Recommendation Systems
for Software Engineering

Martin P. Robillard, School of Computer Science, McGill University, Montréal, QC, Canada
martin@cs.mcgill.ca

Robert J. Walker, Department of Computer Science, University of Calgary, Calgary, AB, Canada
walker@ucalgary.ca

Thomas Zimmermann, Microsoft Research, Redmond, WA, USA
tzimmer@microsoft.com

Abstract

Software development can be challenging because of the large information spaces that developers must
navigate. Without assistance, developers can become bogged down, and spend a disproportionate
amount of their time seeking information at the expense of other value-producing tasks.
Recommendation Systems for Software Engineering are software tools that can assist developers with a
wide range of activities, from reusing code to writing effective bug reports. We provide an overview of
recommendation systems for software engineering: what they are, what they can do for developers,
and what they might do in the future.

Keywords
D.2.6 Programming Environments/Construction Tools

D.2 Software Engineering
D.2.3 Coding Tools and Techniques

D.2.2 Design Tools and Techniques

Di\;;itaIObJectlndentifie
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

Despite steady advancement in the state of the art, software development remains a challenge. We are
continually introduced to new technologies, new components, and new ideas we can draw from. The
systems we work on have more code and depend on larger libraries. Mastering a programming language
is no longer sufficient to ensure software development proficiency: developers must also learn to
navigate large code bases and class libraries. For example, a developer with a task as mundane as adding
a message to a status bar may have to discover the right classes among thousands in a class library, and
then understand complex interactions between them. Without assistance, developers can become
bogged down in a morass of details, and may need to spend a disproportionate amount of their time
seeking information at the expense of other value-producing tasks.

In recent years, various kinds of recommendation systems have emerged to help users find information
or make decisions in cases where they lack experience or cannot consider all the data at hand [1].
Recommendation systems combine “ideas and techniques from information filtering, user modeling,
artificial intelligence, user interface design and human-computer interaction [to] provide users with
proactive suggestions that are tailored to meet their particular information needs and preferences” [6].
To date, recommendation systems have mostly been tied to the web, providing features that range from
recommending books or movies to helping people find news items that may be relevant to them. Many
web-available recommendation systems embody mature technology delivered as part of commercial
systems (for example, the recommendations on Amazon.com). The challenges faced by people
navigating large information spaces are, in some ways, similar to the challenges faced by software
developers. Consider the parallel between a traveler trying to choose between over 300 hotels in New
York and a developer trying to find the one class that suits their needs among the 300 in a class library.
To assist developers with software development tasks, a number of recommendation systems for
software engineering are starting to emerge, a trend that is more recent than recommendation systems
for the web. Recommendation systems in the software engineering domain can assist developers with a
wide range of activities, from reusing code to writing effective bug reports.

Why are recommendation systems for software engineering emerging now? A variety of factors have
recently interplayed to promote and facilitate their development. These include:

e The increasing scale of systems, available libraries, and frameworks leads to increased risks that
developers will become overwhelmed with information, even when they are familiar with the
system under development.

e An ever-quickening pace of software evolution means that existing knowledge about a system
(e.g., as captured in documentation) is quickly invalidated, and must be acquired afresh, hence
increasing the need to navigate large information spaces frequently.

e A trend towards technologically heterogeneous systems means that developers will often need
to acquire information outside of their specialization.

e Anincrease in distributed development imposes constraints on the availability of team members
to answer questions and share their knowledge, making technological alternatives necessary.

In addition, key enabling factors have given rise to practical recommendation systems for software
engineering: large masses of publicly available source code that can be analyzed for recommendations,

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26.00 © 2009 |[EEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

mature software repository mining techniques, and the mainstream adoption of common interfaces for
software development (with web interfaces such as Bugzilla or tool integration platforms like Eclipse).

Recommendation systems for software engineering are ready to make their entrance into industrial
software developers’ toolboxes: research prototypes are quickly gaining in maturity, tools are being
released, and first-generation systems are being re-implemented in different environments. A workshop
we recently organized also showcased many of the future directions for recommendation systems for
software engineering, including an ever-widening array of supported tasks [10]. In this article, we
provide an overview of recommendation systems for software engineering: what they are, what they
can do for developers, and what they might do in the near future.

What Are Recommendation Systems for Software Engineering?
We describe RSSEs by starting with a general definition and description of recommendation systems as
proposed by the organizers of the ACM International Conference on Recommender Systems:

[Recommendation] systems are software applications that aim to support users in their decision-
making while interacting with large information spaces. They recommend items of interest to users
based on preferences they have expressed, either explicitly or implicitly. The ever-expanding volume
and increasing complexity of information [...] has therefore made such systems essential tools for
users in a variety of information seeking [...] activities. [Recommendation] systems help overcome
the information overload problem by exposing users to the most interesting items, and by offering
novelty, surprise, and relevance. [1]

In the context of software engineering, recommendation systems support developers in their decision-
making, but particularly with their information finding goals. Examples of information-finding activities
supported by RSSEs include: finding the right code, application programming interface (API), and
developer. In the case of software engineering, the “large information spaces” of interest are a subset of
a system’s code base, its libraries, bug reports, version history, and other documentation.

The above quote also highlights the relation between the output of recommendation systems and an
expression of their users’ interests. Developers can express their interest explicitly (for example, by
requesting a recommendation through a query, by marking elements as interesting), and implicitly (for
example, by having their actions monitored and the recommendations issued automatically at the
opportune time). This distinction highlights a key challenge for recommendation systems in general:
how to establish the context used to make a recommendation. The context is potentially all the
information about the user, their working environment, and their work, that are available at the time of
the recommendation, and which can establish the relevance of the recommendation. In
recommendation systems for traditional domains, the context is typically established through a user
profile, which can be composed of any combination of user-specified and learned characteristics. For
example, when Netflix recommends movies, it considers the genre preferences and movie ratings by the
customer (user-specified), but also the movies they have rented in the past (learned).

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26.00 © 2009 |[EEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

In recommendation systems for software engineering, it can be very challenging to establish the
context, because of the comparatively rich range of activities associated with tasks supported by RSSEs.
A traveler who seeks a hotel recommendation can typically specify much of the context with a handful
of simple criteria (such as price, services, star-rating, distance from area of interest). In contrast, to
provide a software developer with a recommendation about where to look next when exploring the
source code, the recommendation system must establish a number of rather fuzzy parameters, such as
what the developer is interested in discovering, what the developer already knows, and which parts of
the source code are related to the developer’s needs.

In the software engineering domain, the following aspects could all be considered as part of the context
that may need to be provided to or inferred by a recommendation system:

e the characteristics of the user (e.g., job description, expertise level, prior work, social network),

e the kind of task being conducted (e.g., adding new features, debugging, optimizing),

e the specific characteristics of the task being conducted (e.g., code edited, code viewed,
dependencies), and

e the past actions of the user or the user’s peers (e.g., which artifacts have been viewed, which
artifacts have been explicitly recommended).

The last part of the definition for general recommendation systems underlines the qualities of the
output of a recommendation system: “novelty, surprise, [or] relevance”. If recommendation systems are
to assist developers, they must provide them with valuable information; information is not usually
valuable if developers already know it, or if it is not relevant to their problem. This aspect is another
challenge faced by RSSEs because the value of the recommendations they issue is subjective and
situation-specific. Sometimes a recommendation is valuable when the developer wasn’t even aware of a
need, e.g., “l didn’t realize that making this change would be risky”; sometimes a recommendation is
valuable if it merely corroborates the developer’s suspicions, e.g., “I think that this is the only
dependency”. Considering all these particulars of the software engineering domain, we define RSSEs as
follows.

A recommendation system for software engineering is a software application that provides
information items estimated to be valuable for a software engineering task in a given context.

What Can RSSEs Do for Developers?

RSSEs can help developers to discover information that they should know about and to evaluate
alternatives when making decisions. Both of these types of activities span a wide spectrum of software
engineering tasks and involve considering practically unbounded amounts of software development
data; thus, such activities can benefit from automated assistance.

The majority of RSSEs support developers while programming. Current RSSEs have demonstrated
potential for surfacing opportunities for reuse (CodeBroker [13]) and for locating experts to consult
(Expertise Browser [7]). RSSEs also facilitate deciding what examples to use (Strathcona [5]) and what

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26.00 © 2009 |[EEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

sequence of calls to make (PARSEWeb [12]). RSSEs can support developers when navigating large code
bases by boiling down rich and complex information spaces into clearly prioritized lists of alternatives:
where to look in the code (Suade [9]) and what to change next (eROSE [14]).

However, RSSEs also support software engineering activities besides programming. In the context of
maintenance, RSSEs can recommend what methods to use to adapt code to a new version of a library
(SemDiff [3]). When debugging, RSSEs can help to find code and people related to a bug fix (Dhruv [2]).
For testing, RSSEs can make predictions about which parts of a software product will have the most
defects and thus help to prioritize resources for quality assurance [8].

A Sample of RSSEs

Although the diversity of RSSEs that have been developed makes generalizations about their
architecture difficult, most RSSEs involve at least three main pieces of functionality. A data collection
mechanism collects software development artifacts and data that are the byproducts of the software
development process into a model that can be used to produce recommendations. A recommendation
engine analyses the data model to produce recommendations. Recommendations are then presented in
the RSSE’s user interface, which can also be used to trigger the recommendation cycle.

A good way to understand more concretely what RSSEs look like and what they can do for developers is
to look at a few examples. We present three examples of recommendation systems that we have
developed and experimented with. This small sample does not represent the entire field of RSSEs: aside
from our deep understanding of their implementation, we selected these three systems to illustrate
how recommendation systems work, and how they can differ in key design dimensions.

Guiding Software Changes with eROSE. If you browse books at Amazon, you may have encountered
recommendations like “Customers who bought this book also bought...” Such findings stem from
Amazon’s purchase history: buying two or more books together establishes a relationship between
books, which is used by Amazon to create recommendations. The eROSE plug-in for Eclipse realizes a
similar feature for software development by mining past changes [14] from version archives like CVS.
When used by a developer, it keeps track of the elements changed (the context) and constantly updates
its recommendations in a view after every save operation. For example, when a developer wants to add
a new preference to the Eclipse IDE and has changed fKeys[] and initDefaults (), eROSE would
recommend “Change plugin.properties” because all developers who changed the code of Eclipse
did so in the past. During setup eROSE preprocesses the project’s CVS archive to identify fine-grained
changes to program elements such as classes, methods, and fields. In addition, eROSE groups elements
that were changed at the same time and by the same developer (“co-change”) into transactions and
stores them in a SQL database. The context is then used to query the set of transactions. Transactions
that contain at least one element of the context are retrieved, combined, and returned. From the result,
eROSE derives its recommendations: First it excludes the context because the user has changed these
elements already. Second it ranks the remaining elements by the number of transactions they belong to;
the more frequent an element, the more likely the user should change it. Because the underlying
concept of eROSE is co-change, it is fairly language independent and can recommend text, image, or

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26.00 © 2009 |[EEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

documentation files in addition to program elements. Furthermore, eROSE can reveal hidden
dependencies such as whenever the developer changes code to create a database, the PNG file
depicting the database schema has to be updated. A prototype implementation of eROSE is available at
http://www.st.cs.uni-saarland.de/softevo/erose/.

Finding Relevant Examples with Strathcona. Frameworks provide developers with a repository of code
that can help them in their coding tasks. However, frameworks are frequently large and difficult to
understand; documentation is often incomplete or insufficient to help developers with the specific tasks
they are working on. The Strathcona system [5] automatically provides developers with relevant source
code examples to help them in using frameworks properly and effectively. For example, when a
developer becomes stuck while trying to figure out how to change the status bar in the Eclipse IDE, they
can highlight their partially-complete code (the context) and ask Strathcona for similar examples. A set
of structural facts are extracted from the code fragment, like what types are referenced
(IstatusLineManager, an abstract interface type) and what methods are called

(setMessage (String)). Strathcona searches for occurrences of each of these facts in a code
repository, via PostgreSQL queries. Strathcona then uses a set of heuristics to decide on which examples
are the best. Examples that are selected by the most heuristics are ordered before those chosen by
fewer heuristics; the top 10 results are returned. It presents its results both with a structural overview
diagram and with source code highlighted to show similarities to the developer’s partially-complete
code; a rationale can also be viewed to see why the example has been proposed (see Figure 1). A
prototype and more details are available at http://Ismr.cs.ucalgary.ca/strathcona.

P2 Strathcona Example Navigator 5 | B e LB TE0

@ ResourceNavigatol
©® updateStatusLinef..

L e gavn D

~u

publio elass View metends ViewBare |

L9 |StatusLineManage 5
St
ISEariakineHanager . merHensagr gl s oeernces .
Declrasons * -
P Query Stratheona ==
Suathcona Examole Navigator | T2Y Stratiena Source Code — o (=] Exiample & af 10
(a) Querying for recommendations (b) Structural overview
Rt e Havigator T8 S mtheor (1= o 3
n Rationale] Artifact |
Class Inherits From org.eclipse. ui.part. ViewPart
Method Calls Method org. edipse.jface.action. IStatuslineManager. setMessage(Ljava. lang.5tring;)
Method Uses Type org.edlipse. jface.action. IStatuslineManager
protected void updateStatusLine(IStruct S ion selection) { Methad Uses Type (S) java.lang.String
String msg = getStatuslineMessage(salection):
gatViewZite () .getActionbars() LinaManager () M meg)
| -
(c) Highlighted source view (d) Rationale view

Figure 1: Querying for recommendations, and the resulting presentation of examples and rationales in
Strathcona.

Guiding Software Navigation with Suade. Suade is an Eclipse plug-in that automatically generates
suggestions for software investigation [8]. When a developer is exploring the code to complete a change
task and becomes stuck, not knowing where to look next among all the elements related to the current
task, they can use Suade to trigger recommendations about where to look next. Based on a set of fields
and methods explicitly specified as “relevant” by a developer (the context), Suade automatically

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26,00 © 2009 IEEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

retrieves all the elements that are directly related to the elements in the context through method call
and field access relations, and ranks them based on their likely relevance to the investigation in a
context-specific manner. Suade ranks the recommended fields and methods by extracting all the static
dependencies to context elements from the project’s source code into a dependency graph, and by
analyzing the topology of this dependency graph with heuristics. For example, if a method in the source
code only calls methods that a developer specified as relevant, it is ranked more highly than methods
that call the context methods in addition to many others. In Suade, the user creates a context by
dragging and dropping elements of interest into a view. Whenever a context is specified, a developer
can trigger a recommendation cycle. Suade displays recommendations as items in a list, in a dedicated
view. Suade supports iterative recommendation generation by allowing users to drag recommended
elements back into the context view, to generate updated recommendations. More information on
Suade, including screenshots and a downloadable version of the tool, is available at
http://www.cs.mcgill.ca/"swevo/suade/.

RSSEs at Large

The examples described in the previous section only represent a small fraction of the spectrum of RSSEs
available and in development. We can take a broader look at the field by considering three different
design dimensions for RSSEs: nature of the context, recommendation engine, and output modes (see
Table 1 for a summary, and the sidebar for descriptions of the additional RSSEs mentioned in this

section).
Nature of the Context Recommendation Engine Output Mode
DATA
source | change | bug reports MODE
| mailing lists | interaction push | pull
INPUT history | peers’ actions
explicit | implicit | hybrid RANKING PRESENTATION
yes | no batch | inline
EXPLANATIONS
from none to detailed
USER FEEDBACK

none | locally-adjustable | individually-adaptive | globally-adaptive

Table 1: Design dimensions for RSSEs

Nature of the context

One of the concepts at the core of RSSEs is that of the context in which a recommendation is provided.
The context forms the input to the RSSE, and can be provided explicitly, implicitly, or as a hybrid of these
strategies.

Developers can provide context explicitly through various means of interaction with the user interface,
including entering text, selecting elements directly in the code (as in Strathcona or PARSEWeb), or
dragging and dropping elements into an explicit “context” widget (as in Suade). Specifying the context

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26,00 © 2009 IEEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

explicitly is appropriate when supporting tasks where the context is very difficult to detect (e.g., the
interest of a user or their level of experience), and where the amount of information to provide is
limited. For many tasks, part of the context can be obtained implicitly by the recommendation system.
For example, this is the case for RSSEs that track and react to actions by developers (as in eROSE), or for
RSSEs that require context information that would be unreasonable to specify explicitly (like the history
of interaction between a developer and their IDE). Finally, in many cases a combination of implicit and
explicit context-gathering will be necessary. With Strathcona, the developer explicitly selects a section of
code text, but the code is parsed and analyzed and a structured model is implicitly extracted to form the
context for the recommendation system. In the case of CodeBroker, the context is automatically
extracted from code comments, a syntactic construct that is assumed to be part of the task.

Recommendation Engine

In addition to the context, RSSEs need to analyze additional data to provide their recommendations. This
data can include the source code of a project, the complete history of changes for a system, other
artifacts like emails posted to mailing lists and bug reports, accumulated interaction data from many
programming sessions, test coverage reports, and code bases external to the project. Analyzing these
data sources is often referred to as mining software repositories (MSR), which was discussed in a recent
special issue of IEEE Software (January/February 2009). In the case of RSSEs, mining software
repositories is just one potential means to an end. Some RSSEs, such as Suade, do not rely on MSR to
produce recommendations.

Every RSSE we have encountered uses a ranking mechanism as a cornerstone of its analysis. An ideal
ranking algorithm systematically “recommends” the items that are most valuable to the user at the top
of its rankings. In practice, providing rankings relies on a model of what a developer will find useful, and
such models are never perfect, because they must model not only the task, but also the developer’s
individual perspective on the task: What’s useful for a developer may not be useful for that developer’s
colleague. Finally, models used by recommendation engines may also have to take into account the
time-sensitivity of recommendations: what’s useful for a developer now may not have been useful to
that developer in the past, or might not be useful in the future.

Output Modes

Most existing RSSEs operate in pull mode and produce recommendations after an explicit request from
the developer, which can be as simple as a single click in an IDE. Some RSSEs operate in push mode,
delivering their results continuously (e.g., eROSE, CodeBroker, Dhruv). The danger of push mode is that
it can become obstructive if not designed well. Conversely, the danger of pull mode is that developers
may miss something important if they don’t even think to ask about it.

We can also distinguish a batch output mode of use, when a developer wants a complete set of
recommendations about a task and thus is willing to go to a separate view in an IDE (the typical
approach in existing RSSEs); and an inline output mode, when annotations are made atop artifacts that
the developer is otherwise perusing (as in Dhruv).

o . Digital Object Indentifier 10.1109/M$.2009.161 0740-7459/$26,00 © 2009 IEEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

Cross-Dimensional Aspects

A number of RSSE features cross design dimensions. The recommendation engine of an RSSE can also
take into account the developer’s interactions with the RSSE itself, so that bad recommendations can be
flagged, and eliminated from future results. In other words, past recommendations support a feedback
mechanism and can become part of the context or the data the RSSE operates on. Ranking mechanisms
may be: locally-adjustable, in which the developer can adjust the inferred context manually (e.g.,
Suade); individually-adaptive, wherein the algorithm is refined for the sake of the individual based on
their own implicit or explicit feedback (e.g., CodeBroker); or globally-adaptive, where feedback from one
user can affect another user. Existing RSSEs tend to be limited in this dimension.

Finally, RSSEs vary in how they can explain their results. On one end, some systems provide
recommendations that appear to be almost magical. For example, some systems predict files as defect-
prone without providing any explanation, which makes it difficult for developers to trust such
recommendations. At the other end, some systems provide detailed rationales justifying each
recommendation (e.g., Strathcona). Naturally, providing a detailed rationale for a recommendation
requires exposing part of the inner workings of the RSSEs, which has both potential benefits (e.g., to
increase confidence in the recommendation) and pitfalls (e.g., information overload).

Limitations and Potential of RSSEs

While RSSEs hold out possibilities for advancing the state of the art in software development tools, they
are not without their limitations. For example, when large repositories of information are necessary,
RSSEs can be faced with the cold-start problem where required information cannot be supplied until a
project is underway, although one solution is to leverage analogous data from other projects instead.
Additionally, RSSEs cannot crawl inside the developer’s head to understand what they need to
accomplish; as such, the quality of their results is heavily dependent on the quality of the model they
use.

An exciting direction for RSSEs is the possibility of proactive discovery. Rather than waiting for the
developer to realize that they need a certain kind of information, it gets delivered to them beforehand.
The challenge is to avoid overwhelming the developer with so many “helpful” hints that these are all
ignored. Models that balance adaptation to the developer’s actions, with reaction to the developer’s
feedback and to the developer’s stated preferences would seem to hold out the most promise but also
the greatest challenge. To date, the predominant output mode for RSSEs has been the simple
recommendation list. Recommendation lists have many limitations, however, especially when it comes
to explaining the results of the recommendation systems. Strathcona takes a departure from the
standard model, with additional views to graphically represent the internal structure of the
recommended examples (see Figure 1).

The evolution of RSSEs is not only influenced by the needs of developers, but also by the nature of
available data and by the development of technologies. The 2008 International Workshop on
Recommendation Systems for Software Engineering allowed us to observe new trends and to hear
numerous well-informed opinions about the future of the field. To date, the majority of RSSEs have

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26.00 © 2009 |[EEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

focused on recommendations related to software development artifacts, and source code in particular.
RSSEs typically recommend code; e.g., code to look at, code to change, or code to reuse. However,
recommendations can be provided about many other aspects of software development [4], including
quality measures, tools, project management, and people, to support an ever-widening array of
software engineering tasks. One of the early RSSEs, Expertise Browser [7], was designed to help
developers find people with the expertise required to answer their question. Since then, however, few
recommendation systems have specifically focused on recommending people. With the recent
popularity of social networks in software development [11], the tide appears to be reversing, with a new
generation of RSSEs (such as Dhruv [2]) specifically designed to recommend people that developers
should interact with to succeed at their task.

As recommendation systems for software engineering continue to be developed and adopted, we are
bound to see new ways for systems to support the work of developers, by cost-effectively
recommending for them information that is novel, surprising, and relevant.

Acknowledgments
The authors are grateful to Barthélémy Dagenais, Rob Deline, and Reid Holmes as well as the
anonymous reviewers for their insightful comments on this paper.

SIDEBAR—How Do Recommendation Systems for Software Engineering

Relate to Search Tools?

Search tools constitute a class of systems that feels similar to RSSEs. To appreciate the relationship, one
must first notice that our definition of RSSEs is inclusive: an RSSE may provide other functionality beyond
recommendations, and its recommendation features may not even be its most prominent ones. Thus, a
particular search tool might also be an RSSE, but not all search tools are RSSEs, nor are all RSSEs also
search tools.

Classic search tools like grep (a regular expression matcher) are not RSSEs. Grep contains no model of
the context and software engineering task at hand. Grep always returns precisely what is requested:
thus, the developer must drive it very carefully to avoid poor results.

To address this burden, more modern search engines have begun to include recommendation features.
Standard web search engines order their results based on a general-purpose model of relevance. Source
code search engines like Google Code Search, Krugle, or Koders specialize this idea for searching through
source code repositories, but do not possess any model of the developer’s task or context. As with grep,
code search engines can be used for specific means to an end, but they do not eliminate the essential
difficulty of translating a complex software engineering task into concrete search terms.

In the end, if you know exactly what you are looking for and you know exactly how to specify it, a search
tool is likely to be the right fit. In other cases, the right recommendation system for software
engineering ought to focus your efforts.

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26,00 © 2009 IEEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

SIDEBAR—Some Other RSSEs

We give a brief look at a few other RSSEs. There are definitely many more around; for further
information, see our RSSE community website at http://sites.google.com/site/rsseresearch/.

CodeBroker

CodeBroker [13] is a tool that analyzes comments in the developer’s code in order to detect similarity to
elements in a class library that could likely be used to implement the described functionality.
CodeBroker uses a combination of textual similarity analysis and type signature matching to identify
relevant elements. It works in push mode, producing recommendations every time a comment is
written; it also manages user-specific lists of “known components”, which are automatically removed
from the recommendations.

Dhruv

Dhruv [2] recommends people and artifacts relevant to a bug report, chiefly aimed at the open-source
community that interacts heavily via the Web. It uses a three-layer model of community (developers,
users, contributors), content (code, bug reports, forum messages), and interactions between these. A
Semantic Web is constructed that describes the objects and relationships between them; objects are
then recommended according to the similarity between the bug report and the terms contained within
the object plus its meta-data.

Expertise Browser

Finding the people with the right expertise is a difficult task in software development, especially when
developers are geographically distributed. Expertise Browser [7] is a tool that recommends who has
appropriate expertise for a given code location or documentation. Recommendations are based on past
changes, developers who changed a method are assumed to have expertise for that method.

PARSEWeb

There are times when you want to call a particular method, but you have trouble figuring out how to
access it with an appropriate calling sequence. PARSEWeb [12] recommends call chains on the basis of
how often they occur in web-based repositories of example code. Example code is preprocessed to
identify frequently occurring patterns of calls; patterns that result in the execution of the developer’s
target method are recommended.

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26,00 © 2009 IEEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

References

[1] ACM International Conference on Recommender Systems. http://recsys.acm.org, 2009.

[2] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty. Supporting online problem-solving
communities with the Semantic Web. In Proceedings of the International Conference on the World
Wide Web, pages 575-584, 2006.

[3] B. Dagenais and M. P. Robillard. Recommending adaptive changes for framework evolution. In
Proceedings of the 30th International Conference on Software Engineering, pages 481-490, 2008.

[4] H.-). Happel and W. Maalej. Potentials and challenges of recommendation systems for software
development. In Proceedings of the International Workshop on Recommendation Systems for
Software Engineering, pages 11-15, 2008.

[5] R.Holmes, R.J. Walker, and G. C. Murphy. Approximate structural context matching: An approach
for recommending relevant examples. IEEE Transactions on Software Engineering, 32(1):952-970,
2006.

[6] J. A.Konstan, J. Riedl, B. Smyth, F. J. Martin, and P. Pu. Foreword. In Proceedings of the 2007 ACM
Conference on Recommender Systems, page iii, 2007.

[71 A. Mockus and J. D. Herbsleb. Expertise Browser: A quantitative approach to identifying expertise.
In Proceedings of the International Conference on Software Engineering, pages 503—-512, 2002.

[8] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In Proceedings of
the 28th International Conference on Software Engineering, pages 452-461, 2006.

[9] M. P. Robillard. Topology analysis of software dependencies. ACM Transactions on Software
Engineering and Methodology, 17(4), August 2008.

[10] M. P. Robillard, R. J. Walker, and T. Zimmermann. International Workshop on Recommendation
Systems for Software Engineering. http://pages.cpsc.ucalgary.ca/~zimmerth/rsse-2008/, 2008.

[11] M. Swaine. Social networks and software development. Dr. Dobb’s magazine, February 2008.
http://www.ddj.com/architect/206104412.

[12] S. Thummalapenta and T. Xie. PARSEWeb: A programming assistant for reusing open source code
on the Web. In Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering, pages 204-213, 2007.

[13] Y. Ye and G. Fischer. Reuse-conducive development environments. Automated Software
Engineering, 12(2):199-235, 2005.

[14] T.Zimmermann, A. Zeller, P. WeiRgerber, and S. Diehl. Mining version histories to guide software
changes. IEEE Transactions on Software Engineering, 31(6):429-445, 2005.

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26.00 © 2009 |[EEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

Authors’ bios

Martin P. Robillard is an associate professor in the School of Computer Science at McGill University in
Montréal, Canada. His research focuses on software evolution and maintenance. He received his Ph.D.
in Computer Science from the University of British Columbia in 2004. Contact him at
martin@cs.mcgill.ca

Robert J. Walker is an associate professor in the Department of Computer Science at the University of
Calgary in Calgary, Canada. His research interests focus on software evolution and reuse. He received
his Ph.D. in Computer Science from the University of British Columbia in 2003. Contact him at
walker@ucalgary.ca

Thomas Zimmermann is a researcher at Microsoft Research, where he works in the Empirical Software
Engineering and Measurement area. His research focus is the evolution of large and complex software
systems. He conducts empirical studies and builds tools that use data mining to support programmers.
Zimmermann received his PhD in computer science from Saarland University in Germany. Contact him at
tzimmer@microsoft.com

Contact Information

Martin Robillard

School of Computer Science
McGill University
#318-3480 University Street
Montréal, QC H3A 2A7
Canada

Tel.: (514) 398-4258
Fax.: (514) 398-3883
email: martin@cs.mcgill.ca

Robert J. Walker

Department of Computer Science
University of Calgary

2500 University Dr. NW

Calgary, AB T2N 1N4

Canada

Tel.: +1.403.210.9593

Fax: +1.403.284.4707

email: walker@ucalgary.ca

o . Digital Object Indentifier 10.1109/M$.2009. 161 0740-7459/$26,00 © 2009 IEEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from |IEEE Xplore. Restrictions apply.

This article has been accepted for publication in IEEE Software but has not yet been fully edited.
Some content may change prior to final publication.

Thomas Zimmermann
Microsoft Research

One Microsoft Way

Redmond, WA 98052 USA
Email: tzimmer@microsoft.com
Office: (425) 703-8450

Fax: (425) 936-7329

o _ Digital Object Indentifier 10.1109/MS.2009 161 0740-7459/$26.00 © 2009 |EEE
Authorized licensed use limited to: West Virginia University. Downloaded on October 30, 2009 at 20:28 from IEEE Xplore. Restrictions apply.

