.  An example might be comparing software projects that are dif-
ferently comprised of staff and staff roles.  For instance Project (case) A may
comprise management, clerical and technical teams, each characterised by their
own set of features, whilst Project (case) B might comprise technical and sales
teams.  A traditional similarity metric can only compare features in common but
cannot compare the differing structures of these two projects or cases.  Bergmann
and Stahl [11] describe a sophisticated similarity metric based on the product in-
tra- and inter-object similarity.  The main difficulties for such metrics are valida-
tion and encouraging collaboration between the human user and the CBR system
since this approach is somewhat less intuitive than a simple Euclidean distance
measure.

9.2.3 Feature and Case Subset Selection

Another difficulty for CBR, that is common to all machine learning approaches, is
that the similarity measures retrieve more useful cases when extraneous and mis-
leading features are removed.  Knowing which features are useful is not always
obvious for at least three reasons.  First, the features contained in the feature vec-
tor are often determined by no more a systematic reason than availability.  Second,
the application domain may not be well understood: there is no deep theory to
guide.  Third, the feature standardisation used by some similarity measures can
substantially complicate any analysis.  This is because some features may actually
be more important than others, however, the standardisation will assign each fea-
ture equal influence.  In such circumstances co-linearity can be usefully exploited.
Effectively by using several closely related features, one underlying dimension
can be made more important in the search for similar cases.  Deciding which fea-
tures to remove is known as the feature subset selection problem.  There is an
equivalent problem relating to case removal, known rather unsurprisingly, as the
case subset selection problem.  Here the situation is one of eliminating unhelpful
solutions from the case-base.  Unfortunately both are computationally intractable



since they are NP-hard search problems.  It is interesting to note though that in
general, the pattern is for smaller, more relevant case-bases to substantially out-
perform larger less focused ones.

Approaches to searching for subsets fall into two categories: filters and wrap-
pers [13].  Filters operate independently of the CBR algorithm reducing the num-
ber of features prior to training.  By contrast, wrappers use the CBR algorithm it-
self on some sample of the data set in order to determine the fitness of the subset.
This tends to be computationally far more intensive, but generally can find better
subsets than the filter methods.  Various wrapper methods have been investigated
by a number of researchers.  Early versions of ANGEL [14] addressed the prob-
lem of searching for the optimal feature subset by an exhaustive search using a
jack knife2 on the case base in order to determine fitness.  However, as previously
stated, the search is NP-hard so once the number of features exceeds 15-20 this
becomes computationally intractable.  Other approaches have included different
variants of hill climbing algorithms [16], sequential feature selection algorithms,
both forward and backward [17] and genetic algorithms [18].  These have gener-
ally been reported to lead to good improvements in solution quality without the
prohibitive computational cost of an exhaustive search.

Essentially all these methods have a search component to generate candidate
subsets from the space of all possible subsets and a fitness function which is a
measure of the error derived from the solution proposed by the CBR system using
the subset, trained on a sample from the data set and validated on a holdout sam-
ple.  Typical sampling techniques are the jack knife and n-fold3 validation.  The
fitness function is generally a measure of deviation between the proposed and de-
sired solution, and as such is a cost that should be minimised. The exact nature of
the measure will depend upon the nature of what is being predicted but is usually
either based on the cost of misclassifications or the sum of absolute residuals.

9.2.4 Adaptation

Another important aspect of CBR is adaptation of the solution, particularly when
even the most similar cases differ substantially from the target case.  This might
occur if the case-base is small or heterogeneous.  The simplest approach, that of k-
NN systems, is to use the solution of the nearest neighbour, or mean (possibly
distance weighted so that the nearest solutions are most influential) of several
neighbours.  Hanney and Keane [19] describe an interesting alternative, which

                                                            
2 A jack knife is a validation strategy that works by successively holding out each case,

one at a time, and using the remainder of cases to generate the prediction for the hold-out
case [15]

3 n-fold validation is another common validation procedure within the machine learning
community whereby the data set is divided into n approximately equal subsets.  Each
subset is successively held-out and then returned to the training set.  This process is re-
peated n times so that each case forms part of the hold-out set exactly once.  This is a
generalization of the jack knife where n is the total number of cases in the case-base.



learns how to adapt by comparing feature differences and solution differences.
Unfortunately, this structural approach is limited to linear, or near linear problems.
Another widely used adaptation strategy is the use of rules to modify proposed
solutions.  The difficulty here is that the motivation for using CBR in the first
place is often the challenge of performing knowledge elicitation, so where do the
rules come from [6]?  Whilst Watson and Marir [3] identify a number of addi-
tional adaptation strategies, k-NN and rule based approaches are the most popular.

9.2.5 Unsuited Problem Domains

So far this section has focused on the successful application of CBR technology.
It is, however, also important to stress that there are problem domains that are not
so well suited to CBR.  These can be characterised by one or more of the follow-
ing:
1. lack of relevant cases, for example when dealing with an entirely new domain.

In truth, such situations will be extremely resistant to solution by any tech-
nique, though one possibility is a divide and conquer strategy so whilst the
problem may be novel in its entirety, it may be that useful analogies may be
sought for some, or all, of its constituent parts.

2. few cases available due to a lack of systematically organised data, typically due
to information not being recorded or being primarily in a natural language for-
mat.  CBR does not deal well with large quantities of unstructured text4.

3. the problem domain can be easily modelled and is well understood, for example
when regression techniques can find simple structural equations that have high
explanatory power.  In such circumstances it would seem wiser to use the
model based technique.

This overview has been necessarily brief.  For more detail, the reader is referred
to the classic book by Kolodner [22], more recent works such as Althoff [23],
Bergmann [24] and for a comparison of different approaches, to the paper by Fin-
nie and Sun [25].

                                                            
4 This not to say there has been no research into textual CBR.  Much work has focused on

the extraction of pre-determined features.  Where the set of features required for de-
scribing each case varies greatly, then an interactive CBR method (see for example, Aha
et al., [20, 21]) may be useful for guiding the author through the elicitation process (i.e.
through a series of prompted questions whose answers assign values to relevant attrib-
utes). One advantage of this method is that it can help avoid some standard problems
with information retrieval systems (e.g. how to interpret text expressions that have multi-
ple potential meanings) by clarifying the lesson writer’s inputs during elicitation.  How-
ever, in general natural language processing (NLP) remains an extremely intractable
problem.



9.3 Software Engineering Applications of CBR

Having considered case-based reasoning in general we now turn to its application
to problems drawn from the domain of software engineering.  Broadly speaking,
this work falls into two categories: prediction and reuse type applications.  We
discuss each in turn.

9.3.1 Prediction in Software Engineering

It has long been recognised that a major contribution to successful software engi-
neering is the ability to be able to make effective predictions particularly in the
realms of costs and quality.  Consequently there has been significant research ac-
tivity in this area, much of which has focused on effort and defect prediction.
Both these problems are characterised by an absence of theory, inconsistency and
uncertainty that make them well suited to CBR approaches.

It was suggested in the early 1980s that analogy might form a good basis for
software project effort prediction [26].  However, the earliest work to formalise
this process was by Vicinanza and co-workers [27].  They developed a CBR sys-
tem with rule-based adaptation named Estor.  This involved knowledge elicitation
from a domain expert — an experienced software project manager — to derive
adaptation rules.  They reported encouraging results based, upon a small industrial
dataset of 15 projects [28].  Estor was comparable to the expert and significantly
more accurate than COCOMO model [26] or function points [29].  However, their
approach requires access to an expert in order to derive estimation rules and create
a case-base.  Also the rules are couched in terms of the particular set of features in
Kemerer's data set that severely limits their applicability as there are wide discrep-
ancies in the range and types of features collected by different software organisa-
tions.

Another early project [30] entitled FACE (Finding Analogies for Cost Estima-
tion) also used CBR technology and reported results based upon another publicly
available data set, COCOMO [26].  The authors reported accuracy levels of
MMRE5 = 40-50%, however, the system was only able to make predictions for 46
out of a total of 63 projects.  By contrast, Finnie et al. [31] reported good results
using CBR with adaptation rules for a large industrial data set of 299 projects,
split into a training set of 249 projects and a validation set of 50 projects.  Their
CBR approach proved to be significantly more accurate than a regression-based
approach and comparable with an artificial neural net (ANN), with the added ad-
vantage of better explanatory value than the ANN.  As with the Vicinanza work,
the disadvantage of this approach is that new adaptation rules must be derived for
new data sets.
                                                            
5 MMRE or mean magnitude of relative error is a widely used accuracy indicator by soft-

ware project cost researchers.  It is defined as 1/n ∑ abs((acti-predi)/acti) where i is the ith
prediction and there are a total of n cases.  One disadvantage of MMRE is that it is
asymmetric, nevertheless it is widely quoted.



At the same time a simpler approach was being pursued by Shepperd and others
[32, 14] based on the idea of a k-NN system named ANGEL.  The work was
guided by the twin aims of expediency and simplicity so as to make the approach
as widely applicable as possible whilst at the same time providing transparency in
order to increase trust by project managers.  Similarity was defined in terms of
Euclidean distance between arbitrary sets of project features, such as number of
interfaces, development method, application domain and so forth.  The number
and type of features chosen could depend upon what data is available to charac-
terise projects.  The authors reported having analysed datasets with as few as one
feature and as many as 29 features.  Features could be either categorical or con-
tinuous and are standardised so that each feature has equal influence.  The other
distinctive characteristic of the ANGEL approach is the implementation of an
automated feature subset selection search.

As per Finnie et al., Shepperd and co-workers used stepwise regression analysis
as a benchmark for evaluating the predictive performance of ANGEL.

Table 9.1 Comparison of CBR and Regression Effort Prediction Accuracy
(Adapted from Shepperd and Schofield [32])

Data Set Source No. of
Cases

No. of
Features

ANGEL
(MMRE)

Stepwise
Regression
(MMRE)

Albrecht [29] 24 5 62% 90%
Atkinson [33] 21 12 39% 45%
Desharnais [34] 77 9 64% 66%
Finnish Finnish Dataset: dataset

made available to the
ESPRIT Mermaid Pro-
ject by the TIEKE or-
ganisation

38 29 41% 101%

Kemerer [28] 15 2 62% 107%
Mermaid MM2 Dataset: Dataset

made available to the
ESPRIT Mermaid Pro-
ject anonymously

28 17 78% 252%

Real-time
1

Not in the public domain 21 3 74% N/A.

Telecom 1 [32] 18 1 39% 86%
Telecom 2 Not in the public domain 33 13 37% 142%

Table 9.1 summarises the results from an empirical evaluation of ANGEL based
upon 9 different data sets.  It can be seen that for these data sets the k-NN ap-
proach consistently outperformed regression-based models.  Subsequent studies
have reported more mixed experiences.  A study of software maintenance effort
[35] found similar results.  However, other researchers, most notably [36, 37] ob-
tained conflicting results where the regression model generated significantly better
results than the ANGEL based approach.  While there are some differences in im-
plementation, in particular [36] used a different procedure to select the best feature



subset based on a filter, this does not fully explain differences in the results.
Doubtless, the underlying characteristics of the problem data set are likely to exert
a strong influence upon the relative effectiveness of different prediction systems.
For example, the two datasets [36] used, both appear to contain well-defined hy-
perplanes such that the regression procedures are able to generate models with
good explanatory power  as evidenced by the high R squared values.  One would
not expect cased-based reasoning to perform well since instead of interpolating or
extrapolating it endeavours to draw data points to the nearest cluster.  Clearly this
is not an effective strategy if the data falls upon, or close to, a hyperplane.  In
other words, a linear function exists that “explains” the relationship between the
dependent variable and the independent variables.

Recent work has shown that the difficulties with feature and case subset selec-
tion for large data sets can be overcome using search metaheuristics, for example
random mutation hill climbing and forward and backward selection search, drawn
from the artificial intelligence community [38].  These techniques resulted in sub-
stantial improvements in the performance of ANGEL, typically from an MMRE of
in excess of 50% down to 15%.

Despite these advances, CBR prediction of effort is still an uncertain process
with quite variable levels of accuracy.  This should not be too surprising as the
pursuit of a “best” or universal prediction technique is unlikely to be a fruitful
quest.  Probably what is most encouraging is the results of an experiment on pro-
fessional project managers that found that k-NN (ANGEL) augmented by expert
judgement led to the most accurate effort prediction [37].

Another prediction problem that has been tackled with CBR technology is clas-
sifying software components into low and high levels of defects [12].  The authors
report a success rate in excess of 85% when studying a military command, control,
and communications system.  One interesting aspect of this work is their use of
fuzzy rather than crisp values to describe case features coupled with fuzzy logic to
assess similarity.  Fuzzy logic is a form of logic used in some systems in which
feature set membership can be described in terms of degrees of truthfulness or
falsehood represented by a range of values between 1 (true) and 0 (false).  For ex-
ample, a software component might be described as belonging to the set of large
components to a degree 0.8, in other words it is believed to be quite large. Note
this is quite different from making a probabilistic statement where p=0.8 that the
component is large.  Set membership may also overlap so we might also have the
same component with a membership of the set of medium components to the de-
gree 0.3.  Since we are not dealing with probabilities there is no requirement for
the degrees of set membership to sum to unity.

9.3.2 Reuse in Software Engineering

The concept of reuse, within software engineering, has long been acknowledged
as an important potential source of productivity gain. Moreover, reuse has been
seen in a much broader sense than just software or code artefacts to include de-
signs, patterns, specifications, processes and software project experience in gen-



eral.  Reuse is perceived as a natural application for CBR since exact matching is
generally very difficult to achieve because it is precisely the difference between
software projects that makes software engineering a challenging discipline.  In-
stead the problem is to retrieve similar components.

An early contribution was by Maiden and Sutcliffe [39, 40] who suggested that
analogical reasoning techniques might be employed to support the reuse of soft-
ware specifications.  This was achieved by mapping both the target and source
(case-base) requirements specification descriptions into more abstract representa-
tions to facilitate the measurement of similarity.  In this system a domain model of
requirements is based on object structural knowledge, actions, object types, pre
and post condition constraints on state transitions, transformations that lead to
state transitions and events that trigger transformations. To determine if two re-
quirements are similar, Maiden and Sutcliffe compare the domains using four dif-
ferent dimensions (semantic, structural, pragmatic and abstract) utilizing a struc-
tural coherence algorithm.  The target requirement is compared to the
requirements in the abstract domain hierarchy to form a set of possible matches.
Next a heuristic-based abstraction selector is used to select the best abstract do-
main from the candidate set. Two domains are considered similar only if they
share the same abstract domain class.

 Another early application of CBR technology was to support the reuse of soft-
ware packages within Ada and C program libraries [41].  They used a distance
measure based on a combination of semantic networks (providing conceptual con-
nectivity) and the faceted index approach (that allows the user a view from differ-
ent perspectives) [42] and demonstrated their ideas with a prototype system and
some examples.  Interestingly, the authors also noted another potential application
in the form of Basili’s Goal Question Metric framework [43] together with process
reuse.

The most ambitious form of CBR-supported reuse is that of experience reuse,
in other words to explicitly learn from past software projects and to make the les-
sons widely available through sophisticated retrieval mechanisms using similarity
metrics.  Such metrics are important due to the difficulty of finding exact project
matches within the domain of software engineering.  Of course the idea of experi-
ence reuse, or what is often termed a lessons learned (LL) system is not unique to
software engineering.  For an interesting review of LL systems in commercial,
government and military applications see Weber et al. [44].

Much of the motivation for experience reuse within the domain of software en-
gineering stems from Basili’s ideas of an Experience Factory [45] although other
researchers have reached similar conclusions, for example Grupe et al. [46].  An
Experience Factory (EF) is based upon a number of premises:
1. a feedback process is required to best support learning and improvement.
2. experience must be viewed as a resource for an organisation and therefore

stored appropriately in an experience-base.
3. experience must be appropriately packaged in order to support appropriate re-

use, for example it might be unwise to reuse the successful experiences of
writing game software when developing a protection system for a nuclear re-
actor.



4. mechanisms must be provided to support the retrieval of experience packages.

These ideas are closely aligned with CBR technology so that it is no surprise that
many researchers have seen organisational learning as a natural application, see
for example Tautz and Althoff [47]; von Wangheim et al. [48].  The Quality Im-
provement Paradigm (QIP)/EF provides a framework for continuous learning
about software engineering practices and techniques.  In other words it provides
“an organisational infrastructure necessary for operationalising CBR systems in
industrial environments” [49].

In order to make a reuse decision it is necessary to characterise (1) the technol-
ogy, (2) the goal and (3) the context or domain in which the technology will be
applied, e.g. developer experience.  The context is particularly emphasised be-
cause the diversity of software engineering activities and problem domains might
otherwise result in appropriate reuse.  The context often is assessed subjectively
e.g. on a five point scale.  Typically a project is viewed as a case.  This implies the
following process:

1. Decide upon the task and goal.  This will determine the relevant context fea-
tures.

2. Characterise the new project (case) in terms of relevant features.
3. Perform a similarity based retrieval of other projects. The retrieval may be in

two stages, first use a clustering or filter approach to find broadly similar pro-
jects and then second use a distance metric.

4. Adaptation of the most relevant retrieved case(s) since it may not be possible to
use the retrieved experience directly.

5. Perform the project
6. Evaluate the project based on empirical evidence collected during the running

of the project.  Empirical evidence is encouraged in order to promote objectiv-
ity.

7. Identify lessons learned that can be added to the experience or case-base

Two features distinguish the EF from many more general LL systems.  First,
there is the explicit notion of context.  Second, there is the use of empirical evi-
dence in order to evaluate potential new cases.  These address some of the re-
ported problems of poor usage rates for deployed LL systems by Weber et al. [44]
such as difficulties in retrieving relevant cases and validation of experience prior
to storing within the LL system.

Maintenance of the EF is another challenge in order to avoid obsolete, incon-
sistent, unvalidated or subjective, irrelevant and redundant cases.  Weber et al. re-
port on a number of LL systems that contain in excess of 30000 cases or lessons.
Interestingly, in an example of case-base maintenance they describe how it was
possible to reduce from 13000 cases to 2000 cases.

For further information on the topic of EFs see chapter 13 entitled “Making
Software Engineering Competence Development Sustained through Systematic
Experience Management” within this book.



9. 4 Summary and Future Work

In this chapter we have seen how case-based reasoning is a relatively recent tech-
nology that has emerged from the artificial intelligence and cognitive science
communities.  It is based on the idea of memory rather than explicit models.  It
would also seem to fit closely with how humans often solve problems, that is by
means of analogy [50].  This is important as it can help users to trust CBR systems
and, potentially, to better interact with them.  We have also seen that CBR ap-
proaches do not require a deep understanding of the problem domain, which sug-
gests they are well suited to many software engineering problems.  This is because
we are dealing with creative processes, complexity, change and uncertainty.
There is also a strong sense within software engineering circles that reuse is im-
portant.  Again CBR is appropriate since it provides a mechanism of organising,
storing and reusing an organisation's memory or experiences.  Thus it is unsur-
prising that a major application area is that of implementing experience-bases.
The other principal area is that of prediction.  Here CBR is more seen as another
machine learning, or inductive technique, but one that has good explanatory value
and with which the user can interact.

Whilst there are undoubtedly exciting opportunities for the deployment of CBR
methods there remain many challenges.

First, is the challenge of adaptation.  As has been seen from the examples dis-
cussed in this chapter, there are two main approaches for adaptation.  One is rule
based, which can embody substantial domain knowledge, but suffers from speci-
ficity to a particular case-base plus there are the difficulties of elicitation.  Rule
induction techniques may help overcome the latter problem.  The other approach
is to use simple arithmetic techniques and rely more on feature and case subset
selection.  This approach can be particularly vulnerable to novel problems.

Second, is the challenge of constructing cases from richer sources of data.
Many of the software engineering applications described above are restricted to
simple numeric information.  Even categorical features can be troublesome.  There
has been a range of work looking at textural CBR.  Some researchers, for example
Grupe et al. [46] have looked at using textural information by means of trigrams.
Others have deployed a range of other information retrieval techniques.  Never-
theless in a recent survey, Weber et al. [44] comment “our survey reinforced that
the two most evident problems contributing to the ineffectiveness of LL systems
concern text representations for lessons and their standalone design. Text formats
are troublesome for computational treatment, and attempts to create structure in
records have rarely addressed core issues, such as highlighting the reuse compo-
nent of a [case].” (p32).  Perhaps markup languages such as XML may also be a
means of dealing with semi-structured data.  Aha and Wettscherek [51] argue that
CBR should move beyond simple vector based approaches and consider a range of
richer forms of case representation such as directed graphs, preference pairs and
Horn clauses.  Whatever approach, making use of richer sources of information is
likely to be extremely fruitful when considering the range of data that is typically
available in software engineering projects and a growing research topic.



The third challenge is that of finding better ways to support collaboration be-
tween the human expert and the CBR system.  In the past, in some quarters, there
has been a tendency to view many of these systems as replacements for the hu-
man.  For many applications, particularly when dealing with infrequent but high
value problems such as experience factory supported decision-making and project
prediction, this view may be inappropriate and therefore we should explicitly ad-
dress the problem of how to bring about the most effective forms of interaction
between the human and the CBR system.  Given the findings of Weber et al. [44]
of the limited impact of deployed lessons learned systems this final challenge is of
great significance to the practical benefits of CBR systems.
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