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Abstract—Recommender systems are widely used to cope with the problem of information overload and, to date, many
recommendation methods have been developed. However, no one technique is best for all users in all situations. To combat this, we

have previously developed a market-based recommender system that allows multiple agents (each representing a different
recommendation method or system) to compete with one another to present their best recommendations to the user. In our system,

the marketplace encourages good recommendations by rewarding the corresponding agents who supplied them according to the
users’ ratings of their suggestions. Moreover, we have theoretically shown how our system incites the agents to bid in a manner that

ensures only the best recommendations are presented. To do this effectively in practice, however, each agent needs to be able to
classify its recommendations into different internal quality levels, learn the users’ interests for these different levels, and then adapt its

bidding behavior for the various levels accordingly. To this end, in this paper, we develop a reinforcement learning and Boltzmann
exploration strategy that the recommending agents can exploit for these tasks. We then demonstrate that this strategy does indeed

help the agents to effectively obtain information about the users’ interests which, in turn, speeds up the market convergence and
enables the system to rapidly highlight the best recommendations.

Index Terms—Information filtering, machine learning, recommender systems, markets.
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1 INTRODUCTION

RECOMMENDER systems have been widely advocated as a
way of coping with the problem of information over-

load. Such systems help make choices among recommenda-
tions from all kinds of sources for users who do not have
sufficient personal experience of all these alternatives [1].
Many recommender systems have been developed, but they
are primarily based on two main kinds of information
filtering techniques: content-based filtering and collaborative
filtering. The former makes recommendations by analyzing
the similarity between the objective properties of the items
(such as textual contents of documents) that are ready to be
recommended and those that have previously been marked
as liked by the user. The latter makes recommendations by
analyzing the subjective properties of items (such as
people’s opinion of food taste or music style) putting
forward items that have been deemed appropriate by
people who have similar interests to the present user.
However, both kinds of techniques have their weaknesses.
Content-based filtering techniques cannot easily recom-
mend nonmachine parsable items (such as audio and video
items). Additionally, content-based techniques do not have

an inherent method for generating serendipitous finds
because they tend to recommend more of what the user has
already seen [2], [3]. In contrast, collaborative filtering
techniques do not have such weaknesses, but they fail to
accurately predict the present user’s interests when there is
an insufficient number of peer users (sharing similar
interests). Additionally, all collaborative recommender
systems share the cold start problem: When new users
start off with empty profiles of interests and must train a
profile from scratch, they share little interest with others
and, therefore, receive poor recommendations [1], [4].
Against this background, it has been argued that there is
no universally best method for all users in all situations [5].

Given this, the available recommendation methods are
often unable to make suggestions that satisfy the user. This
is because these different methods use different metrics and
different algorithms to evaluate different properties (either
objective or subjective) of the items they may recommend.
Thus, the rating of the quality of the same recommendation
can vary dramatically from one method to another (e.g., one
method may think the item is very relevant for the user,
another may think it moderately relevant, while yet another
may believe it is completely irrelevant). Here, we term this
evaluation the method’s internal quality (INQ) to reflect the
fact that the rating is as perceived by the internal
algorithm/processes of the particular method. However, a
high INQ recommendation from one method does not
necessarily mean the recommendation is any more likely to
better satisfy a user than a low INQ item suggested by
another. Ultimately, whether a recommendation satisfies a
user can only be decided by that user (Fig. 1 exemplifies this
phenomenon). Therefore, we term the user’s evaluation of a
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recommendation the user’s perceived quality (UPQ). Now, an
efficient recommender system is one that achieves a good
correlation between the INQ values it generates and the
corresponding UPQ values. However, to date, there is little
in the way of work that can efficiently correlate the
recommendation methods’ INQs to the users’ UPQs.

To overcome this problem, we believe that the way to
move forward in this area is to develop an overarching
system that incorporates multiple different recommenda-
tion methods, that lets recommendations from whatever
methods that are available or get developed compete with
each other, and that then automatically selects only the best
items (whose INQs consistently reflect the top UPQs) to pass
through. In order to validate and verify the feasibility of our
approach, we have previously designed a market-based
recommender system to deal with the “where to go next”
problem by presenting recommendations (represented as
URLs) that are relevant to the users’ current browsing
context (Fig. 2 shows an example of our system). To date,
we have shown that a well-structured information market-
place with the appropriate incentives can function effec-
tively in making decisions among the multiple different
recommendation methods [6], [7]. Specifically, in our
system, the various recommendation methods, represented
as recommender agents, compete to advertise their recom-
mendations to the user. Through this competition, only the

best recommendations (from whatever source) are pre-
sented to the user. Essentially, our system uses a particular
type of auction (generalized first price sealed bid) and a
corresponding reward regime to incite the agents to align
their bids with the user’s preferences. To this end, Fig. 3
depicts the auction protocol and the reward mechanism (see
[6] for more details of the market protocol and its Pareto
efficiency and social welfare maximization properties). In
short, the system functions by ensuring that its recommen-
dations that the user considers good are encouraged by
receiving a reward, whereas poor ones are deterred
(because they have to pay to advertise their recommenda-
tions in the sidebar but they receive no reward). Thus, the
market acts as a feedback mechanism that helps agents to
correlate the INQs of their recommendations to the desires
(UPQ) of the user.

Now, while the market protocol works effectively as a
coordinator for the overarching system, an open problem
from the point of view of the individual recommender
agents remains: Given a set of recommendations with different
INQ levels, in what order should an agent try to advertise them so
that it can learn the user’s interests as quickly as possible, while
still maximizing its revenue? Thus, for example, the agent
could bid the items that have never been advertised to the
user, which would allow it to learn the user’s interests
quickly, but could also result in its losing money. Con-
versely, the agent could always bid those items that have
been highly rewarded, so ensuring a good return, but it
would take a very long time to learn the extent of the user’s
interests. While this problem is couched in the context of
our specific system, this is a general problem that all
recommender and information filtering systems face. Thus,
even though they may not have a currency or an explicit
reward, they still need to determine the user’s preferences
as quickly as possible, while still making good suggestions,
in order to make effective recommendations. From a data
engineering perspective, the marketplace needs high qual-
ity recommendation inputs with as little irrelevant informa-
tion as possible. Thus, from the point of view of the
marketplace, learning user’s interests by the constituent
recommender agents can be seen as a data preparation (or
information enhancement) process for the marketplace [8],
[9]. In this way, the agents filter out the noisy and
redundant items from their recommendation pools.

To overcome this problem, we have developed a quality
classification mechanism and a reinforcement learning
strategy for the agents to learn the user’s interests [10].
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Fig. 1. Different views of quality of recommendations.

Fig. 2. Browser with recommendations.

Fig. 3. The market protocol.
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Intuitively, to make good suggestions, an agent needs to
classify its recommendations into different categories based
on some specific features of the recommendations and then
suggest the right categories of items to the user according to
his (or her) interests. In our context, each agent classifies its
recommendations into different INQ levels (e.g., very good,
good, bad, etc.) based on its internal belief about their
relevance to the user’s context. Then, to assist an agent to
direct the right categories of recommendations to the user,
we developed a concomitant reinforcement learning strat-
egy. This strategy enables an agent to relate the user’s
feedback about its recommendations to its INQ measure and
then to put forward those recommendations that are
consistent with this. This is important because the more
effectively an agent relates its recommendations to the
user’s interests, the better it serves the user and the more
rewards it receives.

Against this background, this paper advances the state of
the art in the following ways: First, a novel reinforcement
learning strategy is developed to enable the agents to
effectively and quickly learn the user’s interests, while still
making good recommendations. Second, and perhaps more
important, we demonstrate how our learning strategy,
coordinated through the marketplace, can be viewed as a
quality classification problem and how the marketplace
assists the classification and aligns the right recommenda-
tions to the right people. Third, from an individual agent’s
point of view, we show that the learning strategy enables an
agent to maximize its revenue. Finally, we show that when
all agents adopt our strategy, the market rapidly converges
and makes good recommendations quickly and frequently.

The remainder of this paper is structured in the
following manner: Section 2 briefly recaps the basics of
our multiagent recommender system and highlights the
problem an individual agent faces in it. Section 3 details the
design of our learning strategy. Section 4 empirically
evaluates this design. Section 5 outlines related work in
terms of reinforcement learning and market-based recom-
mendations. Section 6 concludes and points to future work.

2 THE QUALITY CLASSIFICATION PROBLEM FOR

MARKET-BASED RECOMMENDATIONS

This section briefly describes how our marketplace coordi-
nates bids with recommendations and rewards from the
point of view of individual recommender agents and, then,
goes into more detail on the quality classification problem
that each agent faces.

We outline our market-based recommender in terms of
the sequencing of the main market processes (see the circled
numbers in Fig. 4). First, when the market calls the agents
for a number (M) of recommendations, each agent submits
M items and bids a price for each of them. Second, the
market ranks all recommendations from all the agents in
decreasing order of their prices and displays the M items
with the highest bid prices to the user. Consequently, each
agent with displayed items pays an amount of credit (equal
to the amount it bids) for each of the corresponding
displayed items it advertises. Third, the user then visits a
number (between 0 andM) of the displayed items and gives

a rating (i.e., a UPQ value) to each visited item based on his
satisfaction. Fourth, the market rewards the agents that
supplied the recommendations that were assigned a
positive UPQ. The amount of credit they receive is
proportional to their UPQ values (see [6] for the details of
the mechanism and the proof that this mechanism is Pareto
optimal with respect to the group of rewarded agents and
that it maximizes their social welfare). Thus, the system
completes one round of operation and proceeds with
another following the above four steps.

In this context, the role of the reward mechanism is to
provide the agents with incentives to align their bidding
behavior with the interests of the user. From the point of
view of an individual agent, however, it needs to learn
which recommendations the user prefers. To do this, agents
classify their recommendations into a predetermined
number (G) of categories (or segments) based on their INQs
(e.g., in the simplest case, where G ¼ 2, an agent could
classify “bad” recommendations as those with an INQ of
less than 0.5 and those with an INQ between 0.5 and 1.0 as
“good”) and then they relate these INQs to the UPQs.
Intuitively, the more the user is satisfied with a recommen-
dation, the more reward the corresponding agent receives.
Thus, an agent that has sufficient experience of the user’s
feedback can learn the user’s interests by correlating its
recommendations (and their corresponding INQ segments)
to the rewards (that reflect their UPQs) they receive [7]. This,
in turn, enables a self-interested agent to consciously make
recommendations from those INQ segments that corre-
spond to high UPQs so that it can best satisfy the user and,
thus, gain maximal revenue. To effectively compute the
agents’ revenue, we define an agent’s immediate reward
(made from a recommendation displayed to the user in one
auction round) as the reward it received minus the price it
has paid for the advertisement.1 With this, what an agent
needs to do is to learn how much immediate rewards, on
average, it can expect for items in each category (i.e., each
INQ segment). We term this average immediate reward for
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1. Agents pay nothing for items they put forward that are not displayed
to the user (this occurs when other agents are willing to pay more to
advertise their recommendations). By definition, an immediate reward may
either be positive or negative. If a displayed recommendation is not selected
by the user or if it has paid too much to display an item, the corresponding
agent’s immediate reward is negative since it has paid for the display and
received less reward.

Fig. 4. An individual agent’s quality classification problem.
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each INQ segment an agent’s expected revenue. Thus, a self-
interested agent can maximize its revenue by frequently
bidding recommendations from the segments with high
expected revenue. Therefore, an agent’s recommending task
can be seen as a quality classification problem and it needs
to align the user’s preferences with its INQ segments
(reflected by expected revenue) and meanwhile make
maximal revenue.

However, when an agent starts bidding in the market-
place, it has no information about how much revenue it can
expect for each segment. Therefore, the agent needs to
interact in the marketplace by taking actions over its
G segments to learn this information (as per Fig. 4). In this
way, an agent can produce a profile of such information
from which it can form an optimal strategy to maximize its
overall revenue. In this context, the agent’s learning
behavior is on a “trial-and-error” basis. The agent bids its
recommendations and receives the corresponding feedback
in a manner that good recommendations gain rewards,
whereas bad ones attract a loss. This kind of trial-and-error
learning behavior is exactly what happens in Reinforcement
Learning [11]. Thus, to be more concrete, an agent needs an
algorithm to learn the expected revenue over each segment.
In addition, it also needs an exploration strategy to make
trials on its G segments such that it strikes a balance
between learning as quickly as possible, while still max-
imizing revenue.

3 THE LEARNING STRATEGY

This section details the design of an agent’s learning
algorithm and exploration strategy in Sections 3.1 and 3.2,
respectively. The overall strategy is then pulled together in
Section 3.3.

3.1 The Q-Learning Algorithm

In previous work, we have proved (theoretically and
empirically) that our marketplace enables an agent to relate
the rewards it received to its G INQ segments [7]. Building
on this basis, the contribution of this paper is in how to
effectively learn the expected revenue that is likely to accrue
over its G segments. Such a strategy is desirable because
high expected revenue on a specific segment implies that
more rewards can be expected if it repeats bidding on that
segment in future. Therefore, this section aims to address
the problem of producing the expected revenue profile over
an agent’s G segments, while still trading profitably in the
marketplace.

In detail, an agent needs to execute a set of actions
(bidding on its G segments, a1; a2; " " " ; aG) to learn the
expected revenue of each segment (RðaiÞ, i 2 ½1::G&).
Specifically, an action ai that results in its recommendation
being displayed to the user must pay some amount of
credit. Then, it may or may not receive an amount of reward
(depending on whether its recommendation satisfies the
user). We record the tth immediate reward that ai has
received as ri;t (t ¼ 1; 2; " " " ). From a statistical perspective,
the expected revenue can be obtained from the mean value
of the series of discrete immediate reward values:

E½RðaiÞ& ¼ lim
t!1

1

t

X

t

ri;t

 !
: ð1Þ

In this context, the Q-learning technique provides a well-
established way of estimating the optimality [11]. In
particular, we use a standard Q-learning algorithm to
estimate RðaiÞ by learning the mean value of the immediate
rewards:

Q̂Qi :¼ 1' 1

t

! "
" Q̂Qi þ

1

t
" ri;t; ð2Þ

where Q̂Qi is the current estimation of RðaiÞ and 1
t is the

learning rate that controls how much weight is given to the
immediate reward (as opposed to the old estimation). As 1

t

decreases, Q̂Qi builds up an average of all experiences, and the
odd newunusual experience, ri;t, does not significantly affect
the established Q̂Qi. As t approaches infinity, the learning rate
tends to zero which means that learning is no longer taking
place. This, in turn, makes Q̂Qi converge to a unique set of
values that define the expected revenue of each segment.

Proposition 1. As t'!1, Q̂Qi converges to E½RðaiÞ&.
Proof. We use Qi;0 to represent the initial value of Q̂Qi, and

Q̂Qi;t to represent the local estimation to RðaiÞ when ai has
been experienced t times. Q̂Qi’s updates go:

Q̂Qi;1 ¼ 0 " Q̂Qi;0 þ 1 " ri;1 ¼ ri;1
Q̂Qi;2 ¼ 1

2 " ri;1 þ
1
2 " ri;2 ¼

1
2 ðri;1 þ ri;2Þ

Q̂Qi;3 ¼ 2
3 "

1
2 ðri;1 þ ri;2Þ þ 1

3 " ri;3 ¼
1
3 ðri;1 þ ri;2 þ ri;3Þ

..

.

Q̂Qi;t ¼ 1
t ðri;1 þ ri;2 þ " " " þ ri;tÞ ¼ 1

t

Pt
j¼1 ri;j

As t ! 1, limt!1ð1t
Pt

j¼1 ri;jÞ statistically defines
E½RðaiÞ&. tu
This proof exemplifies how newly experienced immedi-

ate rewards, combined with the learning rate, produce
convergence. With the Q-learning algorithm in place, an
agent needs an exploration strategy to execute actions to
build up its Q̂Q profile.

3.2 The Exploration Strategy

We assume all agents are self-interested and want to gain
maximal revenue as they bid. However, before Q̂Qi con-
verges, it is difficult for an agent to know how much can be
expected through each action and, therefore, which action it
should choose. It is faced with the classic dilemma of
choosing actions that have a well-known reward or
choosing new ones that have uncertain rewards (which
may be higher or lower than the well-known actions). To
this end, the agent needs an exploration strategy over its
G segments to build up its Q̂Qi in an effective way so that it
can know how much return can be expected from each
segment.

In general, there is a fairly well-developed formal theory
for exploration strategies for problems similar to that faced
by our agents [12]. However, the standard methods require
very specific conditions (detailed in Section 5) that do not
hold in our context.2 Specifically, the number of times that
an agent can interact with the marketplace is not limited.
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2. In fact, it is hard to find the absolutely best strategy for most complex
problems. In the reinforcement learning practice, therefore, approaches
tend to be developed for specific contexts. They solve the problems in
question in a reasonable and computationally tractable manner, although
they are often not the absolutely optimal choice [12].
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Thus, the agent can gather as much information as it wants
in order to form its expected revenue profile. Knowing how
much can be expected through each action, an agent can use
a probabilistic approach to select actions based on the law of
effect [13]: Choices that have led to good outcomes in the past are
more likely to be repeated in the future. To this end, a Boltzmann
exploration strategy fits our context well; it ensures the agent
exploits higher Q̂Q value actions with higher probability,
whereas it explores lower Q̂Q value actions with lower
probability [12]. The probability of taking action ai is
formally defined as:

Pai ¼
eQ̂Qi=T

PG
j¼1 e

Q̂Qj=T
ðT > 0Þ; ð3Þ

where T is a system variable that controls the priority of
action selection. In practice, as the agent’s experience
increases and all Q̂Qis tend to converge, the agent’s knowledge
approaches optimality. Thus, T can be decreased such that
the agent chooses fewer actions with small Q̂Qi values
(meaning trying not to lose credits) and chooses more
actions with large Q̂Qi values (meaning trying to gain credits).

In general, however, we have observed that the learning
algorithm of (2) accompanied with the exploration strategy
of (3) has a problem of producing bias from the optimal and
very little work has been done to address this. This problem
occurs when an agent obtains a very small negative Q̂Qi

value for a particular action in its first few trials.3 If this
happens, a bias from the true expected revenue of this
action may occur (since the action may, in general, produce
positive RðaiÞ) and the agent will seldom choose it. This
kind of bias is a particular problem in our system. This is
because a user may not always visit all displayed items in
the sidebar and, thus, some good recommendations may be
skipped and, therefore, be deemed bad ones. To avoid such
bias, T needs to be assigned a very large value in the
beginning of learning to limit the exploration priority given
to those actions with very large Q̂Q values. However,
controlling T in terms of producing the unbiased optimal
strategy is hard to achieve since different actions’ Q̂Qs
converge with different speeds and their convergence is
difficult to detect. Even with other exploration strategies,
such biases still exist since no exploration can avoid such
unlucky trials at the beginning of learning. To this end, we
developed an algorithm that takes positive initial Q̂Qi values
into account to overcome this problem. We detail this in the
next section.

3.3 The Overall Strategy

To overcome the impact of bias in the beginning of learning,
we use positive initial Q̂Q values (i.e., Q̂Qi;0) and make them
affect the learning. Thus, instead of algorithm (2), we use
the following learning algorithm:

Q̂Qi :¼ 1' 1

t0 þ t

! "
" Q̂Qi þ

1

t0 þ t
" ri;t: ð4Þ

The difference between (2) and (4) is that the former does not
take Q̂Qi;0 into account, whereas the latter does. Specifically,

algorithm (4) assumes that each action has been experienced
t0 (t0 is positive and finite) times and each time with a
feedback of Q̂Qi;0 (Q̂Qi;0 ) 0) before the agent starts learning.
This, in turn, removes the problem discussed in Section 3.2.
Indeed, if an action causes a negative immediate reward in
the beginning, it does not force its Q̂Qi to become negative. In
this way, all actions will still be allocated a relatively equal
opportunity of being explored as an agent begins learning.
As the agent continues to interact with the marketplace, its
Q̂Qis update gradually to different levels and these levels still
make its exploration follow the law of effect. Thus, the
agent’s exploitation tends to optimality with its Q̂Q values
tending to converge. Additionally, by initializing Q̂Q with
positive values, the exploration does not need a sophisti-
cated control on T since a relatively small positive value is
sufficient and is easier to control. Moreover, the change from
(2) to (4) does not affect the convergence (as proved below).4

Proposition 2. Given Q̂Qi’s definition by algorithm (4), its
convergence to E½RðaiÞ& is independent of its initial value Q̂Qi;0

and initial time t0.

Proof. Q̂Qi’s updates go:

Q̂Qi;1 ¼ t0
t0þ1 " Q̂Qi;0 þ 1

t0þ1 " ri;1

Q̂Qi;2 ¼ 1' 1
t0þ2

# $
t0

t0þ1 " Q̂Qi;0 þ 1
t0þ1 " ri;1

# $
þ 1

t0þ2 " ri;2

¼ t0
t0þ2 " Q̂Qi;0 þ 1

t0þ2 " ðri;1 þ ri;2Þ

Q̂Qi;3 ¼ 1' 1
t0þ3

# $
t0

t0þ2 " Q̂Qi;0 þ 1
t0þ2 " ri;1 þ ri;2

% &# $
þ 1

t0þ3 " ri;3

¼ t0
t0þ3 " Q̂Qi;0 þ 1

t0þ3 " ðri;1 þ ri;2 þ ri;3Þ

..

.

Q̂Qi;t ¼ t0
t0þt " Q̂Qi;0 þ t

t0þt "
1
t "
Pt

j¼1 ri;j

Since t0 is finite, limt!1
t0

t0þt'!0 and limt!1
t

t0þt'!1.
Thus, limt!1 Q̂Qi;t'! limt!1ð1t

Pt
j¼1 ri;jÞ ¼ E½RðaiÞ&. tu

This proof shows that algorithm (4) also produces
unbiased learning. Thus, we will use (4) and (3) for our
agents and the overall strategy is detailed in Fig. 5.

4 EVALUATION

This section reports on the experiments to evaluate the
learning strategy we have developed. The experimental
settings are discussed in Section 4.2, before the evaluations
are presented in Section 4.3. First, however, we discuss the
criteria with which we can evaluate our design.

4.1 Evaluation Metrics

To evaluate the learning strategy we use the following
evaluation metrics (the first two are concerned with an
individual learner’s performance and the second two with
the performance of the collective of learners):

. Convergence to Optimality: Many learning algorithms
come with a provable guarantee of asymptotic
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3. A negative immediate reward means punishment and an erroneous
action. A reward of zero means that the action has received no feedback.
Thus, actions with negative, zero, and positive feedback are differentiated
and exploration priority should be given to the latter two.

4. However, the time it takes to converge is extended slightly depending
on the values of Q̂Q0 and t0 (the larger their values are, the longer it takes to
converge).
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convergence to optimal behavior [11]. This criterion
is included here to evaluate the quality of learning
itself; it is important because if an algorithm does not
converge, the agent will have no incentive to follow
its behavior.

. Individual Rationality: All component recommenders
in our system are self-interested agents that aim to
maximize their revenue by bidding their recommen-
dations [6]. Thus, if an agent can make a profit by
participating in a particular auction it will do so.
This criterion is included here because without such
individually rational mechanisms, there is no moti-
vation for the agents to participate in the system.

. Quick Market Convergence: If the prices of the
displayed recommendations reach a steady state
after a number of consecutive auctions, the market is
convergent. In the analysis of our recommender

system, we proved that convergence is necessary to
ensure only the best items are displayed and that
they are shortlisted in decreasing order of UPQ [7].
Therefore, a market that converges quickly means
that it starts satisfying the user quickly. This is
clearly important since a user will stop using a
recommender if it takes too long to produce good
suggestions. Thus, this criterion is used to ensure
recommender agents clear incentives.

. Best Recommendation’s Identification: A good recom-
mender system should be able to identify the best
recommendation (the one with the highest UPQ)
quickly and suggest it frequently [14]. This is
important because, otherwise, if the best recommen-
dations cannot be identified and displayed, the user
will stop using the system. Therefore, this criterion is
used to ensure users high quality recommendations.

4.2 Experimental Settings

Having previously shown that our marketplace is capable
of effectively incentivizing good recommendation methods
to relate their INQs to the UPQ [7], we will not discuss how
the agents do this. Rather, here, we simply assume that
there are four good recommendation methods (able to
correlate their INQs to the UPQ) and four poor ones (unable
to do so). Given a specific recommendation (Rec), the
correlations of its UPQ to a good method’s INQ (INQg) and
to a poor one’s (INQp) are described in (5) and (6),
respectively (“6ffi ” means “has no relation to”):

UPQðRecÞ ¼ INQgðRecÞ + 0:1 " randomðÞ
ð5Þ

UPQðRecÞ 6ffi INQpðRecÞ; ð6Þ

where randomðÞ returns a random value that follows a
uniform distribution within the range [0, 1.0). This random
value can be seen as the noise between the INQ and the
UPQ. All UPQ and INQ values are fixed within [0, 1.0). In
each auction round, the marketplace calls for 10 bids. We
use an independent-selection user model to decide which
recommendations displayed to the user will be rewarded
[15], [7]. In this model, selecting one item is independent of
selecting another and all recommendations with a UPQ

higher than a particular threshold will be rewarded. Here,
we set this threshold to 0.75. To correlate their INQs to the
UPQs, all agents divide their INQ range into G ¼ 20 equal
segments. We assume that all agents share the same set of
recommendations and each agent has at least 10 items in
each segment. Before starting to bid, Qinit is set to 250, T ¼
200 and t0 ¼ 1 for all agents. All agents are initially
endowed with same amount of credit (65,536). At the
beginning, each agent will bid the same (128) for items from
any segment since it does not know which segments are
more valuable than others.

4.3 Learning Strategy Effectiveness

Having outlined the configuration of the agents, this section
details the evaluations. Among all the properties that we
want the learning strategy to exhibit, Q̂Q convergence is the
most important. Indeed, in its absence, an agent loses its
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basis to reason. Thus, we will start with experiments on the
convergence of Q̂Q values.5

4.3.1 Convergence to Optimality

To evaluate an agent’s Q̂Q value convergence, we arranged
300 consecutive auctions. Among the eight agents, the first
four employ the good recommendation method and the last
four employ the poor one. We find that, with a good
method, an agent’s Q̂Q values always converge such that
high INQ segments’ Q̂Qs (corresponding to high UPQ because
of (5)) converge to high values and low INQ segments’ Q̂Qs
converge to low values (see Fig. 6a). Specifically, the Q̂Q
values of those INQ segments corresponding to the UPQs
above the user’s satisfaction threshold (0.75) converge
proportionally to their corresponding UPQs. The higher
the corresponding UPQ, the higher the Q̂Qi’s convergence
value, because the recommendations from a segment
corresponding to higher UPQs receive more immediate

reward than those corresponding to lower UPQs. The
Q̂Q values of those segments that correspond to the UPQs
below 0.75 converge to negative values since they do not
receive rewards if their recommendations are displayed.
Moreover, the convergence is independent of the specific
form of (5). Specifically, once there is a unique UPQ level
corresponding to each INQ level (even high INQ corre-
sponding to low UPQ), the Q̂Q value of an INQ segment
corresponding to a high UPQ will always converge to a high
level (since it induces high immediate rewards). However,
with a poor method, an agent’s Q̂Q values cannot converge
such that high INQ segments’ Q̂Qs converge to high values
(see Fig. 6b). This is because a specific INQ corresponds to
very different UPQs (and very different immediate rewards)
at different times because of (6).

To exemplify that our learning algorithm (4) overcomes
the bias problem that may occur in (2), we organized
another set of experiments with all agents taking zero initial
Q̂Qi values and all other settings remained unchanged (see
Fig. 6c). From Fig. 6c, we can see that Q̂Q12 is updated only
once and with a large negative value of -82 (this gives the
corresponding action virtually no chance of being selected
in future). Q̂Q16 also produces a bias in the beginning. In even
worse cases, Q̂Q16 can never update itself like Q̂Q12 (however,
it should actually have a positive expected revenue).
However, with positive initial Q̂Qi values, such biases do
not occur (see Fig. 6a).

4.3.2 Individual Rationality

The agents with good methods are able to know what
recommendations better satisfy the user. Therefore, they
can achieve more immediate rewards. Thus, good recom-
mendations are raised more frequently by a learning agent
than by a nonlearning one. This, in turn, means learning
agents can maximize their revenue by selecting good
recommendations. In particular, Fig. 7 shows that good
recommendation methods with learning capability (the first
four agents in Fig. 7a) make, on average, significantly
greater amounts (about 43 percent) of credit than those
without (the first four agents in Fig. 7b). With a poor
method, the agents cannot relate their bids to the user’s
interest and therefore bid randomly. Thus, they cannot
consistently achieve positive immediate rewards and their
revenue is low (the last four agents in Figs. 7a and 7b).

4.3.3 Quick Market Convergence

We have shown that market convergence enables the agents
to know what prices to bid for recommendations relating to
certain UPQs so as to gain maximal revenue [6], [7]. Thus,
quick market convergence lets agents reach this state
quickly. To evaluate this, we organized two sets of
experiments (using the same settings as the experiments
assessing the convergence). The first one contains all
learning agents and the other contains none. We find that
a marketplace with learning agents always converges
quicker than the one without. From Fig. 8, we can see that
a marketplace with learning agents (Fig. 8a) converges after
about 40 auctions, whereas one without (Fig. 8b) converges
after about 120 auctions. Indeed, as the learning agents’ Q̂Q
profiles converge, more high-quality recommendations are
consistently suggested (since their high Q̂Q values induce

1684 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

5. The results shown are for a single simulation run. However, to ensure
these results are typical for our system, we repeated the experiments for
200 simulation trials. Thus, the results we will show and discuss are
representative of the outcomes. Specifically, over the 200 simulations, we
found that: In 78.1 percent of the trials, the good recommendation methods’
Q̂Qs converge; all good recommendation methods with converged Q̂Q profiles
make a significantly greater amount of credit (38.3 percent on average); a
marketplace with learning agents takes 59.4 percent less time to converge
than one without; and the number of best recommendations that a learning
market is able to identify is, on average, 2.73 times that of a market without
learning capability.

Fig. 6. Q-Learning Convergence.

Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 17:44 from IEEE Xplore.  Restrictions apply. 



high probability for the agent to bid these items because of
(3)) and low-quality ones are deterred. This, in turn,
accelerates effective price iterations to chase the market
equilibrium. It takes approximately one third of the time for
a market with learning agents to chase the equilibrium
compared to one without.

4.3.4 Best Recommendation’s Identification

To evaluate the learning strategy’s ability to identify the
best recommendation (from the viewpoint of the user, i.e.,
the top UPQ item) quickly and bid it consistently, we use the
same set of experiments that were used to assess market
convergence. We then trace the top UPQ item highlighted by
a randomly selected learning agent with a good recom-
mendation method and a corresponding one from a non-
learning agent in Figs. 8a and 8b, respectively. We do this
by plotting this top UPQ items’ bidding prices with circle
points in the figures. To clearly display the points of the
trace and not to damage the quality of lines (representing
the three displayed bids), we do not display the points
when this item is raised by other agents. From Fig. 8a, we
can see that this item’s bidding price keeps increasing till it
converges to the first bid price of the displayed items. This
means that as long as the randomly selected agent chooses

this particular item to bid in an auction (after the market
converges), it is always displayed in the top position
displayed to the user. However, in contrast, this phenom-
enon in a market without learning agents proceeds slowly
(see Fig. 8b). This means that a learning market can satisfy
the user quicker than a nonlearning one. Additionally, a
learning market raises the best recommendation more
frequently (39 times by the selected learning agent, see
Fig. 8a) than a market without learning capability (13 times
by the corresponding nonlearning agent, see Fig. 8b).

5 RELATED WORK

The learning strategy presented in this paper significantly
improves our previously reported market-based recom-
mender system [6], [7] by speeding up the market’s ability
to make good recommendations. Previously, the strategy
we developed for selecting which recommendations to bid
was random (i.e., an agent randomly selects an item from
any one of the G INQ segments in one auction round) [7].
While this strategy performed sufficiently to enable the
viability of the market-based recommender to be evaluated,
it often presented poor recommendations for too long and
learned the user’s interests too slowly. In contrast, by
learning the expected revenue of each INQ segment and
consistently bidding on those items that have high expected
revenue (since they satisfy the user), an agent quickly
identifies the best recommendation and maximizes its
revenue (typically making 43 percent more credit than our
previous method). With all agents employing the learning
strategy, the market converges quickly (in about one third
of the time of the previous method) and satisfies the user
more consistently (making high-quality recommendations
about three times as often as the previous method).
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In terms of learning users’ interests, most existing
recommender systems use techniques that are based on
two kinds of features of recommendations: objective
features and subjective features. For example, LIBRA is a
book recommender system that extracts textual information
from books that a user has previously indicated a liking for
and learns his interests through the extracted contents [16].
GroupLens is a Usenet news recommender that predicts the
INQ of a specific recommendation based on other users’
ratings on it [14]. However, many researchers have shown
that learning techniques based on either objective or
subjective features of recommendations cannot successfully
make high-quality recommendations to users in all situa-
tions [2], [17], [5]. Thus, no one learning technique is
universally best for all users in all situations. The funda-
mental reason for this is that these existing learning
algorithms are built inside the recommenders and, thus,
the recommendation features that they employ to predict
the user’s preferences are fixed and cannot be changed.
Therefore, if a learning algorithm is computing its recom-
mendations based on the features that are relevant to a
user’s context, the recommender is able to successfully
predict the user’s preferences (e.g., a customer wants to buy
a “blue” cup online and the recommendation method’s
learning algorithm is just measuring the “color” but not the
“size” or the “price” of cups). Otherwise, if the user’s
context related features do not overlap any of those that the
learning algorithm is computing on, the recommender will
fail (e.g., the user considers “color” and the learning
algorithm measures “size”).

To overcome this problem and successfully align the
features that a learning technique measures with a user’s
context in all possible situations, we seek to integrate
multiple recommendation methods (each with a different
learning algorithm) into one single system and use an
overarching marketplace to coordinate them. Essentially,
our market-based system’s learning technique encapsulates
multiple learners and each one computes its recommenda-
tions based on some specific features. Thus, our approach
has a larger probability of relating its features to the user’s
context and, so, correspondingly, has a larger opportunity
to offer high-quality recommendations.

In terms of the integration of multiple recommendation
methods, our approach is significantly different from the
conventional hybrid filtering systems. Such systems inte-
grate both content-based and collaborative filtering techni-
ques and try to use the strength of one kind of technique to
compensate for the weakness of the other [17], [18], [19]. For
example, collaborative via content is a typical hybrid
approach to address the sparse-data problem in pure
collaborative filtering systems [20]. Such techniques use
secondary data (e.g., document contents) to predict users’
preferences in collaborative recommendations when colla-
borative user profiles lack data [21]. While hybrid systems
can sometimes overcome the shortcomings of pure content-
based and pure collaborative systems, this conventional
integration of multiple filtering techniques is typically
performed in a rigid and predetermined manner. Thus,
there is no automated way of determining in what circum-
stances which kind of filtering technique is more relevant to

a particular user in his current context. In contrast, by using
the market to reward effective recommenders, our approach
dynamically tunes the relative importance of the methods
according to the feedback received from the users.

In terms of general work on market-based recommenda-
tions, the most related work to our own is that of [15]. This
work uses a market to competitively allocate consumers’
attention space in the domain of retailing online products
(such as PC peripherals). However, this is less concerned
with the information retrieval and filtering. Specifically,
they use a market to competitively allocate consumers’
attention space in the domain of retailing. Here, the scarce
resource is the consumer’s ability to focus on a set of
banners or products. However, this work and our own use
the market mechanisms in different ways to help recom-
mendations. The market in [15] is used only to coordinate
agents’ bidding, whereas ours is used not only for this
purpose, but also to correlate the INQ to the UPQ of
recommendations (i.e., also for quality classification and
alignment).

In terms of specific work in the area of reinforcement
learning, themost relevantwork to ours is that of the k-armed
gambling problem [22]. In this, an agent faces k gambling
machines, each ofwhich has a probability of payoff of zero or
one. The similaritywith our problem is that, in both cases, the
agent needs to learn the average payoffs that can be obtained
from each gambling machine (or from each INQ segment in
our case) as quickly as possible, while still maximizing its
revenue. In this context, the solution to the k-armed gambling
problem also suits our problem. Specifically, Berry and
Fristedt developed a recursive algorithm to find the optimal
strategy to gain themaximal payoffs in the case that the agent
is permitted a fixed number of pulls [22]. However, in
contrast, our recommender agents do not have a limit on the
number of interactions they can have with the marketplace.
Thus, our agents can gain sufficient experience to build up an
unbiased optimal strategy. Gittins also tackles the k-armed
gambling problem [23]. His “allocation index” method
indexes all the actions that an agent experienced with a
combined value of the expected payoff of each action and the
value of the information that can be obtained by choosing it.
The agent then chooses the action with the largest index
value and this is shown to guarantee the optimal balance
between exploration and exploitation. However, this techni-
que only applies if the expected future rewards are
discounted, which is inappropriate in our context because
future immediate rewards are equally important as the
current ones in our system (thus, we do not discount
rewards). Thrun also develops an exploration strategy for
the k-armed gambling problem [24]. Specifically, his strategy
always chooses the action with the highest payoff. However,
this strategy may produce a biased estimation from the true
expectation since the actions with negative signals received
in the beginningmay have insufficient experience to produce
biased expectations (as we discussed in Section 3.2). In
contrast, by using the positive Q̂Q initial value and large T
value to give equal opportunity to different segments to
update their expected revenue, our strategy can produce an
unbiased expected revenue profile. Kaelbling’s interval-
based technique can be seen as an extension of Thrun’s
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greedy strategy [25]. Her approach computes the upper
bound of the confidence interval on the success probabilities
of all actions and chooses the one with the highest upper
bound. However, this approach relies on an a priori analysis
of the payoff distribution of each action. But, in our context,
actions from the same segment correspond to a relatively
stable amount of reward. Thus, we do not have to perform
this analysis (which would be difficult if not impossible) in
our case because insufficient experience in the beginning of
learning may produce biased confidence intervals and this,
in turn, also induces a biased expected revenue profile.

Generally speaking, in reinforcement learning, an agent
is assumed to be situated in a multistate environment where
the agent’s actions determine both its immediate reward
and the next state of the environment. Moreover, this state
transition affects the agent’s future actions and, conse-
quently, its future expected rewards. Thus, the expected
future reward needs to be factored into the agent’s current
decision making. Therefore, in this kind of problem, an
agent needs to learn which actions are desirable based on
rewards that can be obtained arbitrarily far in the future. In
this context, Markov Decision Processes (MDPs) are a
typical model of this kind of reinforcement learning [11]. An
MDP consists of a set of states (s), a set of actions (a), a state
transition function (!ðst; atÞ ¼ stþ1), and a reward function
with respect to the transitions (r ¼ ðst; atÞ). The MDP model
makes the complicated decision making processes intui-
tively and simplified by estimating the overall payoff
(current reward plus the discounted delayed rewards in
future) of all the possible state transitions (all combinations
of the state-action pair ðsi; ajÞ). After this estimation profile
converges, an agent’s optimal action selection strategy is
choosing the action with the maximal overall payoff at any
given state. However, in our context, taking one action is
independent of taking another (because future rewards are
only based on future recommendations’ UPQs and have no
relationship to the current recommendation). Therefore, our
learning strategy is on a single-state basis.

6 CONCLUSIONS AND FUTURE WORK

To be effective in a multiagent recommender system (such
as our market-based system), an individual agent needs to
adapt its behavior to reflect the user’s interests. However, in
general, an agent initially has no knowledge about these
preferences and it needs to obtain such information. But, in
so doing, it needs to ensure that it continues to maximize its
revenue. In more detail, therefore, the contributions of this
paper are as follows:

1. We have developed a quality classification mechan-
ism and a reinforcement learning strategy that
achieve the balance between quickly learning users’
interests and maximizing recommender agents’
revenue. The quality classification mechanism to-
gether with the reinforcement learning strategy
enables a recommender agent to quickly learn the
users’ interests, while still maximizing its revenue.

2. Our market-based recommender system automates
the correlation between individual recommender
agents’ internal evaluation of the properties (and
features) of recommendations and the users’ evalua-
tions. Essentially, themarketplace integratesmultiple
different recommendation methods and, thus, eval-
uates awide variety of properties of recommendation

items. Through bidding and receiving rewards, those
methods that evaluate properties that reflect the
users’ concerns are able to learn users’ interests
consistently and thrive in the marketplace. Thus,
these methods’ INQs are effectively correlated to the
UPQs and recommendations from these methods are
consistently shortlisted in the recommender sidebar.

3. From an individual agent’s point of view, the
learning strategy we have developed enables it to
quickly maximize its revenue. With our learning
strategy, a recommender agent builds up a profile of
a user’s interests with respect to its INQ classifica-
tion. Armed with this profile, a learning agent can
bid those items that satisfy the user’s interests (and,
so, make good profits) not bid those items that do
not satisfy the users’ interests (and, so, avoid losing
credits).

4. A market in which all agents employ our learning
strategy converges rapidly and identifies the best
recommendations quickly and frequently. The more
effective component recommenders that are inte-
grated in our marketplace, the greater the likelihood
that the system can correlate its measures of
recommendations consistently to users and the more
high-quality recommendations are suggested to the
right users.

Having demonstrated the viability and the effectiveness

of the learning approach to our market-based recommender

system, we now need to carry out more extensive field trials

with real users to ascertain that the theoretical properties of

our strategy do actually hold in practice.
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