
W2: A Simple, Flexible, Case-Based Recommendation
Engine for Software Quality Optimization

Adam M. Brady

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Tim Menzies, Ph.D., Chair
Cynthia Tanner

Tim McGraw, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2011

Keywords: Data Mining, Toolkit, Software Defect Prediction, Bash, Awk, Scripting

c© 2011 Adam M. Brady

Abstract

W2: A Simple, Flexible, Case-Based Recommendation Engine for Software Quality Optimization

Adam M. Brady

Researchers are drowning in choice as to how to build software quality optimizers, programs
that find project options that change quality measures like defects, development effort (total staff
hours), and time (elapsed calendar months). However, given many possible changes to a software
project, which ones are recommended?

Two distinct strategies seek out this goal. Model-based methods seek a more general abstrac-
tions to describe software projects. Case-based methods instead seek local lessons based entirely
from historical cases, referred here as model-lite. Given that case-based methods do not rely on an
underlying model, they can be quickly adapted to a new domain and maintained by simply adding
more cases.

W 2 is an case-based recommendation algorithm that seeks to improve software quality without
constructing a general model. This thesis aims to justify the use of a simple, data-agnostic approach
compared to a more sophisticated, data-specific model-based approach known as SEESAW.

We search for project recommendations within data from eight projects using various AI tools:
six model-based methods and one case-based method, W 2. Results were assessed by comparing
effort, defects, development time values in the raw data versus the subset of the data selected by
those recommendations.

In the majority case, significantly large reductions on effort, defects and development time
were achieved. Further, W 2 performed as well, or better, than any other methods in this study.
While W 2 offers no conclusion on case-based vs model-based methods overall, our results show
that simpler algorithms can be just as useful if not more so.

Dedication

For mom.

i

Acknowledgments

My utmost thanks to my family for their unwaivering praise and support, even if they still have no
idea what I actually do. I also want to thank my advisor, Dr. Menzies, for showing me the exciting,
bizarre misadventure that is academia.

Finally, I offer my gratitude to my fellow researchers and friends, for mitigating my sanity loss
when teaching, classes, and research became too much.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Statement of Thesis . 4
1.3 Contribution of This Work . 4
1.4 Document Structure . 5

2 Related Work 7
2.1 Software Estimation Research . 7
2.2 Search-Based Software Engineering (SBSE) . 8
2.3 Model: Benefits . 8
2.4 Model: Drawbacks . 9

3 The W 2 Algorithm 14
3.1 Case-Based Reasoning . 14
3.2 Contrast Set Learning (CSL) . 16
3.3 The W 2 Algorithm . 18

3.3.1 Relevancy Filtering . 21
3.3.2 Utility Separation . 21
3.3.3 Contrast Set Generation . 22
3.3.4 Estimating Impact . 23

3.4 Measuring Performance . 26

4 Experiments with W 2 28
4.1 Datasets and Project Descriptions . 28
4.2 Experiment: W 2 vs W . 30
4.3 Experiment: W 2’s Performance Across Multiple Datasets 32
4.4 Experiment: Intra- and Inter-Project Stability . 34
4.5 Experiment: Comparing Drastic Changes to W 2 37

5 Model-Based vs. Case-Based Algorithms 42
5.1 Model-based Case Studies . 42
5.2 SEESAW . 44
5.3 Five Additional AI Model-Based Algorithms . 49

iii

5.4 Comparisons of AI Model-based Methods . 51
5.5 Model vs. Case-Based Methods . 52

6 Discussion 57
6.1 When Not to Use W 2 . 57
6.2 Model-lite . 59
6.3 Scope of the Study . 60

7 Conclusion 62

A W 2 Source Code 65
A.1 w.sh . 65
A.2 w.awk . 66
A.3 apply.awk . 71
A.4 contrast.awk . 79
A.5 discretize.awk . 81
A.6 neighbors.awk . 84
A.7 projects.awk . 85
A.8 util.awk . 88

B Example Dataset and Project Descriptions 96
B.1 NASA93 Project Descriptions . 96

B.1.1 NASA Ground Software . 96
B.1.2 NASA Flight Software . 96
B.1.3 NASA Orbital Space Plane (OSP) . 97
B.1.4 NASA Orbital Space Plane 2 (More Limited Scope) 97

B.2 NASA93 Historical Data for Defects, Effort, and Months 98

iv

List of Figures

2.1 Features of the COCOMO model ontology. 10
2.2 COCOMO 1 effort multipliers, and the sorted coefficients found by linear re-

gression from twenty 66% sub-samples (selected at random) from the NASA93
PROMISE data set; from [48]. 13

3.1 Four steps of case-based reasoning, from http://www.peerscience.com/intro_
cbr.htm. 15

3.2 The Brooks’ Law Query for the NASA93 dataset in COCOMO II format. 19
3.3 RELEVANT= cases nearest to context1. 20
3.4 Best (top) & rest (bottom). 21
3.5 Rank with Equation 3.1. 22
3.6 A K1 = 20 neighborhood of context1 (NASA93ii train set). 23
3.7 All rows of Figure 3.6 satisfying R1 : pmat = 3. 24
3.8 The testing set with all cases not containing pmat = 3 removed. 24
3.9 Result of applying the learned constraint pmat = 3 to the Brooks’ Law query q

during testing. The median estimate reduction from 235 to 81 represents a 66%
reduction is software effort by applying pmat = 3. 24

3.10 Revising q to learn q′. 25
3.11 W 2’s syntax for describing the input query q. Here, all the values run 1 to 6. 4≤

cplx≤ 6 denotes projects with above average complexity. Question marks denote
what can be controlled- in this case, rely, time (required reliability and development
time) . 26

4.1 Seven data sets from promisedata.org/?cat=14: effort is total staff person-
months; time is calendar time (start to stop); defects represents the number of
delivered defects. 28

4.2 Example project controllable file for Chinese software projects after discretiza-
tion. Ranges were assigned randomly for this project. A “?” represents a control-
lable feature. If an attribute range isn’t specified in the project, it is ignored. 30

4.3 Average execution times for the W and W2 algorithms. By removing the O(n2)
kth nearest neighbor calculation from W we drastically improve performance, es-
pecially on larger datasets such as China (499 cases). 31

4.4 Performance of W2’s Overlap relevancy filtering vs W’s kth nearest-neighbor fil-
tering for 5 unique datasets. 31

v

4.5 Effort estimation improvements (100∗ initial− f inal
intial) for five unique datasets. Sorted

by median improvement. Gray cells represent no improvement in effort estimates. . 33
4.6 Effort results for five non-COCOMO datasets. 34
4.7 Range of changes in median and spread generated by applying the recommenda-

tions of W 2. The median observed changes were (20.5, 20.5)% for (medians,
spreads), respectively. 35

4.8 Recommendation frequency across 20 runs of W 2 for reducing individual goals
(de f ects, e f f ort, or months) as well as all goals at once (all). 36

4.9 Examples of drastic changes to software projects. 38
4.10 Comparing defect, effort, and month estimation reduction percentages (100∗ initial− f inal

intial
of drastic business decisions vs W ’s recommendations for the Ground case study. . 38

4.11 Comparing defect, effort, and month estimation reduction percentages (100∗ initial− f inal
intial

of drastic business decisions vs W ’s recommendations for the Flight case study. . . 39
4.12 Comparing defect, effort, and month estimation reduction percentages (100∗ initial− f inal

intial
of drastic business decisions vs W ’s recommendations for the OSP case study. . . 40

4.13 Comparing defect, effort, and month estimation reduction percentages (100∗ initial− f inal
intial

of drastic business decisions vs W ’s recommendations for the OSP2 case study. . . 41

5.1 Contexts of 4 case studies. {1, 2, 3, 4, 5, 6} map to {very low, low, nominal, high,
very high, extra high}. 43

5.2 Pseudocode for SEESAW . 48
5.3 Example of SA’s forward and back select. 50
5.4 Number of times algorithms were top-ranked (largest is 4: i.e. one for each Fig-

ure 5.1 case study). 52
5.5 Changes in median and spread for the NASA93 dataset. 54
5.6 Changes in median and spread for the COC81 dataset. 55

6.1 Relative effects on development effort. From [8]. 59

vi

Chapter 1

Introduction

1.1 Motivation

There are many ways a manager might change, and hopefully improve, their software development

project. Some changes require tools such as using the new generation of functional programming

languages or execution and testing tools [3] or automated formal analysis [24]. Other changes

use process improvement techniques such as changing the organizational hiring practices, or a

continual renegotiation of the requirements as part of an agile software development cycle [61].

Endres & Rombach [1] list dozens of laws of software engineering to justify a particular change

to a project. If a manager proposed using all the laws, then senior management would most likely

suggest they scale back their plans to just a minimal set of most effective measures.

Such analysis is critical early in a project’s lifetime. Boehm’s first law states that errors are

most frequent in the design and requirements phases of development. Such errors are also more

costly the later they are removed [1]. Software managers need tools that can suggest changes to a

project given high-level characterizations early and effectively.

This thesis explores different ways for finding this minimal set of most effective changes to

a project. Specifically, comparing model-based vs case-based methods. The difference between

1

these two methods is as follows. Model-based methods develop a model via expert advice [19] or

using automatic methods such as data mining [74]. Once built, the model can be used for “what-if”

queries in order to assess possible changes to a project. For example:

data → model

model +whatI f → scores

Here, Scores represents business concerns; for example reduce defects before release the software

product. Also, the whatI f query defines a context within which a manager seeks ways to improve

a project.

Case-based methods, on the other hand, insert the “what-if” query into a n-dimensional space

populated with historical project cases [32,34,35,62,69]. Unlike model-based methods, case-based

methods do not require an underlying model. Rather, the immediate neighborhood of the “what-if”

is somehow scored to find summary of those neighboring cases:

data+whatI f → neighborhood

neighborhood → scores

Previous work [17, 21, 41, 42, 44, 46, 47, 51, 57] tried combining model-based methods with

AI tools to control thousands of “What-If” queries over COCOMO models. This thesis compares

those model-based methods with “W 2”, a novel case-based method. Given a “What-If” query that

selects some set of similar projects, W 2 seeks a treatment Rx, which finds the “better” parts of

those similar projects within the dataset:

2

data+WhatI f → neighborhood1

neighborhood1 → scores1

Rx + data+WhatI f → neighborhood2

neighborhood2 → scores2

scores2 > scores1

When compared to model-based methods:

• W 2 identified similar or better treatments.

• W 2 was faster to run: all the experiments in this thesis require 10 minutes with W 2, but

days for using models.

• W 2 was simpler to implement: W 2’s 200 lines AWK replaces thousands of lines of the

model-based LISP.

• W 2 was simpler to maintain: with case-based methods, “maintenance” implies “adding

more cases”.

• W 2 was simpler to adapt to new domains: W 2 do not require an underlying model and

therefore it imposes no restrictions on the data being processed. It is more efficient and it

can be quickly applied to more data sets.

Hence, this thesis recommends case-based methods like W 2 for identifying changes to software

projects.

This result shows that the W 2 case-based method is superior to all the model-based methods

explored in this study. This does not imply that learning changes to software projects is always

best achieved using simple case-based methods. For example, the next release planning problem

discussed in [56, 76] is a process problem of great complexity. For that task, the Pareto frontier

optimization methods employed by (e.g.) Ruhe [56] is preferred to W 2.

3

Therefore, this thesis offers no conclusion on the relative merits of model-based versus case-

based methods. Rather, it aims to show the relative benefits and performance potential of such

case-based methods.

1.2 Statement of Thesis

W 2 represents a useful departure from standard model-based approaches for recommending changes

to software projects. These experiments show that W 2 performs as well or better than more com-

plex methods such as SEESAW, but offers greater flexibility in dataset applicability.

While this thesis cannot offer a conclusion on the whether to use model-based or case-based

methods for improving software projects, W 2 provides a case-study in the usefulness of case-

based methods.

1.3 Contribution of This Work

The work with W 2 and this thesis has 4 significant contributions:

1. W 2 enhances algorithms proposed by other researchers. Prior work on case-based methods

found ways to generate estimates [30, 40, 68, 72]. W 2 shows that a small modification to

standard case-based analysis can determine how to change an estimate.

2. W 2 outperforms the model-based methods described in [17, 21, 41, 42, 44, 46, 47, 51, 57]

as well as earlier versions of W published in [12] and [11]. As discussed in §3, the W 2

algorithm presented here handles missing values better than early versions.

3. Recommendations from W 2 offer competing alternatives to standard “drastic” management

recommendations.

4

4. Results show simple case-based methods can perform better than more complex model-

based methods.

While the first points may be of most interest to industrial practitioners, but it is the last point

that may be most interesting to researchers. There are many sophisticated methods for exploring

the complexities and uncertainties of trying to control software engineering projects. The results

presented herein advise researchers to first explore simpler methods, if only for the purposes of

establishing a performance baseline.

1.4 Document Structure

The following chapter lays out the related work when discussing model-based and case-based

methods for improving software quality. Each approach is defined along with general benefits and

drawbacks. Chapter 3 formally introduces the W 2 algorithm and its improvements, along with a

worked example of recommending a change to a given project. Chapter 4 consists of the following

experiments:

• A comparison between the original version of W and W 2. W 2 removes a O(n2) euclidean

distance comparison for a linear time overlap calculation while retaining similar or better

performance.

• W 2’s effectiveness in reducing estimated software effort across a range of arbitrary datasets

• A comparison of the decisions learned with W 2 to common drastic management decisions

• The stability of the conclusions recommended by W 2

Chapter 5 describes the experiment between model-based and case-based algorithms for soft-

ware quality optimization. SEESAW is introduced as the best-performing straw-man example of

5

model-based algorithms. W 2 is then compared to SEESAW in terms of estimated reductions in

software effort, defects, and development months.

Chapter 6 continues the discussion of the comparison between model-based and case-based

approaches. This chapter also discusses the application of W 2, including when it is useful and

when other approaches may be more useful. Finally, Chapter 6 states concludes one the greater

implications of tools like W 2 and the larger choice of how to recommend changes to software

projects.

6

Chapter 2

Related Work

2.1 Software Estimation Research

Case-based software estimation such as Case-Based Reasoning (CBR) is a widely explored area in

software engineering research [30,40,68,72]. Based on collective experience, when a manager sees

an estimate, his/her immediate question is “how can I change that?”. While the effort estimation

literature describes many estimation methods (both model-based and case-based [26,30,36,37,40,

59, 67, 68, 72]) in order to address manager’s immediate concern, W 2 focuses on how to change

estimates.

W 2 explores multiple goals such as reducing development effort and defects and the total

calendar time to deliver the software. Instead, most other work in this area explores a single goal.

For example, Pendharkar et al. [59] demonstrate the utility of Bayes networks in software effort

estimation while Fenton and Neil explore Bayes nets and software defect prediction [18], neither

of these teams links defect models to effort models. In addition, as mentioned above, these work

focus much more on prediction, rather than on the subsequent problem of learning how to change

those predictions.

7

2.2 Search-Based Software Engineering (SBSE)

Multi-goal optimization in Search-Based Software Engineering (SBSE) is well explored in the

field [23]. SBSE employs optimization techniques from operations research and meta-heuristic

search (for example in simulated annealing and genetic algorithms) in an attempt to hunt for near-

optimal solutions. Harman [23] distinguishes AI search-based methods from those seen in standard

numeric optimizations. Such optimizers offer settings to all controllables. This may result in

needlessly complex recommendations since a repeated empirical observation is that many model

inputs are contaminated or correlated in similar ways to model outputs [22]. Such contaminated

or correlated variables can be pruned to generate simpler solutions that are easier and quicker to

understand. For continuous variables, there are many work on feature selection [53] and techniques

like principal component analysis [16] to reduce the number of dimensions reported by a data

analysis. Some studies report that discrete AI methods perform better at reducing the size of the

reported theory [22].

The SBSE approach can and has been applied successfully to many software engineering do-

mains such as requirements engineering [25], but more commonly used in software testing [3].

Harman’s work provides the inspiration to this study in an attempt to experiment simulated anneal-

ing for our model-based methods [44] (which performed worse than W 2).

2.3 Model: Benefits

High-level abstraction models represent and transmit common software patterns observed in mul-

tiple specific situations [20]. At a keynote address at PROSIM’05 Walt Scacchi noted that merely

writing a model can clarify local business processes [60]. Executable software process models can

be used for many purposes including but not limited to reducing the inspection effort at different

stages of the software life cycle [49]. Even if a model lacks a sophisticated execution engine, it can

still be used for what-if queries that are insightful to different business processes (e.g. see Boehm

8

et al.’s what-if studies in Chapter Three of [10]).

Models can combine and summarize both expert insights and local data. Fenton [19] builds

the general structure of his Bayes nets via workshops of business knowledge. The details of these

structures are then tuned via local data. Elsewhere, Boehm reports the advantages of combining

local data with model structures initialized via expert knowledge [14].

Another subtle advantage of models is data sharing. Schulz reports that organizations that are

reluctant to share specific data, may be willing to share models (if those models do not reveal

details from particular business sites) [65].

Finally, models let us extrapolate from past examples to new examples. A trend that is sampled

by N historical examples can be extended to offer predictions for new examples that have not been

seen previously.

2.4 Model: Drawbacks

Extrapolation, while sometimes useful, may over fit the data. If that occurs, then a model may

offer unsupported recommendations. For example, as shown in the results section, model-based

methods were ineffective since, sometimes, they proposed conclusions that applied to none of the

test data.

Another drawback with model-based tools is that they only accept data that conforms to the

ontology of the model (i.e. use the input values of the model). If local data does not conform to

that ontology, then the tool cannot be applied. For example, Figure 4.1 shows the data sets used in

this study. Model-based methods can only process the two data sets that conform to the COCOMO

ontology of Figure 2.1. On the other hand, the W 2 case-based method can process all of them.

Models need to be learned from data and collecting that data can be difficult due to the busi-

ness sensitivity associated with the data as well as differences in how the metrics are determined,

collected and archived. In many cases the required data is not archived at all. In our experience, for

9

Definition Low-end = {1,2} Medium ={3,4} High-end= {5,6}
Scale factors:
flex development flexibility development pro-

cess rigorously
defined

some guidelines, which
can be relaxed

only general goals
defined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built

this kind of soft-
ware before

somewhat new thoroughly familiar

resl architecture or risk resolu-
tion

few interfaces de-
fined or few risks
eliminated

most interfaces defined
or most risks elimi-
nated

all interfaces defined
or all risks eliminated

team team cohesion very difficult inter-
actions

basically co-operative seamless interactions

Effort multipliers
acap analyst capability worst 35% 35% - 90% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read-

/write statements
e.g. use of simple inter-
face widgets

e.g. performance-
critical embedded
systems

data database size (DB bytes/S-
LOC)

10 100 1000

docu documentation many life-cycle
phases not docu-
mented

extensive reporting
for each life-cycle
phase

ltex language and tool-set experi-
ence

2 months 1 year 6 years

pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

(f requency o f ma jor changes
f requency o f minor changes)

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors are slight in-
convenience

errors are easily recov-
erable

errors can risk human
life

ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved to
75% of the original
estimate

no change deadlines moved
back to 160% of
original estimate

site multi-site development some contact:
phone, mail

some email interactive multi-
media

stor required % of available
RAM

N/A 50% 95%

time required % of available CPU N/A 50% 95%
tool use of software tools edit,code,debug integrated with life

cycle

Figure 2.1: Features of the COCOMO model ontology.

10

example, after two years promisedata.org was only able to add 7 records to its NASA-wide soft-

ware cost metrics repository [44]. Alternatively, open-source code repositories are a rich source of

product information, but usually lack process details such as the descriptions of the applications

experience of the developers.

Other researchers also have noted similar problems with collecting process data. Lowry [39]

discusses the complexities involved in calibrating his software failure models. Those models re-

quire parameters that are clearly antiquated. For example, he mentions a commercial model-based

cost estimation tool that requires a parameter that rates “the time it takes for a software development

environment to respond to a keyboard input”. When software was written on remote time-shared

computers, this was an important factor. However, today it is irrelevant but it is kept in the model

for backwards compatibility and because it was measured in the software projects on which the

model was calibrated.

Baker [5] discusses another serious concerns with model calibration: tuning instability. Soft-

ware construction is a very human-intensive process, therefore the data collected from that process

is as varied as the humans building the code. Consider the following simplified COCOMO [10]

model:

e f f ort = a ·LOCb+pmat ·acap (2.1)

The equation presents COCOMO’s core assumption that software development effort is expo-

nential on software size. In this equation, a and b control the linear and exponential inferences

(respectively) on model estimates; while pmat (process maturity) and acap (analyst capability) are

project choices articulated by managers. Equation 2.1 contains only two features (acap, pmat) and

a full COCOMO model contains a set of project descriptors as shown in Figure 2.1.

Baker [5] learned values of (a,b) for a full COCOMO model using Boehm’s local calibration

method [7] from 300 random samples of 90% of the available project data. The ranges varied

widely:

(3.2≤ a≤ 9.4)∧ (0.8≤ b≤ 1.12) (2.2)

11

Such large variation in model tunings not only violates standard gradient descent methods, but it

also obscure any benefits observed within a particular project change. Suppose a proposed tech-

nology doubles productivity, but a changed from 9.0 to 4.5, any improvement would be obscured

by the tuning instability.

The plot in Figure 2.2 shows the b values learned from twenty 66% samples (selected at ran-

dom) of the NASA93 data set from the PROMISE repository. Prior to learning, training data was

linearized in the manner recommended by Boehm (x was changed to log(x); for details, see [48]).

During learning, a greedy back-select removed attributes with no impact on the estimates: hence,

some of the attributes have less than 20 results. After learning, the coefficients were unlinearized.

While some of the coefficients are stable (e.g. the white circles of loc remains stable around

1.1), the coefficients of other attributes are highly unstable:

• The (max−min) range of some of the coefficients is very large; e.g. the upside down black

triangles of stor ranges from −2≤ b≤ 8.

• Consequently, nine of the coefficients in Figure 2.2 jump from negative to positive.

We have seen instability in other datasets, including the COC81 data used by Boehm to derive the

general form of Equation 2.1 [48]. This is an troubling observation.

In summary, model-based methods can suffer from:

• Inappropriate extrapolations;

• Ontology restrictions;

• Untamed variance inside the models

Hence the need explore alternative methods.

12

-15

-10

-5

 0

 5

 10

 15

co
ef

fe
cie

nt
 v

al
ue

all coeffecients, sorted

attributes coeffecients

acap
aexp
cplx
data
lexp
loc

modp
pcap

rely
sced
stor
time
tool
turn

vexp
virt

Figure 2.2: COCOMO 1 effort multipliers, and the sorted coefficients found by linear regres-
sion from twenty 66% sub-samples (selected at random) from the NASA93 PROMISE data set;
from [48].

13

Chapter 3

The W 2 Algorithm

W 2 is a simple, data-agnostic case-based reasoning tool for software quality optimization. Given a

dataset of historical cases and a range of controllable attributes within that space, W 2 recommends

changes that offer the best utility within that space.

In the case of software projects, W 2 recommends changes that best improve estimated software

quality given a description of a potential new project.

3.1 Case-Based Reasoning

An opposite approach to model-based methods is case-based reasoning (CBR), also referred to

as instance-based reasoning. In CBR, there are no universally-applicable models. Rather, every

conclusion is dependent on the particulars of the task at hand. CBR is based on a theory of re-

constructive memory. According to this theory, humans do not remember things as they actually

happened. Rather, “remembering” is an inference process, characterized by Bartlett as:

... a blend of information contained in specific traces encoded at the time it occurred,

plus (retrieval time) inferences based on knowledge, expectations, beliefs, and atti-

tudes derived from other sources [6].

14

Figure 3.1: Four steps of case-based reasoning, from http://www.peerscience.com/intro_
cbr.htm.

Bartlett’s work was ignored when first published (1932) but today it is highly influential; e.g.

experts in psychology & law caution reconstructive memory means that leading questions can

significantly alter a report given by a human witness [38].

In AI research, Janet Kolodner [33] used reconstructive memory to characterize expert expla-

nations. To support her claim, she offered a set of transcripts of experts explaining some effect. Her

reading of those transcripts was that the experts do not use verbatim recalling when discussing the

past. Rather, they reconstruct an account of their expertise, on the fly, in response to a particular

query.

15

Inference using case-based reasoning is usually characterized [2] in four steps:

1. Retrieve: Find the most similar cases to the target problem.

2. Reuse: Adapt our actions conducted for the past cases to solve the new problem.

3. Revise: Revise the proposed solution for the new problem and verify it against the case base.

4. Retain: Retain the parts of current experience in the case base for future problem solving.

Having verified the results from a chosen adapted action on the new case, the new case is added

to the available case base. The last step allows CBR to effectively learn from new experiences. In

this manner, a CBR system is able to automatically maintain itself.

In terms of cognitive theory, CBR challenges notions of reasoning as model-building. The

mantra of CBR is “don’t think, remember”. That is, when faced with some new situation:

• Do not reason it out using some underlying model (e.g. Newton’s equations or Boehm’s

parametric models).

• Rather, respond to a new situation via an on-demand survey of past experiences [63].

(Note that we call CBR model-lite, but not model-free. For more on this distinction, see §6.2.)

The above discussion motivates a comparison between parametric model-based methods and

CBR. To make that comparison, we need to explore the same task with two different approaches.

Accordingly, this section describes the general principle of contrast set learning behind quality

optimization, then describes two specific implementations using SEESAW’s parametric models or

W 2’s case-based reasoning.

3.2 Contrast Set Learning (CSL)

One process for self-improvement is to emulate those around you that are doing well. For example,

imagine a failing student seeking recommendations to improve their grades. Standard parental

16

advice may be to simply study more. However, while such general platitudes may indeed bring

improvement, they ignore any local lessons about their life that may bring more success with less

effort.

Instead, students being social creatures, they seek out advice from those around them. Given

that close friends and colleagues are most likely under the same pressures, it makes sense to seek

advice from those in similar circumstances. Then, a rationally-minded student may divide their

friends and colleages into two groups: those doing well (to serve as role models), and those not

doing so well (to serve as cautionary tales). Finally, the student adopts as many traits they perceive

as unique to the role models.

Such a processes allows for multiple, targeted avenues of improvement compared to generic

idioms such as “study more.” So, the student finds that by avoiding Tuesday parties, asking ques-

tions after class, and sitting towards the front of the room, success is achievable. In other words,

local lessons offer a more tailored approach to improvement.

Contrast set learning (CLS) applies this process by asking the question ”What are my role

models doing that I’m not?” Formally, this takes place in three steps:

• Relevancy Filtering - Find examples similar to the problem at hand.

• Utility Separation - Divide the relevant examples into two populations based on some utility

measure: those I want to imitate (the best) and those I don’t want to imitate (the rest).

• Contrast Set Generation - Perform a greedy search on attributes that occur more often in

best than in rest. Rank these attributes by some score that favors contrast, biasing towards

attributes that occur often in best but rarely or never in rest.

A simple strategy to score more favorably towards attributes that occur most often in the best

case is to square the number of times they occurs. Taking this heuristic one step further, given

an attribute x, we can penalize x’s occurrence in the ”rest” by dividing the sum of the frequency

counts in best and rest [41], the ensuring rare attributes are weighted appropriately:

17

like =
f req(x|best)2

f req(x|best)+ f req(x|rest)
(3.1)

From this measure we need only sort each attribute by it’s like score to prioritize our rec-

ommendations. Thus, we establish a means for finding attributes that most drive us towards our

desired goal. An alternative to Equation 3.1 is to log the odds ratio between an attribute appearing

in best rather than rest [55].

3.3 The W 2 Algorithm

CSL describes a general strategy for reasoning about two distinct populations. Because CSL re-

quires no underlying model to implement, we originally created W to add CSL decision power to

case-based reasoning software cost estimates. Upon further experimentation, we improved upon

W by removing the kth nearest neighbor calculation in favor of simply using our overlap measure

to perform relevancy filtering. The original description of W can be found in [31]. We offer a

statement on performance between W and W 2’s in the §4.2 and Figure 4.4.

W 2 answers the question: “What can I change about this project to make it more like best

cases?” In other words, “How can I best imitate what I aspire to be?” To answer this, W 2 requires

two sets of information:

• A set of historical cases Ci with quantified attributes (say, management experience, lines of

code) and some measure of utility (say, effort in man-months, total defects, months for de-

velopment). All attributes have been discretized into a small number of ranges (e.g. manager

experience ∈ {1,2,3,4,5} denoting very low, low, nominal, high, very high respectively)

• A query q describing the current project seeking improvement, with defined ranges for po-

tential changes, as well as any constraints that cannot be changed. For example, if we are

interested in a schedule over-run for a complex, high reliability project that has only minimal

18

@project brookslaw
@attribute apex 2
@attribute plex 1 2
@attribute ltex 1 2 3
@attribute ?pmat 2 3
@attribute ?rely 3 4 5
@attribute ?data 2 3
@attribute ?cplx 4 5
@attribute ?time 4 5
@attribute ?stor 3 4 5
@attribute ?pvol 2 3 4
@attribute ?acap 3 4 5
@attribute ?pcap 3 4 5
@attribute ?tool 3 4
@attribute ?sced 2 3

Figure 3.2: The Brooks’ Law Query for the NASA93 dataset in COCOMO II format.

access to tools, then those constraints can be expressed in the syntax of Figure 3.11.

W 2 is easily demonstrated visually. Figure 3.2 demonstrates a query representing a project

query q involving Brooks’ Law [13] using 93 NASA project cases in COCOMO format. In the

1970’s, Brooks noted that software production is a very human-centric activity and managers need

to be aware of the human factors that increase/decrease productivity. For example, a common

practice at that time at IBM was to solve deadline problems by allocating more resources. In the

case of programming, this meant adding more programmers to the team. Brooks argued that this

was an inappropriate response since, according to Brooks’ law “adding manpower [sic] to a late

software project makes it late”. The reason for this slowdown is two-fold:

• The more people involved the greater the communication overhead. While this is certainly

an issue if all parts of the software system are accessible to all other parts, with an intelligent

module design, this first issue can be mitigated.

• The second issue is more fundamental. Software construction is a complex activity. New-

comers to a project suffer from inexperience in the tools, the platform, the problem domain,

19

row ap
ex

pl
ex

lte
x

pm
at

re
ly

da
ta

cp
lx

tim
e

st
or

pv
ol

ac
ap

pc
ap

to
ol

sc
ed

effort overlap
57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38 13
56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12 13
55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480 13
53 2 1 2 2 5 2 5 5 6 2 4 3 4 3 648 13
35 4 3 3 2 4 3 4 4 4 2 3 3 3 3 370 12
26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114 12
09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215 12
40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636 11
25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42 11
23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60 11
22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42 11
17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210 11
16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11
47 3 4 4 4 4 3 5 4 4 2 4 3 3 3 703 10
44 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10
43 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10
41 4 4 4 2 4 3 4 3 5 2 4 4 3 2 576 10
36 3 2 3 4 3 4 5 3 3 2 4 5 3 2 278 10
34 4 3 4 2 3 4 4 5 3 3 4 4 3 3 155 10
33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8 10

(other cases omitted)

Figure 3.3: RELEVANT= cases nearest to context1.

etc.

The query in Figure 3.2 models this second issue. Attributes with a ? represent controllable

attributes, with apex, plex, and ltex representing the uncontrollably lower ratings of analyst experi-

ence, programmer language experience, and language and tool experience, respectively.

First, cases are randomly separated into 67% Training and 33% Testing sets. Then, W 2 imple-

ments the same three steps used for CSL. Finally, W 2 estimates the impact of its recommendations:

20

row ap
ex

pl
ex

lte
x

pm
at

re
ly

da
ta

cp
lx

tim
e

st
or

pv
ol

ac
ap

pc
ap

to
ol

sc
ed

ef
fo

rt

56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12
08 5 3 2 3 3 2 4 3 3 2 4 3 3 3 36
57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38
22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42
25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42
12 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48
11 4 3 4 3 3 2 4 3 3 2 4 4 3 3 60
23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60
19 4 2 4 4 3 5 4 5 5 2 5 3 3 2 62
16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90
33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8
26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114
17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210
09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215
44 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300
07 5 3 4 3 3 2 4 3 3 2 4 5 3 3 360
35 4 3 3 2 4 3 4 4 4 2 3 3 3 3 370
55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480
40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636
53 2 1 2 2 5 2 5 5 6 2 4 3 4 3 648

Figure 3.4: Best (top) & rest (bottom).

3.3.1 Relevancy Filtering

From Training, 20 cases are selected with the highest total overlap with the project query (Fig-

ure 3.3). For example, if a case had a schedule rating of high, and q defines the controllable scedule

range as potentially high or very high, then that attribute is said to overlap with the query. This is

the retrieve step in Standard CBR nomencalature.

3.3.2 Utility Separation

The 20 cases are then sorted by some utility measurement, with the top 5 cases placed into the best

set and the remaining 15 into the rest set (Figure 3.5). For datasets with multiple goals, such as the

NASA93 and COC81 datasets that contain project effort, defects, and months, a utility function

21

frequency
range b r b2/(b+ r)

best rest
pmat=3 5/5 10/15 60%
sced=3 5/5 13/15 54%
tool=3 5/5 14/15 52%
acap=3 4/5 7/15 51%
data=3 4/5 9/15 46%
rely=4 3/5 6/15 36%
time=3 3/5 7/15 34%
pvol=4 2/5 2/15 30%
stor=3 3/5 10/15 28%
cplx=5 2/5 3/15 27%
stor=5 2/5 3/15 27%
cplx=4 3/5 12/15 26%
time=5 2/5 4/15 24%
pvol=3 2/5 5/15 22%
data=2 2/5 5/15 22%
rely=3 2/5 9/15 16%
pvol=2 1/5 9/15 5%

Figure 3.5: Rank with Equation 3.1.

normalizes each value into a single utility “score”. Other datasets simply minimize software effort

in man-months. This is the first half of the CBR reuse (or adapt) step.

3.3.3 Contrast Set Generation

Changes to q are ranked according to equation 3.1. This sorted order S defines a set of candidate

q′ queries that use the first i-th entries in S (Figure 3.4):

q′i = q∪S1∪S2...∪Si

In the Brooks’ Law example, W 2 learns that pmat=3 scores the highest for reducing develop-

22

row ap
ex

pl
ex

lte
x

pm
at

re
ly

da
ta

cp
lx

tim
e

st
or

pv
ol

ac
ap

pc
ap

to
ol

sc
ed

effort overlap
57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38 13
56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12 13
55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480 13
53 2 1 2 2 5 2 5 5 6 2 4 3 4 3 648 13
35 4 3 3 2 4 3 4 4 4 2 3 3 3 3 370 12
26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114 12
09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215 12
40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636 11
25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42 11
23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60 11
22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42 11
17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210 11
16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11
47 3 4 4 4 4 3 5 4 4 2 4 3 3 3 703 10
44 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10
43 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10
41 4 4 4 2 4 3 4 3 5 2 4 4 3 2 576 10
36 3 2 3 4 3 4 5 3 3 2 4 5 3 2 278 10
34 4 3 4 2 3 4 4 5 3 3 4 4 3 3 155 10
33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8 10

Figure 3.6: A K1 = 20 neighborhood of context1 (NASA93ii train set).

ment effort. This is the last half CBR reuse (or adapt) step.

At this point, W 2 has created a ranked list of recommendations that best drive q towards more

desirable utility measures (Figure 3.5). However, we do not yet have an estimate as to the impact

of applying these recommendations. The next phase of W 2 estimates the improvement in software

quality after applying q′i.

3.3.4 Estimating Impact

According to Figure 3.1, after retrieving and reusing comes revising (this is the “verify” step).

When revising q′, W 2 prunes away irrelevant ranges using the algorithm of Figure 3.10.

On termination, W 2 recommends changing a project according to the set q′−q. For example,

23

row ap
ex

pl
ex

lte
x

pm
at

re
ly

da
ta

cp
lx

tim
e

st
or

pv
ol

ac
ap

pc
ap

to
ol

sc
ed

effort overlap
56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12 13
57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38 13
25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42 11
22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42 11
23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60 11
16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11
26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114 12
17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210 11
09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215 12
55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480 13
40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636 11

Figure 3.7: All rows of Figure 3.6 satisfying R1 : pmat = 3.

row ap
ex

pl
ex

lte
x

pm
at

re
ly

da
ta

cp
lx

tim
e

st
or

pv
ol

ac
ap

pc
ap

to
ol

sc
ed

effort overlap
11 5 3 4 3 3 2 4 3 3 2 4 4 3 3 24 10
15 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48 10
19 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48 10
18 4 3 4 3 3 2 4 3 3 2 4 4 3 3 60 10
10 5 3 4 3 3 2 4 3 3 2 4 5 3 3 72 10
24 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11
63 4 3 4 3 3 3 3 3 3 2 4 4 3 3 162 9
45 4 3 4 3 4 4 3 3 3 2 3 4 3 3 400 8
67 4 3 4 3 5 3 4 4 3 2 4 4 3 3 444 11
60 3 4 4 3 3 2 4 3 3 2 5 5 3 3 720 10

Figure 3.8: The testing set with all cases not containing pmat = 3 removed.

Effort Effort Effort Distrubtion
Query MedianSpread 366

q (Initial) 235 508 r
q∪ pmat = 3 (Final) 81 352 r

Figure 3.9: Result of applying the learned constraint pmat = 3 to the Brooks’ Law query q during
testing. The median estimate reduction from 235 to 81 represents a 66% reduction is software
effort by applying pmat = 3.

24

1. Set i = 0 and q′i = q

2. Let Foundi be the test cases consistent with q′i (i.e. that do not contradict any of the
attribute ranges in q′i).

3. Let E f f orti be the median efforts seen in Foundi.

4. If Found is too small then terminate (due to over-fitting). After Shepperd [68], we
terminated for |Found|< 3.

5. If i > 1 and E f f orti < E f f orti−1, then terminate (due to no improvement).

6. Print q′i and E f f orti.

7. Set i = i+1 and q′i = qi−1∪Si

8. Go to step 2.

Figure 3.10: Revising q to learn q′.

in Figure 3.11, if q′−q is rely = 3 then this treatment recommends that the best way to reduce the

effort for this project is to reject rely = 4 or 5.

Formally, the goal of W 2 is find the smallest i value such that q′i selects cases with the more of

the better estimates. The reader might protest that the generation of some succinct human-readable

construct like q′i means that W 2 is not a “real” case-based reasoner. In that view, the distinguishing

feature of CBR is that its reasoning is case-based and it never generates any generalizations.

In reply, we observe that W 2 is not the only system that extends standard CBR with some

generalization tools. Watson [73] reviews numerous CBR systems that, for example, run decision

tree learners over their case library in order to automatically generate an index to the cases. Also,

once a system can read a case library, compute distance calculations, and generate a sorted list

of the nearest neighbors, implementing Figure 3.10 and Equation 3.1 is only a few dozen lines of

code. That is, W 2 is such a small extension to standard CBR that it would be somewhat pedantic

to declare that it is not “real” CBR.

On termination, W 2 recommends changing a project according to the set q′−q. For example,

25

@project example
@attribute ?rely 3 4 5
@attribute tool 2
@attribute cplx 4 5 6
@attribute ?time 4 5 6

Figure 3.11: W 2’s syntax for describing the input query q. Here, all the values run 1 to 6. 4 ≤
cplx ≤ 6 denotes projects with above average complexity. Question marks denote what can be
controlled- in this case, rely, time (required reliability and development time)

in Figure 3.11, if q′−q is rely = 3 then this treatment recommends that the best way to reduce the

effort for this project is to reject rely = 4 or 5.

3.4 Measuring Performance

To compare the effectiveness of different treatments, we offer the following performance measures:

• All our measures are taken from the test set.

• The asis values are from the neighborhood of the context; e.g. the e f f ort column.

• The tobe values are from the cases selected by a treatment; e.g. the e f f ort column.

• The median of a distribution is the 50-th percentile of the sorted values in that distribution.

• The spread of a distribution is the (75-25)th percentile of the sorted values.

• The improvement from a = asis to t = tobe is 100 ∗ (a− t)/a. Larger improvements are

better.

For example, consider pmat = 3:

• Without the pmat = 3 restriction, the median and spread in the test set are 235 and 633

months, respectively.

26

• With pmat = 3, the median and spread of projects similar to context1 are 81 and 353 months

(see Figure 3.7).

• The observed improvement in the median is hence 66%.

• The observed improvement in the spread is hence 44%.

27

Chapter 4

Experiments with W 2

4.1 Datasets and Project Descriptions

Dataset Cols Rows Notes Measures
Kemerer 7 15 Large business applications effort
Telecom 3 18 U.K. telecom enhancements effort
Finnish 8 38 Finnish IS projects effort
Miyazaki 8 48 Japanese COBOL projects effort
COC81ii 26 63 NASA projects effort, time, defects
NASA93ii 26 93 NASA projects effort, time, defects
China 17 499 Chinese software projects effort

Total: 774

Figure 4.1: Seven data sets from promisedata.org/?cat=14: effort is total staff person-months;
time is calendar time (start to stop); defects represents the number of delivered defects.

Because W 2 makes no underlying model assumptions, we aren’t limited to the COCOMO

II ontology for our performance evaluations. However, in order to compare W 2’s case-based

methodology with SEESAW’s model-based methodology, these comparisons must be made within

the same ontology. For the following experiments, any comparison with SEESAW will use the

NASA93 and COC81 datasets.

Both NASA93 and COC81 initially contained only effort data in the original COCOMO for-

28

mat. However, using Boehm’s COQUALMO defect prediction we have converted this data into

COCOMO II format, which contains estimated total defect numbers as well as estimated comple-

tion time in months. COCOMO II also breaks down the project attributes into both scale factors

and effort multipliers, outlined earlier in Figure 2.1.

The other datasets use for these experiments is detailed in Figure 4.1. For non-COCOMO

data, the reduction goal is the same: software effort in person-months. These datasets include the

following:

• Enhancements to a U.K. telecommunications product;

• Projects collected by Miyazaki et al [54];

• Finnish Information Systems projects;

• A large dataset of Chinese software projects;

• Large COBOL projects, collected by Kemerer [27].

The format of this data is highly varied and includes number of basic logical transactions, query

count and number of distinct business units serviced.

Project descriptions are also needed to define the space of controllable options. For the non-

COCOMO data sets, we did not have access to specific case studies like Figure 5.1. Hence, these

results are based on contexts developed as follows:

• One project contained all possible project values as controllables

• The remaining two projects featured randomly chosen ranges with ranges half of the possible

values.

Data and project descriptions for the NASA case studies defined in Figure 5.1 are shown in §B. A

project description file for a non-COCOMO dataset is shown in Figure 4.2.

29

@project china-Proj2
@attribute ?AFP vl lo md
@attribute ?Input md hi vh
@attribute ?Output vl lo md
@attribute ?Enquiry md hi vh
@attribute ?File vl lo md
@attribute ?Interface hi vh
@attribute ?Added vl lo md
@attribute ?Changed md hi vh
@attribute ?Deleted vl lo md
@attribute ?PDR_AFP md hi vh
@attribute ?PDR_UFP md hi vh
@attribute ?NPDR_AFP vl lo md
@attribute ?NPDU_UFP vl lo md
@attribute ?Resource md hi
@attribute ?Dev.Type vl
@attribute ?Duration vl lo md hi

Figure 4.2: Example project controllable file for Chinese software projects after discretization.
Ranges were assigned randomly for this project. A “?” represents a controllable feature. If an
attribute range isn’t specified in the project, it is ignored.

4.2 Experiment: W 2 vs W

Upon initial experimentation with W , we often followed standard CBR methodology. For exam-

ple, when deciding how to perform relevancy filtering, we chose the standard CBR practice of

taking the euclidean distance from a defined project in n-dimensional space with n project fea-

tures [68]. While this method performed well [11], the O(n2) runtime requirement prevented us

from practically running W on very large datasets.

To resolve this, a simpler method for relevancy was devised. Instead of measuring relevancy

based on the distance from a case to the project query’s hypervolume, we decided to simply test

for inclusion within this volume. The overlap of a case is simply the number of attributes that fall

within the project query’s ranges. Because our attributes must be discretized and often rely on qual-

itative metrics, large overlaps between a query and possible cases are common. The performance

of this new method is shown in Figure 4.4.

30

Execution Time
dataset Cases W W2 W2 speedup

telecom1 18 0.07s 0.04s 1.6x
coc81 63 0.43s 0.08s 5.3x

nasa93 93 0.69s 0.10s 6.6x
china 499 7.37s 0.42s 10.8x

Figure 4.3: Average execution times for the W and W2 algorithms. By removing the O(n2) kth
nearest neighbor calculation from W we drastically improve performance, especially on larger
datasets such as China (499 cases).

Median Spread Reduction Quartiles
Dataset Treatment Reduc Reduc 50%

kemerer W2 7% 48% r
kemerer W 0% 44% r

miyazaki* W2 75% 24% r
miyazaki W 46% 45% r
telecom1 W 92% 23% r
telecom1 W2 81% 34% r

china W2 34% 67% r
china W 1% 36% r

finnish W2 26% 28% r
finnish W 18% 29% r

Figure 4.4: Performance of W2’s Overlap relevancy filtering vs W’s kth nearest-neighbor filtering
for 5 unique datasets.

W 2 is not a slow algorithm. Nothing in any of these steps takes more than log-linear time,

and even that is only to sort K1 items (which is a very small list). Even when implemented in an

interpreted language (GAWK), W 2 runs in less than half a second for up to 500 cases (on a 3GHz

dual core Macintosh, OS/X 10.6, 4GB of ram).

In all but one case, W 2 performs better. However, even when W 2 performs slightly worse,

it still performs better than KNN in spread reduction. For the Miyazaki dataset, there exists a

statistically significant difference (Mann-Whitney, 95% confidence level).

31

4.3 Experiment: W 2’s Performance Across Multiple Datasets

To demonstrate the effectiveness of W 2 in any data environment, we offer median reductions for

effort reduction for five arbitrary datasets from the PROMISE data repository. The model-agnostic

simplicity of W 2 made implementing these tests easy as one need only describe a query space and

a target utility measure. In the case of these five datasets, software effort was the common target

for reduction.

Given that we did not have access to case studies as we did with NASA93 and COC81 (ground,

flight, osp, and osp2) for these datasets, synthetic queries were developed. Three queries were

generated for each of the five datasets. The first contained the entire space of possible project

attribute values (All), representing complete freedom to recommend any change within the space.

The other two queries were generated by randomly choosing 50% of each attribute values from

either the lower, middle, or upper ranges for each project attribute (Proj1, Proj2). These queries

represent more common restrictions on possible changes for a given software project.

Effort reductions can be seen in Figure 4.5 and 4.6. The chart in Figure 4.5 shows strong

improvement in median effort for the Telecom and Miyazaki datasets, with strong performance in

spread reduction across all datasets. While the Finnish, China, and Kemerer datasets show only

marginal or no improvement in median effort, the certainty of their estimations is improved via a

reduction in spread.

The other two queries were generated by randomly choosing 50% of each attribute values

from either the lower, middle, or upper ranges for each project descriptor. For these experiments,

the values function was just “reduce effort” (the next experiment will explore other results on

COCOMO-related data, that tries to reduce effort and defects and calendar months).

There are three noteworthy aspects of the Figure 4.6 results:

• All the points in that figure are positive; i.e. improvements were seen in all cases.

• The dotted lines show the 50% percentile range of the results: half that results had at least

32

Improvement
dataset query q median spread

Telecom Proj1 96% 23%
Telecom Proj2 91% 41%
Telecom All 86% 28%
Miyazaki All 78% 33%
Miyazaki Proj2 69% 21%
Miyazaki Proj1 53% 67%
Finnish All 22% 31%
Finnish Proj2 11% 27%
Finnish Proj1 4% 25%
China All 20% 55%
China Proj2 14% 43%
China Proj1 0% 13%

Kemerer Proj1 21% 61%
Kemerer Proj2 0% 49%
Kemerer All -4% 53%

median 21% 33%

Figure 4.5: Effort estimation improvements (100∗ initial− f inal
intial) for five unique datasets. Sorted by

median improvement. Gray cells represent no improvement in effort estimates.

56% and 73% improvement in median and spread.

• There is no evidence that W 2 has problems with smaller data sets. The two smallest exam-

ples processed by W 2 are Kemerer and Telecom containing 15 and 18 examples each. The

minimum improvements seen, even for these small data sets, are 55% (in both median and

spread).

The expected value of the results in these examples is very high; e.g. a 56% median improvement

in effort. The reason for these large improvements is that, in these examples, we focuses only

on effort. Clearly, there are many ways to cut corners in a project and some of those can have

disastrous results (e.g. allocate no effort to testing will reduce the cost, but that is clearly not a

recommended management action for a software project). Later in this paper are examples where

W 2 is chasing improvements to effort and defects and total calendar time to develop the software.

33

 0

 25

 50

 75

 100

 0 25 50 75 100

%
 s

p
re

a
d
 i
m

p
ro

v
e
m

e
n
t

% median improvement

56, 73

Telecom
Miyazaki

Finnish
China

Kemerer

Figure 4.6: Effort results for five non-COCOMO datasets.

Optimizing for N = 3 goals is a harder task than just the N = 1 goal of Figure 4.6. Hence, those

the improvements seen in those examples will be more modest (around 20%).

4.4 Experiment: Intra- and Inter-Project Stability

One of the premises of case-based methods like W 2 is that local reasoning in some specific context

is best that fitting one model over an entire space. This is required if the “best” solutions in a one

context do not hold in others.

To test this premise, we generated a report of what treatments were found under different

conditions. Figure 4.8 shows the results of W 2’s Step7 (prune all treatments that do appear in less

than 50% of 20 repeated trials). The left-hand column of Figure 4.8 shows the four values function

used in that study:

34

1. Defects aims at reducing just defects;

2. Effort aims at reducing just effort;

3. Months aims at reducing a project’s total calendar time.

4. All refers to Equation 5.7; i.e. try to decrease effort and development time and number of

defects;

The last of these is a multi-objective function while the rest strive to optimize one objective without

concern to the others. Figure 4.8 shows that, in any row, the conclusions reached by W 2 are stable

(i.e. appear at high frequency, across 20 random selections of train : test). That is, W 2’s results

exhibit intra−project conclusion stability (when the context and values function are held constant).

For project managers, this is good news since it shows that their data contains clear signals on how

-50

-25

 0

 25

 50

 75

p
e
rc

e
n
t
c
h
a
n
g
e

changes, sorted

20.5,20.5

medians
spreads

Figure 4.7: Range of changes in median and spread generated by applying the recommendations
of W 2. The median observed changes were (20.5, 20.5)% for (medians, spreads), respectively.

35

Stability Comparison for NASA93ii FLIGHT

go
al

ac
ap

=
3

ap
ex

=
3

ap
ex

=
5

lte
x=

4
pm

at
=

3
pm

at
=

4
re

ly
=

3

sc
ed

=
2

st
or

=
3

tim
e=

3

ch
an

ge
s

defects 90 65 75 3
effort 70 90 2

months 70 60 85 3
all 75 70 85 3

Stability Comparison for NASA93ii GROUND

go
al

ac
ap

=
3

ap
ex

=
3

ap
ex

=
5

lte
x=

4
pm

at
=

3
pm

at
=

4
re

ly
=

3

sc
ed

=
2

st
or

=
3

tim
e=

3

ch
an

ge
s

defects 80 50 2
effort 60 75 2

months 75 50 75 3
all 85 80 2

Stability Comparison for NASA93ii OSP

go
al

ac
ap

=
3

ap
ex

=
3

ap
ex

=
5

lte
x=

4
pm

at
=

3
pm

at
=

4
re

ly
=

3

sc
ed

=
2

st
or

=
3

tim
e=

3

ch
an

ge
s

defects 95 70 50 3
effort 80 70 70 3

months 55 80 2
all 50 85 60 3

Stability Comparison for NASA93ii OSP2

go
al

ac
ap

=
3

ap
ex

=
3

ap
ex

=
5

lte
x=

4
pm

at
=

3
pm

at
=

4
re

ly
=

3

sc
ed

=
2

st
or

=
3

tim
e=

3

ch
an

ge
s

defects 60 75 95 3
effort 75 55 80 3

months 70 80 90 3
all 80 90 100 3

Figure 4.8: Recommendation frequency across 20 runs of W 2 for reducing individual goals
(de f ects, e f f ort, or months) as well as all goals at once (all).

to best change their particular project in order to achieve particular goals.

However, Figure 4.8 also shows that if the context is changed (from generalized FLIGHT

systems to a specific flight system like OSP), then the recommended changes are very different.

Similarly, the OSP results show that altering the values function also dramatically changes recom-

mendations.

Menzies & Shull [50] report that many SE papers conclude that what is “best” for one project

may not be “best” for another. For example, Zimmermann studied 629 pairs of software develop-

36

ment projects [70]. In only 4% of those hundreds of pairs was a defect prediction model learned

from one project useful on another. When such inter-project conclusion instability exists, then

tools like W 2 are essential since it is best to learn changes that are tuned to the specifics of partic-

ular projects (like OSP & OSP2) rather than on generalized descriptions of software (like FLIGHT

& GROUND).

4.5 Experiment: Comparing Drastic Changes to W 2

Prior work considered explored impact of so-called drastic changes to software projects [46]. A

drastic change occurs when the recommendation falls outside the defined projects ranges of a soft-

ware project. In other words, when the recommended course of action is dramatic. For example,

with the OSP NASA case study (Figure 5.1), attempting to improve programmer language and tool

experience (ltex) to 5 (very high, 6+ years experience), would be a drastic change as the maximum

defined value for ltex is 4 (high).

To test this, W 2’s recommendations for the four NASA case studies (Figure 5.1) in the

NASA93 dataset were overridden with the drastic changes from Figure 4.9. For 3 distinct drastic

changes, W 2 attempted to apply the drastic changes until no improvement was measured, then

reported the median effort, defects, and months for that change. Note that not all changes from

[46] were applicable, due to a lack of extreme cases in the NASA93 dataset.

The results for these changes are reported in Figures 4.11, 4.10, 4.12, 4.13. Of the 12 compar-

isons, in only one case does W 2 perform better statistically and significantly better than the three

drastic changes. However, in terms of median reductions, W 2 always performs in the top 50% of

of cases. Most importantly, even when compared to extreme project recommendations, W 2 is not

constrained by the limited project attribute ranges allowed for its recommendations.

37

Drastic Change Attribute Effects
1 Improve Process Maturity pmat = 5
2 Improve Tools&Techniques time = 3; stor = 3;

pvol = 2; tool = 5; site = 6
3 Reduce Functionality data = 2;

Figure 4.9: Examples of drastic changes to software projects.

MedianSpread Reduction Quartiles
Rank Goal Change Reduc Reduc 50%

1 defects ReduceFunct 64% 28% r
1 defects W 54% 32% r
1 defects ToolsTech 51% 39% r
1 defects ProcMaturity 39% 73% r
2 defects Personel 23% 100% r
3 defects ReduceQuality 0% 100% r
4 defects RelaxScedule -20% 43% r
1 effort ReduceFunct 62% 28% r
2 effort W 58% 32% r
2 effort ToolsTech 46% 22% r
2 effort ProcMaturity 24% 76% r
2 effort ReduceQuality 0% 100% r
2 effort Personel 0% 105% r
3 effort RelaxScedule -13% 35% r
1 months ReduceFunct 37% 16% r
1 months Personel 32% 98% r
1 months W 30% 16% r
1 months ToolsTech 29% 26% r
1 months ProcMaturity 29% 33% r
1 months ReduceQuality 0% 98% r
2 months RelaxScedule -3% 16% r

Figure 4.10: Comparing defect, effort, and month estimation reduction percentages (100 ∗
initial− f inal

intial of drastic business decisions vs W ’s recommendations for the Ground case study.

38

MedianSpread Reduction Quartiles
Rank Goal Change Reduc Reduc 50%

1 defects ReduceFunct 64% 28% r
1 defects W 54% 32% r
1 defects ToolsTech 51% 39% r
1 defects ProcMaturity 39% 73% r
1 defects Personel 23% 100% r
1 defects ReduceQuality 0% 100% r
2 defects RelaxScedule -20% 43% r
1 effort ReduceFunct 62% 28% r
1 effort W 58% 32% r
1 effort ToolsTech 46% 22% r
1 effort ProcMaturity 24% 76% r
1 effort ReduceQuality 0% 100% r
1 effort Personel 0% 105% r
2 effort RelaxScedule -13% 35% r
1 months ReduceFunct 37% 16% r
1 months Personel 32% 98% r
1 months W 30% 16% r
1 months ToolsTech 29% 26% r
1 months ProcMaturity 29% 33% r
1 months ReduceQuality 0% 98% r
2 months RelaxScedule -3% 16% r

Figure 4.11: Comparing defect, effort, and month estimation reduction percentages (100 ∗
initial− f inal

intial of drastic business decisions vs W ’s recommendations for the Flight case study.

39

MedianSpread Reduction Quartiles
Rank Goal Change Reduc Reduc 50%

1 defects W 61% 31% r
2 defects ProcMaturity 51% 26% r
2 defects ReduceFunct 46% 34% r
2 defects Tools&Tech 39% 32% r
2 defects ReduceQuality 0% 382% r
2 defects Personel 0% 100% r
3 defects RelaxScedule -30% 78% r
1 effort W 60% 28% r
2 effort ProcMaturity 51% 29% r
2 effort ReduceFunct 48% 36% r
2 effort Tools&Tech 47% 45% r
2 effort ReduceQuality 5% 257% r
2 effort Personel 0% 100% r
3 effort RelaxScedule -21% 64% r
1 months ProcMaturity 31% 15% r
2 months W 30% 17% r
2 months Personel 29% 98% r
2 months Tools&Tech 25% 17% r
2 months ReduceFunct 25% 9% r
2 months ReduceQuality 4% 61% r
3 months RelaxScedule -7% 16% r

Figure 4.12: Comparing defect, effort, and month estimation reduction percentages (100 ∗
initial− f inal

intial of drastic business decisions vs W ’s recommendations for the OSP case study.

40

MedianSpread Reduction Quartiles
Rank Goal Change Reduc Reduc 50%

1 defects W 64% 40% r
1 defects Tools&Tech 57% 24% r
1 defects ReduceFunct 50% 29% r
1 defects Personel 28% 75% r
1 defects ProcMaturity 24% 38% r
1 defects ReduceQuality 0% 163% r
1 defects RelaxScedule -17% 71% r
1 effort ReduceFunct 63% 27% r
1 effort W 60% 45% r
1 effort Toolss&Tech 57% 36% r
1 effort ReduceQuality 50% 100% r
1 effort Personel 19% 78% r
1 effort ProcMaturity 14% 49% r
2 effort RelaxScedule -43% 91% r
1 months W 35% 21% r
1 months Toolss&Tech 30% 15% r
1 months ReduceFunct 26% 12% r
1 months Personel 25% 45% r
1 months ProcMaturity 12% 21% r
1 months ReduceQuality 6% 98% r
2 months RelaxScedule -16% 25% r

Figure 4.13: Comparing defect, effort, and month estimation reduction percentages (100 ∗
initial− f inal

intial of drastic business decisions vs W ’s recommendations for the OSP2 case study.

41

Chapter 5

Model-Based vs. Case-Based Algorithms

5.1 Model-based Case Studies

Since the presented model-based methods are built around the COCOMO-suite, we must use CO-

COMO data and contexts written in the COCOMO ontology. An example of such data is the

NASA93 dataset found in §B and is available at promisedata.org. Figure 5.1 shows some real-

world context and control information taken from a debrief of some NASA program managers:

• Ground and flight represent typical ranges for most NASA projects at the Jet Propulsion

Laboratory (JPL);

• OSP represents the guidance, navigation, and control aspects of NASA’s 1990 Orbital Space

Plane (OSP);

• OSP2 represents a second, later version of OSP with a more limited scope of COCOMO

attributes.

The uncontrolable column in Figure 5.1 shows project features that cannot be changed. For ex-

ample in project OSP, the required reliability is fixed at rely = 5. On the other hand, the low and

42

context
controlable uncontrolable

project feature low high feature setting
prec 1 2 data 3

OSP: flex 2 5 pvol 2
Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
rely 3 5 tool 2

JPL data 2 3 sced 3
flight cplx 3 6

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
prec 3 5 flex 3

OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 1 4 tool 2
JPL data 2 3 sced 3

ground cplx 1 4
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 5.1: Contexts of 4 case studies. {1, 2, 3, 4, 5, 6} map to {very low, low, nominal, high, very
high, extra high}.

43

high ranges in that figure define the space of possible changes to that project. For instance, the

reliability of flight software varies from 3 (nominal) to 5 (very high).

5.2 SEESAW

Since 2007, researchers at WVU have applied AI algorithms over parametric models of software

development (based on COCOMO) [44] to implement quality optimizers. This is a a challenging

task since they must execute over partial descriptions of projects and, in the case of parametric

models, over models with uncertain internal parameters (like the ranges shown in Figure 2.2).

In order to address this challenge, one needs to understand the nature of those models. In

parametric modeling, the predictions of a model about a software engineering project are altered

by project variables P and tunable attribute coefficients T :

prediction = model(P,T) (5.1)

In the simplified COCOMO model of Equation 5.2, the tuning options T are the range of (a,b) and

the project options P are the range of pmat (process maturity) and acap (analyst capability).

e f f ort = a ·LOCb+pmat ·acap (5.2)

Based on the definitions of the COCOMO model, the ranges of the project attributes are:

P = 1≤ (pmat,acap)≤ 5 (5.3)

Further, the cone of uncertainty associated with a particular project p can identify the subset of

the project options p ⊆ P relevant to a particular project. For example, a project manager may be

unsure of the exact skill level of team members. However, if they were to assert “my analysts are

44

better than most”, then p would include {acap = 4,acap = 5}.

SEESAW seeks a treatment rx ⊆ p that maximizes the value of a model’s predictions where

value is a domain-specific function that scores model outputs according to user goals:

argmax
x

AI search︷ ︸︸ ︷
rx ⊆ p , t ⊆ T,value(model(rx, t))︸ ︷︷ ︸

Monte Carlo

 (5.4)

The intuition of Equation 5.4 was that, when faced with tuning variance like that seen in Figure 2.2,

one should search for conclusions that are stable across the space of possible tunings. SEESAW

assumed that the dominant influences on the prediction are the project options p (and not the

tuning options T). Under this assumption, the predictions can be controlled by:

• Constraining p (using some AI tool)

• Leaving T unconstrained (and sampling t ∈ T using Monte Carlo methods)

The parametric models used by SEESAW’s models come from COCOMO. Shown in Figure 2.1,

these attributes have a range taken from {very low, low, nominal, high, very high, extremely high}

or

{vl = 1, l = 2,n = 3,h = 4,vh = 5,xh = 6}

In COCOMO-II model [10], Boehm divided the attributes into two sets: the effort multipli-

ers and the scale factors. The effort multipliers affect effort/cost in a linear manner. Their off-

nominal ranges {vl=1, l=2, h=4, vh=5, xh=6} change the prediction by some ratio. The nominal

range {n=3}, however, corresponds to an effort multiplier of 1, causing no change to the predic-

tion. Hence, these ranges can be modeled as straight lines y = mx+ b passing through the point

(x,y)=(3,1). Such a line has a y-intercept of b= 1−3m. Substituting this value of b into y=mx+b

yields:

∀x ∈ {1..6} EMi = mα(x−3)+1 (5.5)

45

where mα is the effect of α on effort/cost.

One can also derive a general equation for the scale factors that influence cost/effort in an

exponential manner. These features do not “hinge” around (3,1) but take the following form:

∀x ∈ {1..6} SFi = mβ(x−6) (5.6)

where mβ is the effect of factor i on effort/cost.

Along with COCOMO-II, Boehm also defined the COQUALMO defect predictor. COQUALMO

contains equations of the same syntactic form as Equation 5.5 and Equation 5.6, but with different

coefficients. Using experience from 161 projects [10], one can find the maximum and minimum

values ever assigned to m for COQUALMO and COCOMO. Hence, to explore tuning variance (the

t ∈ T term in Equation 5.4), all we need to do is select m values at random from the min/max m

values ever seen.

Initially, prior work implemented the AI search of Equation 5.4 using simulated annealing [43,

44, 47]. Subsequent work demonstrated that the recommendations found in this way did better

than numerous standard process improvement methods [46]. Later implementations were based

on a state-of-the-art theorem prover [21]. SEESAW searches within the ranges of project attributes

to find constraints that most reduce development effort, development time (measured in calendar

months), and defects. Figure 5.2 shows SEESAW’s pseudo-code. The code is an adaption of

Kautz & Selman’s MaxWalkSat local search procedure [13]. The main changes are that each

solution is scored via a Monte Carlo procedure (see score in Figure 5.2) and that SEESAW seeks

to minimize that score (since, for our models it is some combination of defects, development effort,

and development time in months).

SEESAW first combines the ranges for all project attributes. These constraints range from

Low to High values. If a project does not mention a feature, then there are no constraints on

that feature, and the combine function (line 4) returns the entire range of that feature. Otherwise,

combine returns only the values from Low to High. In the case where a feature is fixed to a single

46

value, then Low = High. Since there is no choice to be made for this feature, SEESAW ignores

it. The algorithm explores only those features with a range of Options where Low <High (line 5).

In each iteration of the algorithm, it is possible that one acceptable value for a feature X will be

discovered. If so, the range for X is reduced to that single value, and the feature is not examined

again (line 17). SEESAW prunes the final recommendations (line 21). This function pops off the

N selections added last that do not significantly change the final score (t-tests, 95% confidence).

This culls any final irrelevancies in the selections. The score function shown at the bottom of

Figure 5.2 calls COCOMO/COQUALMO models 100 times, each time selecting random values

for each feature Options. The median value of these 100 simulations is the score for the current

project settings. As SEESAW executes, the ranges in Options are removed and replaced by single

values (lines 16-17), thus constraining the space of possible simulations.

While a successful prototype, SEESAW has certain drawbacks:

• Model dependency: SEESAW requires a model to generate the estimates. Hence, the conclu-

sions reached were only as good as this model so using this tool requires an initial, possibly

time-consuming, model validation process.

• Data Dependency: SEESAW can only process project data in a format compatible with the

underlying model. In practice, this limits the scope of the tool.

• Arbitrary Design: SEESAW handles two dozen cases using rules designed using “engineer-

ing judgment”; i.e. they are not based on any theoretical or empirical results in the literature

(for example, “do not increase automatic tools usage without increasing analyst capability”).

The presence of such ad hoc rules makes it harder to verify that the tool is correct.

• Performance: SEESAW uses tens of thousands of iterations, with several effort estimates

needed calculated for each iteration. This resulted in a performance disadvantage.

• Size and Maintainability: Due to all the above factors, the SEESAW code base has proved

47

1 function run (AllRanges, ProjectConstraints) {
2 OutScore = -1
3 P = 0.95
4 Out = combine(AllRanges, ProjectConstraints)
5 Options = all Out features with ranges low < high
6 while Options {
7 X = any member of Options, picked at random
8 {Low, High} = low, high ranges of X
9 LowScore = score(X, Low)
10 HighScore = score(X, High)
11 if LowScore < HighScore
12 then Maybe = Low; MaybeScore = LowScore
13 else Maybe = High; MaybeScore = HighScore
14 fi
15 if MaybeScore < OutScore or P < rand()
16 then delete all ranges of X except Maybe from Out
17 delete X from Options
18 OutScore = MaybeScore
19 fi
20 }
21 return backSelect(Out)
22 }
23 function score(X, Value) {
24 Temp = copy(Out) ;; don’t mess up the Out global
25 from Temp, remove all ranges of X except Value
26 run monte carlo on Temp for 100 simulations
27 return median score from monte carlo simulations
28 }

Figure 5.2: Pseudocode for SEESAW

difficult to maintain.

We have found that these factors limit the widespread use of quality optimizers:

• In the three years since our first paper [44], we have only coded one software process model

(COCOMO), which inherently limits the scope of our investigations.

• No other research group has applied these techniques.

These problems motivated an exploration of alternate approaches to quality optimization.

48

5.3 Five Additional AI Model-Based Algorithms

The case studies of Figure 5.1 can be used to assess how well different AI algorithms can find

changes to software projects. For example, a typical Simulated Annealing (SA) run explores

10,000 variants on some solution [29]. A side-effect of that run is 10,000 sets of inputs, each

scored with the value function of Equation 5.7.

value = 1−
(√

E f f ort2 +De f ects2 +Time2/
√

3
)

(5.7)

Our tool classified the outputs into the 90% rest and the 10% best seen during the run of the

SA. All the ranges from all the features were then ranked according to how much more frequently

they appeared in best than rest. A forward select was then called using the first 1. . .x ranked items.

Figure 5.3 shows the treatment Rx at any x value is the conjunction of ranges observed between

1 to x (see the table at the bottom of that figure). The y axis scores show median results in 100

runs of COCOMO/COQUALMO, after imposing the treatment. The “pruned” range of that figure

shows the results of a back select that worked backwards over the forward select ordering, deleting

any item x whose distribution of values was statistically insignificantly different to x−1. SA’s final

recommendation was the treatment 1≤ x≤ 13. The improvement generated by that treatment can

be seen by comparing the values at x = 0 to x = 13.

• Defects reduced: 350 to 75;

• Time reduced: 16 to 10 months;

• Effort reduced: 170 to 80 staff months.

SA is just one way to generate a treatment. For our AI model-based methods, we explored five

others. Given a random selected treatment, MaxWalkSat tries n modifications to randomly selected

features [66]. Sometimes (controlled by the α parameter), the algorithm chooses the range that

minimizes the value of the current solution. Other times (at probability 1−α), a random range

49

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

m
ed

ia
n

sc
or

e
at

 e
ac

h
ro

un
d

round

pruned

time*10
defects

effort

Decisions made from round=1 to round=13:
x=0: Rx = /0

x=1 added {pmat=3}
x=2: added {resl=4}
x=3: added {team=5}
x=4: added {aexp=4}
x=5: added {docu=3}
x=6: added {plex=4}

x=7: added {rely=3}
x=8: added {stor = 3}
x=9: added {time = 3}
x=10: added {tool = 4}
x=11: added {sced = 2}
x=12: added {site = 4}
x=13: added {acap = 5}

Figure 5.3: Example of SA’s forward and back select.

is chosen for the feature. After N retries, the best solution is returned. Our implementation used

n = 50, α = 0.5, and N = 10.

ISAMP is a fast stochastic iterative sampling method that extends a treatment using randomly

selected ranges. The algorithm follows one solution, then resets to try other paths (our implemen-

tation resets 20 times). The algorithm has proved remarkably effective at scheduling problems,

perhaps because it can rapidly explore more of the search space [15]. To avoid exploring low-

value regions, our version of ISAMP stores the worst solution observed so far. Any conjunction

50

whose value exceeds that of the worst solution is abandoned, and the new “worst value” is retained.

If a conjunction runs out of new ranges to add, then the “worst value” is slightly decreased. This

ensures that consecutive failing searches do not permanently raise the “worst value” by an overly

permissive value.

Our other two algorithms use some variant of tree search. Each branch of the tree is a different

“what-if” query of size i. If i is less than the number of input values to COCOMO/COQUALMO,

the missing values were selected at random from the legal ranges of those inputs.

BEAM search extends search branches as follows. Each branch forks once for every new option

available to that range. All the new leaves are sorted by their value and only the top N ranked

branches are marked for further expansion. For this study we used N = 10 and results scored using

the median values seen in the top N branches.

A-STAR runs like BEAM, but the sort order is determined by the sum f (the cost of reaching

the current solution) plus g (a heuristic estimate of the cost to reach the final solution). Also, unlike

BEAM, the list of options is not truncated so a termination criterion is needed (we stop the search

if the best solution so far has not improved after m iterations). For this study, we estimated f and

g as follows:

• f was estimated as the percentage of the project descriptors with ranges in the current branch;

• g was estimated using 1−Equation 5.7 (i.e. distance to the utopia of no effort, no develop-

ment time, and no defects).

5.4 Comparisons of AI Model-based Methods

For each case study of Figure 4.1, each algorithm was run 20 times (guided by the value function of

Equation 5.7). Separate statistics were collected for the defects/effort/time predictions seen at the

policy point in the 20*4 trials. The top-ranked algorithm(s) of Figure 5.4 had statistically different

and lower defects/effort/time predictions than any other algorithm(s).

51

algorithm Defects months time
SEESAW 4 4 3

BEAM 0 3 3
A-star 0 1 1

SA 0 1 1
MaxWalkSat 0 0 0

ISAMP 0 0 0

Figure 5.4: Number of times algorithms were top-ranked (largest is 4: i.e. one for each Figure 5.1
case study).

Note the dramatic difference between MaxWalkSat and SEESAW results. The difference be-

tween these two algorithms is very small: SEESAW assumed that the local search state space

was monotonic, so it only explored minimum and maximum values for each feature. This result

underscores the power of the simplex heuristic.

From Figure 5.4, the worst algorithms are MaxWalkSat and ISAMP and the best algorithms

are SEESAW and BEAM. The performance of these best algorithms is sometimes equivalent (e.g.,

in time, both algorithms achieved an equal number of top ranks). However, BEAM is not recom-

mended:

• BEAM runs 10 times slower than SEESAW.

• SEESAW performs better than BEAM in some cases (e.g. in defects, BEAM is never top-

ranked).

Since SEESAW performs best, we will use it for our subsequent comparisons with case-based

methods.

5.5 Model vs. Case-Based Methods

SEESAW requires models in the COCOMO format so for our comparisons, we restrict ourselves to

data in that format. W 2 used the historical cases from the NASA93ii and COC81ii datasets. These

52

data sets all have the features defined by Boehm [7]; e.g. analyst capability, required software

reliability, and use of software tools. Originally collected in the COCOMO-I format, JPL business

experts have translated them from their original COCOMO format to COCOMOII.

Both SEESAW and W 2 guided their search using Equation 5.7 and the four contexts of

§5.1. SEESAW used those contexts to guide their “what-if” queries around its COCOMO/CO-

QUALMO models. W 2 took those contexts then applied the seven step procedure described above

to NASA93ii and COC81ii. Recall that, in those steps, some Rx was assessed on projects similar

to the context in a test set; i.e. all the cases in the context’s neighborhood. Our comparison rig

studied that same test neighborhood using SEESAW and W 2. We say that rows1 and rows2 are the

rows selected from the neighborhood after applying SEESAW’s or W 2’s recommendations (and

by “apply”, we mean reject any row that contradicts the ranges in the recommendation). From

rowsi, we applied Equation 5.7 to find valuesi.

The are shown in Figure 5.6, divided into the defect, effort, months changes see in GROUND,

FLIGHT, OSP2 and OSP. In all, we show 24 comparisons:

(
NASA93ii

COC81ii

)
∗

 de f ects

e f f ort

months

∗

ground

f light

OSP

OSP2

W 2 produced larger median reductions that SEESAW in 16/24 comparisons. The “Win” col-

umn of those figures indicates when any member of a comparison had a higher value and was

statistically significantly different (Mann-Whitney, 95% confidence). In nearly half the compar-

isons (11/24), W 2 results were statistically different and better than SEESAW (in the remaining

comparisons, SEESAW’s median improvements were never better than W 2).

Figure 4.7 shows the sorts the median and spread improvements seen from the Figure 5.6 re-

sults. Note that rarely were the changes to the median less than zero. In the majority of cases,

W2’s median and spread improvements were positive (an expected value of 20.5; sometimes rang-

53

ing over 50%). While occasionally the spread degraded sharply (down to 50% worse), such cases

were uncommon: note that in only 10% of our results were the spread changes below -15%. Also,

all the cases where W 2 had poor spread results were in the COC81ii data set which, as discussed

below, is a data set with certain special features.

50% (75-25)th
percentile percentile
(median) (spread) Median Spread
a = t = a = t = improv. improv.

Win Goal Treatment as is to be as is to be a−t
a

a−t
a

NASA93ii Flight
defects SEESAW 1276 626 3737 2311 51% 38%
defects W 2042 1688 3992 2501 17% 37%

effort SEESAW 159 72 378 192 55% 49%
effort W 265 183 416 242 31% 42%

months SEESAW 21 15 13 8.6 27% 33%
months W 22 20 15 11.1 5% 24%

NASA93ii Ground
defects SEESAW 2006 688 4254 2203 66% 48%
defects W 2007 933 3763 1121 54% 70%

effort SEESAW 240 95 390 166 61% 57%
effort W 177 81 361 156 54% 57%

months SEESAW 22 16 15 8.8 28% 41%
months W 21 17 14 6.2 19% 55%

NASA93ii OSP
* defects W 1586 767 3557 1741 52% 51%

defects SEESAW 1265 1696 3722 3077 -34% 17%
* effort W 210 99 557 179 53% 68%

effort SEESAW 150 174 411 372 -16% 10%
* months W 21 15 15 9.0 28% 39%

months SEESAW 21 21 15 12 -2% 21%
NASA93ii OSP2

* defects W 2077 744 4222 1356 64% 68%
defects SEESAW 2042 1172 4369 3127 43% 28%

* effort W 239 79 465 145 67% 69%
effort SEESAW 210 118 514 275 44% 46%

months W 21 15 17 6.8 31% 60%
months SEESAW 21 16 17 11 25% 36%

Figure 5.5: Changes in median and spread for the NASA93 dataset.

54

The gray cells in Figure 5.6 show optimization failures; i.e. a zero or negative improvement.

W 2 failed less than SEESAW (had fewer gray cells). W 2 showed 3/24 and 7/24 failures for

medians and spreads (respectively) while SEESAW showed 13/24 and 7/24 failures for medians

and spreads (respectively). One of SEESAW’s failures was particularly dramatic: witness the

increase from 98 effort months to 447 effort months in the OSP2 effort results. We conjecture that

SEESAW’s greater failures in median reduction are due to the over-fitting problem discussed in

§2.4. SEESAW’s model-based methods are free to sample increasingly narrow segments of the

COC81ii Flight
defects W 1529 1265 1867 2369 17% -27%
defects SEESAW 1487 1629 2054 1965 -9% 4%

effort W 86 81 181 200 6% -11%
effort SEESAW 89 106 246 237 -19% 4%

* months W 18 16 6.5 10 11% -49%
months SEESAW 18 20 10 8.9 -8% 8%

COC81ii Ground
defects W 1541 1248 1902 2102 19% -11%
defects SEESAW 1650 1496 2445 2499 9% -2%

effort W 98 65 199 223 33% -12%
effort SEESAW 106 122 383 372 -15% 3%

* months W 18 15 9.2 10 17% -7%
months SEESAW 19 19 10 10 0% -5%

COC81ii OSP
* defects W 1496 1068 1787 2054 29% -15%

defects SEESAW 1496 1765 2233 2233 -18% 0%
effort SEESAW 93 83 332 200 11% 40%
effort W 88 93 209 205 -5% 2%

* months W 19 14 9.0 8.9 22% 1%
months SEESAW 19 19 9.4 10 -3% -4%

COC81ii OSP2
* defects W 1850 1802 2697 2405 3% 11%

defects SEESAW 1473 2269 1769 2061 -54% -17%
* effort W 122 130 431 356 -7% 17%

effort SEESAW 98 447 289 288 -356% 0%
months SEESAW 19 19 7.9 8.6 -3% -9%
months W 20 21 11 10 -4% 10%

Figure 5.6: Changes in median and spread for the COC81 dataset.

55

internal state space of a model (“flying in”, as it were, into small cracks between the training data).

If that sampling is taken to extreme, and the model-based methods offer recommendations that

cover a tiny part of the state space, and if the test data does not fall into that tiny region, then the

model-based recommendations will fail.

Note that most of the gray cells occur in the COC81ii results. Boehm assumed that this data was

to be analyzed by regression so spent much effort on the COC81ii data, applying his domain exper-

tise to prune or trim outstanding values. Curiously, W 2 performed best on the “uncleansed” data

set (NASA93ii) than the cleaner data set (COC81ii). We conjecture that, sometimes, seemingly

“dirty” data actually contains data that is insightful in some contexts. While such outliers confuse

regression-based methods (that try to fit one model over the entire data), case-based tools like W 2

can exploit those less-common instances (since they build local models around each context).

In summary:

• W 2’s performance was better than SEESAW;

• W 2 was more effective at reducing the medians;

• Both case-based and model-based methods had similar issues with reducing the spread.

• Possibly, the case-based approach of W performs better on “dirtier”, nosier data than model-

based methods.

56

Chapter 6

Discussion

6.1 When Not to Use W 2

Like any case-based method, W 2 requires historical cases. If such data is missing then W 2 cannot

be used.

In that circumstance, discussions about how to best change a project can use results borrowed

from other sites. For example, Figure 6.1 show’s Boehm et al.’s [10] analysis of the effects of

changing some project attribute from its minimum to maximum value. Based on data from a

regression analysis of 161 projects, this figure comments that changing (e.g.) personnel/team ca-

pability can alter the effort to build software by up to 350%. Using this data, the effects of various

changes can be investigated using Boehm’s delta analysis technique [8]:

• An old project with known efforts is used as a baseline. A change to a project is described

as a new project, expressed in terms of deltas to the variables of Figure 6.1.

• The new estimate is then the product of the baseline times the effort multiplier deltas.

• The “best” changes to a project are those that are simplest to implement and have most

positive impact on the effort (ideally, reduces it).

57

Column two of Figure 6.1 lets us compare context-independent reasoning (e.g. delta analysis) vs.

context-dependent reasoning (e.g. W 2). Note how that only a third of the Figure 6.1 attributes

appear in the “best” treatments of Figure 4.8. Curiously, the two attributes with greatest impact

(personnel/team capability and product complexity) are absent from Figure 4.8.

Why is W 2 ignoring an attribute with such a large impact (350%)? To answer that question,

we have go to the context-dependent particulars. Recall from Figure 5.1 that in OSP2, product

complexity is fixed at cplx = 4 and personnel/team capability is fixed at pcap = 3. W 2 does not

recommend treatments for things that cannot change. Hence, cplx and pcap are absent from the

OSP2 results of Figure 4.8. Similarly, OSP allows only pcap = 3 so this attribute is also absent.

The same reasoning does not explain the other absent attributes. To understand these, we must

look at the data. OSP sets cplx ∈ {5,6}. This attribute is absent in the treatments since there is

insufficient support in NASA93ii to justify their inclusion (there only five cplx = 5 examples in

NASA93ii and no examples of cplx = 6). Similar explanations can explain all the remaining ab-

sences. Examples such as these show how W 2 can provide recommendations that may go against

common expert advice. This lack of a defined relationship between data attributes underscores the

need for careful query construction. For example, if a query contains conflicting attributes, W 2

maintains no internal inconsistency check. Model-based approaches such as S-COST [9] can pro-

vide this sanity check, but incur the costs associated with model-based methods discussed above

(ontology restrictions, untamed internal model variance, etc).

In summary, when data is absent, managers can debate changes to projects by reusing data like

Figure 6.1. However, the conclusions reached from a context-independent reasoning (like delta

analysis) can be made more specific with local information about the kinds of projects seen in the

local environment and the kinds of changes the local managers are willing to accept. Therefore,

where possible, we recommend collecting local data and analyzing it with W 2.

58

appears in
id Figure 4.8 as features relative weight
1 Personnel/team capability 3.53
2 Product complexity 2.38
3 time Time constraint 1.63
4 rely Required software reliability 1.54
5 Multi-site development 1.53
6 Doc. match to life cycle 1.52
7 Personnel continuity 1.51
8 apex Applications experience 1.51
9 Use of software tools 1.50

10 Platform volatility 1.49
11 stor Storage constraint 1.46
12 pmat Process maturity 1.43
13 ltex Language & tools experience 1.43
14 sced Required dev. schedule 1.43
15 Data base size 1.42
16 Platform experience 1.40
17 Arch. & risk resolution 1.39
18 Precedentedness 1.33
19 Developed for reuse 1.31
20 Team cohesion 1.29
21 Development mode 1.32
22 Development flexibility 1.26

Figure 6.1: Relative effects on development effort. From [8].

6.2 Model-lite

We said above that CBR was model-lite, but not model-free. We hesitate to call CBR model-free,

lest we incur the wrath of Janet Kolodner or Roger Shank [64]. Kolodner and Shank regard CBR

as a model of human cognition where knowledge in a context-dependent manner, according to the

task at hand. This construct may differ from context to context but the search mechanisms by

which the construct is built (CBR) is constant.

To expand on that point, we note that “model” has at least two definitions:

1. A hypothetical description of a complex entity or process.

2. A plan to create, according to a model or models.

The first definition is closest to Shepperd’s definition of “model-based systems”. According to

59

Shepperd [67] software effort estimation methods separate into “human-centric” techniques and

“model-based” techniques. In the former, humans produce their recommendations without us-

ing some externalizable representation. In the latter, a variety of techniques may be used which,

according to Shepperd, divide into algorithmic/parametric models (like COCOMO) and induced

prediction systems (which include regression, rule induction, CBR, and many others).

We can marry Shepperd’s view with that of Kolodner and Shank by specializing the definition

of model-based systems. Extending Shepperd’s ontology, we say that model-based systems can be

sorted according to how much modeling they assume prior to induction. At one end of that sort

order, we have parametric models like COCOMO. We call these model-heavy since they conform

to the first definition of “model”, shown above. At the other end of that sort are the model-lite

methods like CBR. These model-lite methods conform to the second definition of “model”. Note

that this second definition is closest to Kolodner and Shank’s view on CBR; i.e. the CBR model is

a recipe for generating context-dependent knowledge.

6.3 Scope of the Study

This study use conveniently available datasets in the PROMISE repository, the result applies within

the same context of the datasets. In addition, our evaluation compares the performance of different

methods across a finite number of problems, so it cannot be used to predict which method will be

superior to others for some future, as yet unseen, problem. In fact, no method has been found so

far that is universally superior to others in all problems; indeed, the “no-free-lunch theorem” [75]

suggests that such an universal best method for all problems can never exist. In practice, for a given

new learning problem, various methods need to be empirically evaluated to find the best ones, such

as the ones carried out in the study.

We have shown that some treatments identified can improve the quality measures observed

in historical project datasets. Our performance measures including median and spread reductions

60

seen in “hold-out data” should not be confused with practical significance in the real world.

That being said, we note that publications from other research communities assess their models

in the same manner as this paper: see the effort estimation [30, 36, 37, 40, 72] and defect predic-

tion [28,52,58,71] literature. Ideally, researchers in effort estimation, defect prediction, or learning

changes to software projects should apply their recommendations to live projects. However, hold-

out tests are widely used due to the tremendous practical difficulties associated with performing

such tests on multiple software projects. At the very least, studies like this paper are required to

prune the space of methods to be laboriously tested on new, real-world, projects.

61

Chapter 7

Conclusion

We’ve demonstrated several improvements to our W algorithm with W 2. Namely:

• Optimization - §4.2 shows that W 2 runs faster than our initial W algorithm. W 2 can be ap-

plied to large datasets quickly (Figure 4.3), and without sacrificing performance (Figure 4.4).

• Explanation - W and W 2 are simple implementations of Contrast Set Learning (§3.2), an

easy to explain, intuitive learning process.

• Certification - W 2 performs as well or better than a multitude of software quality optimiza-

tion techniques (§5.4). Including parametric modeling techniques (SEESAW, §5.5), drastic

project changes (§4.5), and multiple data sets based on various case descriptions (§4.3).

• Application - W 2 can be applied to find locally learned recommendations that offer poten-

tially unconsidered avenues for software quality optimization (§3.3).

In comparing the merits of a model-lite, case-based approach to a parametric one, advocates

of reconstructive memory such as Barlett [6], Kolodner [33], or Shank [64] argue that we make it

up as we go along. In case-based reasoning (CBR), inference repeats every time there is a new

query. Our reading of the papers at this conference is that, except for a few papers that deal with

reasoning-by-analogy (e.g. [4]), most of this community avoids the model-lite approach of CBR.

62

Proponents of parametric models argue that there exist domain-independent models which can

be tuned to local details. In this approach, reasoning can take the form of a data miner learning

values for tune-able attributes of a parametric model. In this way, learning can happen once and

users can use the tuned model for all future queries.

Unfortunately, these supposedly domain-independent models (like COCOMO) suffer from

massive internal variance (see Figure 2.2). Previously, we have tried to manage internal vari-

ance of this problem with SEESAW: an AI algorithm that sought stable conclusions across the

space of possible tunings within a parametric model. While a successful prototype, SEESAW has

disadvantages:

• Dependency on a particular parametric model

• A requirement that all the data be in a format acceptable to that model

• Too many arbitrary internal design decisions

• Slow runtimes

• A code base that proved too large to maintain, modify, and add support for more models

With a result supporting CBR, this paper finds little to recommend from SEESAW over the W 2

case-based reasoning tool. Standard CBR applies a query q to find relevant examples from a set

of cases C using the retrieve-reuse-revise-retain loop of Figure 3.1. W 2 extends standard CBR by

learning an adaption of q, called q′, that retrieves better quality examples. Based on the analysis

of [31] and this paper, we recommend W 2 on several grounds:

• W 2 finds similar, or better, results than SEESAW (see §5.5).

• W 2 is simpler to code: 200 lines of AWK as opposed to the 5000 lines of LISP code used

in SEESAW.

• W 2 is faster to run: the above experiments took seconds for W 2, but hours for SEESAW.

63

• W 2 is simpler to maintain since, in CBR, “maintenance” means nothing more than “add

more cases”.

• W 2 makes no use of an underlying model and is therefore free from the assumptions of

parametric modeling. Hence it can be applied to more data sets. For example, SEESAW

requires data to be in the COCOMO format but W has been applied to numerous data sets

in other formats [31].

Having said that, there is one situation where we’d recommend SEESAW over W . Like all CBR

systems, W 2 needs cases. If there is no local data, then SEESAW would be the preferred (only)

option.

Firstly, there is insufficient evidence in this paper to make the conclusion that CBR always

beats model-heavy methods like parametric models. Nevertheless, these results clearly motivate

further exploration and comparison between the value of CBR and model-heavy techniques. For

example, at our lab we are exploring very fast clustering methods to support scaling CBR to very

large data sets.

Secondly, there are at least two kinds of “models.” In the traditional model-heavy definition,

models are specific products that can be applied to multiple domains. In the CBR model-lite

definition, a model is a process that generates many products, each of which is customized to the

particulars of a local domain. In this paper and [45] we have seen the following advantages of

CBR: easy implementation, fast runtimes, easy maintenance, able to be applied to more data, and

out-performance of model-heavy methods.

64

Appendix A

W 2 Source Code

A.1 w.sh

i f [$Verbose −ne 0]

then

echo ” Th i s i s \”W\” (t h e d e c i d e r) [v2 . 0] ”

echo ” (c) 2009 , GPL3 . 1 Adam Brady , Tim Menzies , J a c k i e Keung ”

d a t e

echo ” ”

echo ” h i s t o r i c a l d a t a : $1 ”

echo ”new p r o j e c t (s) : $2 ”

f i

D i s c r e t i z e =${ D i s c r e t i z e :−0}

BinNames=${BinNames :−0}

MinOverlap=${MinOverlap :−0.75}

Tmp=$HOME/ tmp

Samples=${Samples :−50}

K1=${K1:−5}

K2=${K2:−15}

T e s t s =${ T e s t s :−0.33}

Seed=${Seed :−$RANDOM}

Nomograms=${Nomograms:−0}

AutoStop =${AutoStop :−1}

Log=${Log:−0}

65

Verbose =${Verbose :−1}

RankedOver r ide =${RankedOver r ide :−0}

Note=${Note :−0}

C l a s s =${C l a s s :−0}

KNN=${KNN:−0}

i f [$ D i s c r e t i z e −eq 0]

then

c a t d a t a s e t s / $1 . d a t p r o j e c t s / $2 > $Tmp /w−d a t a . tmp

e l s e

c a t d a t a s e t s / $1 . d a t p r o j e c t s / $2 |

gawk −f s c r i p t s / d i s c r e t i z e . awk −v BinNames=$BinNames \

−v D i s c r e t i z e = $ D i s c r e t i z e > $Tmp /w−d a t a . tmp

f i

c a t $Tmp /w−d a t a . tmp |

pgawk \

−−dump−v a r i a b l e s =$Tmp / v a r s 1 0 \

−−p r o f i l e =$Tmp / p r o f 1 0 \

−f w. awk −f a p p l y . awk −f c o n t r a s t . awk\

−f n e i g h b o r s . awk −f p r o j e c t s . awk −f u t i l . awk\

−−source ’END {

main ()

} ’ T e s t s =${ T e s t s } Samples=$Samples K1=${K1} K2=${K2} Seed=${Seed} \

Nomograms=$Nomograms AutoStop =$AutoStop ProjName=$2 Log=$Log \

MinOverlap=$MinOverlap RankedOver r ide = $RankedOver r ide \

Verbose = $Verbose Note=$Note C l a s s = $ C l a s s \

Sk ipRe levancy = $Sk ipRe levancy KNN=$KNN

A.2 w.awk

BEGIN { # command− l i n e o p t i o n s

Samples = 20

K1 = 5

K2 = 15

Seed = 1

T e s t s = 0 . 3 3

AutoStop = 1

MinOverlap = 0 . 7 5

66

RankedOver r ide = 0

Verbose = 1

Note = ” ”

C l a s s = ” ”

KNN = ” ”

}

BEGIN { # i n t e r n a l o p t i o n s

OFS=” , ”

IGNORECASE=1

I n f = 10ˆ32

= SUBSEP

CONVFMT=” %.8g ”

OFMT=” %.8g ”

}

###

main program

f u n c t i o n main () {

worker (Samples , K1 , K2)

}

f u n c t i o n worker (samples , k1 , k2 , r ankeds , r an ke d) {

i f (Verbose) {

p r i n t ” samples : ” sample s

p r i n t ” k1 : ” k1

p r i n t ” k2 : ” k2

p r i n t ”%t e s t : ” T e s t s ∗100

p r i n t ” C o n t r a s t Method : ” (Nomograms ? ”Nomograms” : ” BSquared ”)

p r i n t ” Case Re levancy : ” (MinOverlap ? MinOverlap ∗100 ”% Over l ap ” : ” S t o i c a s t i c Samples ”

)

p r i n t ” Logging : ” (Log ? ”On (”Log ”) ” : ” Off ”)

p r i n t ” ”

p r i n t (RankedOver r ide ? ” O v e r r i d i n g t r a i n i n g r e c o m e n d a t i o n s u s i n g ” RankedOVerr ide : ”

T r a i n i n g r e s u l t s on ” T r a i n [0] ” h i s t o r i c a l examples (what l o o k s u s e f u l) : ”)

}

r a n k e d s = (RankedOver r ide ? i n j e c t R a n k e d (RankedOverr ide , r a nk e d) : t r a i n (samples , k1 , k2 ,

r an ke d))

67

p r i n t f (Verbose ? ” T e s t r e s u l t s on ” T e s t [0] ” new p r o j e c t s (a p p l y i n g t h e t r a i n i n g r e s u l t s t o

new d a t a) :\ n ” : ” ”)

t e s t (samples , k1 , k2 , r ankeds , r a nk ed)

}

f u n c t i o n t r a i n (samples , k1 , k2 , ranked , p r o j e c t s , n e i g h b o r s , memos , b e s t , r e s t , k n e a r e s t , r a n k e d s) {

i f (!KNN) {

g e t R e l e v a n t (Tra in , k1+k2 , r e l e v a n t)

b e s t R e s t (r e l e v a n t , k1 , b e s t , r e s t) # d i v i d e k n e a r e s t i n t o b e s t

/ w o r s t

}

e l s e {

g e t P r o j e c t s (MinOverlap , Tra in , samples , p r o j e c t s) # g e t example1 p r o j e c t s

n e i g h b o r s (samples , p r o j e c t s , T r a i n [0] , Tra in , n e i g h b o r s , memos) # d i s t a n c e s from example1

t o T r a i n c a s e s

knn (k1+k2 , samples , n e i g h b o r s , memos , k n e a r e s t) # k n e a r e s t T r a i n i n s t a n c e

row numbers t o example1 p

b e s t R e s t (k n e a r e s t , k1 , b e s t , r e s t) # d i v i d e k n e a r e s t i n t o b e s t

/ w o r s t

}

r a n k e d s = rank (k1 , k2 , b e s t , r e s t , r a nk e d) # c o n t r a s t s e t be tween b e s t /

w o r s t

re turn r a n k e d s

}

f u n c t i o n t e s t (samples , k1 , k2 , r ankeds , ranked , \

i , p r o j e c t s , n e i g h b o r s , memos , k n e a r e s t , \

m, n , s o r t e d , k loc , row , co l , da t a , r o w K l a s s e s) {

i f (!KNN) {

g e t R e l e v a n t (Tes t , k1+k2−1, k n e a r e s t)

}

e l s e {

g e t P r o j e c t s (MinOverlap , Tes t , samples , p r o j e c t s) # g e t example2 p r o j e c t s

n e i g h b o r s (samples , p r o j e c t s , T e s t [0] , Tes t , n e i g h b o r s , memos) # d i s t a n c e s example2 t o

T e s t s e t

knn (k1+k2−1, samples , n e i g h b o r s , memos , k n e a r e s t) # k n e a r e s t T e s t i n s t a n c e s

row numbers t o example2 p r o j e c t s

68

}

f o r (row =1; row<=T e s t [0] ; row ++) #Re−a l i g n i n d e x e s f o r knn da ta

i f (row i n k n e a r e s t) {

d a t a [0]++

f o r (c o l =1 ; co l<=Cols ; c o l ++)

d a t a [d a t a [0] , c o l]= T e s t [row , c o l] # c o n v e r t row numbers t o t h e i r da ta

rows

}

a p p l y (ranked , d a t a)

}

###

read i n da ta

{ gsub (/ % . ∗ / , ” ”) }

/ ˆ [\ t] $ / { next }

/ ˆ @pro jec t / { In = 0 }

In { rand () <= T e s t s ? c e l l s (Tes t , Cols) : c e l l s (Tra in , Cols) }

/ ˆ @ r e l a t i o n / { R e l a t i o n =$2 }

/ ˆ @ a t t r i b u t e / { d e f ($2) }

/ ˆ @class / { d e f c l a s s ($2) }

/ ˆ @data / { In = 1 ; i n i t s (Cols) }

/ ˆ@/ { next }

f u n c t i o n i n i t s (c o l s , i) {

srand (Seed ? Seed : 1)

f o r (i =1 ; i<=c o l s ; i ++) { T r a i n [”max” , i]= −1∗ I n f ; T r a i n [” min ” , i]= I n f }

f o r (i =1 ; i<=c o l s ; i ++) { T e s t [”max” , i]= −1∗ I n f ; T e s t [” min ” , i]= I n f }

}

f u n c t i o n d e f (name , a , i , g o a l p) {

g o a l p = sub (/ ? / , ” ” , name)

i f (name i n Name) {

a = Name [name]

} e l s e {

a = Name [name] = ++ Cols

Eman [Cols]= name

}

i f (T r a i n [” r a n g e ” , a , 0]) {

69

c l e a r S t a c k (Tra in , ” r a n g e ” a)

c l e a r S t a c k (Tes t , ” r a n g e ” a)

}

f o r (i =3 ; i<=NF ; i ++) {

T r a i n [” r a n g e ” , a , ++ T r a i n [” r a n g e ” , a , 0]] = $ i

T e s t [” r a n g e ” , a , ++ T e s t [” r a n g e ” , a , 0]] = $ i

}

i f (g o a l p) Goal [a]=1

}

f u n c t i o n d e f c l a s s (name) {

i f (name i n Name) {

a = Name [name]

} e l s e {

a = Name [name] = ++ Cols

Eman [Cols]= name

}

i f (T r a i n [” r a n g e ” , a , 0]) {

c l e a r S t a c k (Tra in , ” r a n g e ” a)

c l e a r S t a c k (Tes t , ” r a n g e ” a)

}

f o r (i =3 ; i<=NF ; i ++) {

T r a i n [” r a n g e ” , a , ++ T r a i n [” r a n g e ” , a , 0]] = $ i

T e s t [” r a n g e ” , a , ++ T e s t [” r a n g e ” , a , 0]] = $ i

}

i f (C l a s s) {

i f (C l a s s ˜ name) {

K l a s s e s [name] = Name [name]

NumKlasses++

}

}

e l s e {

K l a s s e s [name] = Name [name]

NumKlasses++

}

}

f u n c t i o n c l e a r S t a c k (a , key , i , max) {

i f (max = a [key 0])

70

f o r (i =1 ; i<=max ; i ++)

d e l e t e a [key i]

a [key 0] = 0

}

f u n c t i o n c e l l s (da t a , c o l s , c o l) {

d a t a [0]++

f o r (c o l =1 ; co l<=c o l s ; c o l ++) {

d a t a [d a t a [0] , c o l] = $ c o l

d a t a [”max” , c o l] = max (d a t a [”max” , c o l] , $ c o l)

d a t a [” min ” , c o l] = min (d a t a [” min ” , c o l] , $ c o l)

}

}

A.3 apply.awk

##

s e l e c t and r e p o r t s u b s e t o f r e l e v a n t rows t h a t s a t i s f y c o n s t r a i n t s 1 . . n

f u n c t i o n a p p l y (t r e a t m e n t s , da t a , b a s e E s t i m a t e D a t a , f i n a l E s t i m a t e D a t a , c o n s t r a i n t s , t , o p t i m a l ,

f i l t e r e d D a t a) {

Save t h e o r i g i n a l e s t i m a t e da ta

f o r (r =1 ; r<=d a t a [0] ; r ++) {

f o r (c =1; c<=Cols ; c ++) {

b a s e E s t i m a t e D a t a [r , c] = d a t a [r , c]

}

}

b a s e E s t i m a t e D a t a [0] = d a t a [0]

g e t C l a s s R a n g e s (b a s e E s t i m a t e D a t a , c l a s s R a n g e s)

s c o r e D a t a (b a s e E s t i m a t e D a t a , c l a s s R a n g e s , baseRowToScore)

baseMedian = f indMedian (baseRowToScore)

b a s e S p r e a d = f i n d S p r e a d (baseRowToScore)

i f (Verbose) { p r i n t ”\n\n−−−−−−−−−−−−−−−Quer i e s−−−−−−−−−−−−−−−”}

i f (Verbose) { d e s c r i b e D a t a (” Query #0 ” , b a s e E s t i m a t e D a t a , baseRowToScore) }

71

o p t i m a l =0

t =1

p r e v i o u s M e d i a n = baseMedian

p r e v i o u s S p r e a d = b a s e S p r e a d

whi le (! o p t i m a l) {

−−−−−i n p u t−−−−−− −−−o u t p u t−−−

a d d C o n s t r a i n t (t r e a t m e n t s [t] , c o n s t r a i n t s)

f i l t e r (da t a , c o n s t r a i n t s , f i l t e r e d D a t a)

s p l i t (” ” , s c o r e s , ” ”)

s c o r e D a t a (f i l t e r e d D a t a , c l a s s R a n g e s , s c o r e s)

f i l t e r e d M e d i a n = f indMedian (s c o r e s)

f i l t e r e d S p r e a d = f i n d S p r e a d (s c o r e s)

S t o p p i n g R u l e s

i f (! t r e a t m e n t s [t]) {

o p t i m a l =1

p r i n t f (Verbose ? ”STOPPING . No more t r e a t m e n t s l e f t :\ n ” : ” ”)

}

i f (f i l t e r e d D a t a [0] < 3) {

o p t i m a l =1

p r i n t f (Verbose ? ”STOPPING . Next que ry t o o s m a l l :\ n ” : ” ”)

}

i f (f i l t e r e d M e d i a n >= p r e v i o u s M e d i a n && f i l t e r e d S p r e a d >= p r e v i o u s S p r e a d) {

o p t i m a l =1

p r i n t f (Verbose ? ”STOPPING . Next que ry shows no improvement :\ n ” : ” ”)

}

i f (t == 1) # f i r s t t r e a t m e n t a lways works

o p t i m a l =0

p r e v i o u s M e d i a n = f i l t e r e d M e d i a n

p r e v i o u s S p r e a d = f i l t e r e d S p r e a d

i f (! o p t i m a l) {

s p l i t (” ” , f i n a l E s t i m a t e D a t a , ” ”)

s p l i t (” ” , f i n a l S c o r e s , ” ”)

f o r (r =1 ; r<=f i l t e r e d D a t a [0] ; r ++) {

f o r (c =1; c<=Cols ; c ++) {

72

f i n a l E s t i m a t e D a t a [r SUBSEP c] = f i l t e r e d D a t a [r SUBSEP c]

}

f i n a l E s t i m a t e D a t a [0] = f i l t e r e d D a t a [0]

f i n a l S c o r e s [r] = s c o r e s [r]

}

}

i f (Verbose) { d e s c r i b e D a t a (” Query # ” t , f i l t e r e d D a t a , s c o r e s) }

t ++

}

i f (Verbose) { p r i n t ”−−−−−−−−−−−−−−−R e s u l t s−−−−−−−−−−−−−−−”}

i f (Verbose) { d e s c r i b e D a t a (” B a s e l i n e ” , b a s e E s t i m a t e D a t a , baseRowToScore) }

f o r (c o l i n c o n s t r a i n t s) {

s p l i t (c o n s t r a i n t s [c o l] , tmp , SUBSEP)

f o r (v a l i n tmp)

recommendat ion = recommendat ion Eman [c o l] ”=” tmp [v a l] ” ”

}

i f (Verbose) { d e s c r i b e D a t a (” F i n a l ” , f i n a l E s t i m a t e D a t a , f i n a l S c o r e s) }

baseScoreMedian = f indMedian (baseRowToScore)

f i n a l S c o r e M e d i a n = f indMedian (f i n a l S c o r e s)

b a s e S c o r e S p r e a d = f i n d S p r e a d (baseRowToScore)

f i n a l S c o r e S p r e a d = f i n d S p r e a d (f i n a l S c o r e s)

i f (f i n a l S c o r e M e d i a n == 0)

s c o r e M e d i a n R e d u c t i o n = 0

e l s e

s c o r e M e d i a n R e d u c t i o n = 100 ∗ (baseScoreMedian − f i n a l S c o r e M e d i a n) / baseScoreMedian

i f (f i n a l S c o r e S p r e a d == 0)

s c o r e S p r e a d R e d u c t i o n = 0

e l s e

s c o r e S p r e a d R e d u c t i o n = 100 ∗ (b a s e S c o r e S p r e a d − f i n a l S c o r e S p r e a d) / b a s e S c o r e S p r e a d

73

o u t S t r = ” s c o r e median : ” s p r i n t f (” %4.0 f ” , s c o r e M e d i a n R e d u c t i o n) ”%”

o u t S t r = o u t S t r ”\n s c o r e s p r e a d : ” s p r i n t f (” %4.0 f ” , s c o r e S p r e a d R e d u c t i o n) ”%”

RankedOver r ide =” ”

i f (Log) {

i f (NumKlasses > 1) {

p r i n t f ” s c o r e . ASIS . ” (Note ? Note : R e l a t i o n) ” . ” ProjName ” ” (RankedOver r ide ? ” . ”

RankedOver r ide : ” ”) ” , ” >> Log

p r i n t f a r r 2 s t r (baseRowToScore) >> Log

p r i n t f ”\ n s c o r e . TOBE . ” (Note ? Note : R e l a t i o n) ” . ” ProjName ” ” (RankedOver r ide ? ” . ”

RankedOver r ide : ” ”) ” , ” >> Log

p r i n t f a r r 2 s t r (f i n a l S c o r e s) >> Log

p r i n t f ”\n ” >> Log

}

}

f o r (key i n K l a s s e s) {

s p l i t (” ” , tmpBase , ” ”)

s p l i t (” ” , tmpFina l , ” ”)

f o r (r =1 ; r<=b a s e E s t i m a t e D a t a [0] ; r ++) {

tmpBase [r] = b a s e E s t i m a t e D a t a [r , K l a s s e s [key]]

}

f o r (r =1 ; r<=f i n a l E s t i m a t e D a t a [0] ; r ++) {

t m p F i n a l [r] = f i n a l E s t i m a t e D a t a [r , K l a s s e s [key]]

}

baseMedian = f indMedian (tmpBase)

f i n a l M e d i a n = f indMed ian (t m p F i n a l)

b a s e S p r e a d = f i n d S p r e a d (tmpBase)

f i n a l S p r e a d = f i n d S p r e a d (t m p F i n a l)

i f (f i n a l M e d i a n == 0)

med ianReduc t ion = 0

e l s e

med ianReduc t ion = 100 ∗ (baseMedian − f i n a l M e d i a n) / baseMedian

i f (f i n a l S p r e a d == 0)

s p r e a d R e d u c t i o n = 0

74

e l s e

s p r e a d R e d u c t i o n = 100 ∗ (b a s e S p r e a d − f i n a l S p r e a d) / b a s e S p r e a d

o u t S t r = o u t S t r ”\n ” s p r i n t f (”%8s ” , key) ” median : ” s p r i n t f (” %4.0 f ” , med ianReduc t ion) ”%”

o u t S t r = o u t S t r ”\n ” s p r i n t f (”%8s ” , key) ” s p r e a d : ” s p r i n t f (” %4.0 f ” , s p r e a d R e d u c t i o n) ”%”

i f (Log) {

p r i n t f key ” . ASIS . ” (Note ? Note : R e l a t i o n) ” . ” ProjName ” ” (RankedOver r ide ? ” . ”

RankedOver r ide : ” ”) ” , ” >> Log

p r i n t f a r r 2 s t r (tmpBase) >> Log

p r i n t f ”\n ” key ” . TOBE . ” (Note ? Note : R e l a t i o n) ” . ” ProjName ” ” (RankedOver r ide ? ” . ”

RankedOver r ide : ” ”) ” , ” >> Log

p r i n t f a r r 2 s t r (t m p F i n a l) >> Log

p r i n t f ”\n ” >> Log

}

}

i f (Verbose) {

p r i n t ” ”

p r i n t ”−−−−−−−−−−−R e d u c t i o n Summary−−−−−−−−−−−”

p r i n t o u t S t r

}

p r i n t recommendat ion

i f (! Verbose) { p r i n t f ” . ”}

}

f u n c t i o n s o r t D a t a (da t a , s c o r e s) {

f o r (row i n s c o r e s) {

copy [row] = 0 .000001 ∗ rand () + s c o r e s [row]

s e r o c s [copy [row]] = row

}

d a t a [0] = newdata [0] = a s o r t (copy)

f o r (row =1; row<=newdata [0] ; row ++) {

f o r (c =1 ; c<=Cols ; c ++)

newdata [row SUBSEP c] = d a t a [s e r o c s [copy [row]] SUBSEP c]

}

75

f o r (row =1; row<=newdata [0] ; row ++) {

f o r (c =1; c<=Cols ; c ++)

d a t a [row SUBSEP c] = newdata [row SUBSEP c]

}

}

f u n c t i o n g e t C l a s s R a n g e s (da t a , r anges , c l a s s , min , max , colnum , row) {

f o r (c l a s s i n K l a s s e s) {

min = I n f

max = −1∗ I n f

colnum = K l a s s e s [c l a s s]

f o r (row =1; row<=d a t a [0] ; row ++) {

i f (d a t a [row SUBSEP colnum] > max)

max = d a t a [row SUBSEP colnum]

i f (d a t a [row SUBSEP colnum] < min)

min = d a t a [row SUBSEP colnum]

}

r a n g e s [colnum SUBSEP ” min ”]= min

r a n g e s [colnum SUBSEP ”max”]=max

}

}

f u n c t i o n s c o r e D a t a (da t a , r anges , s c o r e s , numClasses , key , r , s c o r e , c l a s s , colnum , min , max) {

i f (! d a t a [0])

”Can ’ t s c o r e d a t a wi th no d e f i n e d s i z e ”

numClasses =0

f o r (key i n K l a s s e s)

numClasses ++

f o r (r =1 ; r<=d a t a [0] ; r ++) {

s c o r e =0

f o r (c l a s s i n K l a s s e s) {

colnum = K l a s s e s [c l a s s]

min = r a n g e s [colnum SUBSEP ” min ”]

max = r a n g e s [colnum SUBSEP ”max”]

i f (max − min == 0)

s c o r e += 0

76

e l s e

s c o r e += (d a t a [r SUBSEP colnum] − min) / (max − min)

}

s c o r e s [r] = s c o r e / numClasses # Normal i z e s c o r e t o 1 . 0

}

}

f u n c t i o n d e s c r i b e D a t a (name , da t a , s c o r e s) {

s t r d e s c = ” ”

p r i n t name” (s i z e : ” d a t a [0] ”) ”

a s o r t (s c o r e s , s co resCopy)

p r i n t ”\ t S c o r e−Median : ” f indMedian (sco re sCopy)

p r i n t ”\ t S c o r e−Spread : ” f i n d S p r e a d (sco re sCopy)

s t r d e s c = f indMedian (sco resCopy) ” , ” f i n d S p r e a d (sco resCopy)

p r i n t f ”\ t S c o r e s : ”

f o r (r =1 ; r<=d a t a [0] ; r ++)

p r i n t f ” %.3 f ” , s co re sCopy [r]

p r i n t ” ”

f o r (c l a s s i n K l a s s e s) {

s p l i t (” ” , tmp , ” ”)

p r i n t f ”\ t ” c l a s s ” : ”

t =0

f o r (r =1 ; r<= d a t a [0] ; r ++)

tmp [++ t] = d a t a [r SUBSEP 23] # ”(” da ta [r SUBSEP K l a s s e s [c l a s s]] ”) ”

a s o r t (tmp)

f o r (r =1 ; r<= d a t a [0] ; r ++)

p r i n t f tmp [r] ” ”

p r i n t ” ”

p r i n t ”\ t ” c l a s s ”−median : ” f indMedian (tmp)

p r i n t ”\ t ” c l a s s ”−s p r e a d : ” f i n d S p r e a d (tmp)

s t r d e s c = s t r d e s c ” , ” f indMedian (tmp) ” , ” f i n d S p r e a d (tmp)

}

p r i n t ” ”

77

re turn s t r d e s c

}

#Add a t r e a t m e n t t o t h e l i s t o f c o n s t r a i n t s

f u n c t i o n a d d C o n s t r a i n t (t r e a t m e n t , c o n s t r a i n t s) {

s p l i t (t r e a t m e n t , tmp , SUBSEP)

a t t r = tmp [1]

v a l = tmp [2]

i f (! Seen [a t t r SUBSEP v a l]) {

i f (c o n s t r a i n t s [a t t r]) #Have we a l r e a d y c o n s t r a i n e d t h i s a t t r i b u t e ?

c o n s t r a i n t s [a t t r] = c o n s t r a i n t s [a t t r] SUBSEP v a l # i f so , e x t e n d i t s range

e l s e

c o n s t r a i n t s [a t t r] = v a l

}

Seen [a t t r SUBSEP v a l]=1

}

f u n c t i o n f i l t e r (da t a , c o n s t r a i n t s , f i l t e r e d D a t a , tmp , pas se sNeeded) {

s p l i t (” ” , f i l t e r e d D a t a , ” ”)

pas se sNeeded =0

f o r (key i n c o n s t r a i n t s)

pas se sNeeded ++

f o r (row =1; row<=d a t a [0] ; row ++) {

#Row p a s s e s i f a l l a t t r i b u t e s match c o n s t r a i n t v a l u e s

D i s j u n c t i o n s form i f m u l t i p l e c o n s t r a i n t v a l u e s f o r a s i n g l e a t t r i b u t e e x i s t

p a s s e s =0

f o r (c o l i n c o n s t r a i n t s) {

s u c c e s s =0

s p l i t (c o n s t r a i n t s [c o l] , p o s s i b l e V a l u e s , SUBSEP)

f o r (v a l u e i n p o s s i b l e V a l u e s) {

i f (p o s s i b l e V a l u e s [v a l u e] == d a t a [row , c o l]) {

s u c c e s s =1

}

}

78

i f (s u c c e s s) { # Guaran tees we can ’ t somehow match m u l t i p l e t i m e s i n a range f o r a

s i n g l e a t t r

p a s s e s ++

}

}

i f (p a s s e s == passesNeeded) { # A l l c o n s t r a i n t s matched

f i l t e r e d D a t a [0]++ # Ensure monoton ic i n c r e a s i n g o r d e r i n f i l t e r e d s e t i n d e x e s

f o r (c = 1 ; c <= Cols ; c ++) {

f i l t e r e d D a t a [f i l t e r e d D a t a [0] , c] = d a t a [row , c] #Add t o f i l t e r e d s e t

}

}

}

}

A.4 contrast.awk

###

d i v i d e t h e k−t h n e a r e s t h i s t o r i a l p r o j e c t s i n t o b e s t (l o w e s t)

e s t i a m t e d and t h e r e s t . c o l l e c t f r e q u e n c y c o u n t s f o r b e s t and r e s t .

rank a t t r i b u t e r an ge s by how common t h e y are i n b e s t and how

r a r e t h e y are i n r e s t

f u n c t i o n b e s t W o r s t (rows , bo rde r , b e s t , r e s t , c u t o f f B e s t , c u t o f f W o r s t , n , s c o r e s , row , k , r , r o w K l a s s e s)

{

f o r (row i n rows) {

s c o r e s [++ n] = scoreRow (row , Tra in , K l a s s e s)

}

n = a s o r t (s c o r e s)

c u t o f f B e s t = s c o r e s [b o r d e r]

c u t o f f W o r s t = s c o r e s [n−b o r d e r]

f o r (row i n rows) {

i f (scoreRow (row , Tra in , K l a s s e s) <= c u t o f f B e s t) {

c o u n t (row , b e s t , rows [row])

p r i n t (”BEST”)

}

79

i f (scoreRow (row , Tra in , K l a s s e s) > c u t o f f W o r s t) {

c o u n t (row , r e s t , rows [row])

p r i n t (”WORST”)

}

}

}

f u n c t i o n b e s t R e s t (rows , bo rde r , b e s t , r e s t , enough , n , s c o r e s , row , k , r , r o w K l a s s e s) {

f o r (row i n rows) {

s c o r e s [++ n] = scoreRow (row , Tra in , K l a s s e s)

}

a s o r t (s c o r e s)

enough = s c o r e s [b o r d e r]

f o r (row i n rows) {

i f (scoreRow (row , Tra in , K l a s s e s) <= enough) {

c o u n t (row , b e s t , rows [row])

}

e l s e {

c o u n t (row , r e s t , rows [row])

}

}

}

f u n c t i o n c o u n t (row , f , n , co l , c) {

f [0]++

f o r (c o l i n Goal) {

f [co l , T r a i n [row , c o l]] += n

}

}

f u n c t i o n r ank (k1 , k2 , b e s t , r e s t , ranked , \

range , b e s t s , r e s t s , i , b , r , s c o r e , s c o r e s , s o r t e d , memo , max) {

b e s t s = b e s t [0]

r e s t s = r e s t [0]

f o r (i i n b e s t) {

i f (i != 0) {

b = b e s t [i] / b e s t s

r = r e s t [i] / r e s t s

s c o r e = as100 ((b ˆ 2) / (b+ r))

80

s c o r e s [i] = s c o r e

memo[s c o r e] = i

}

}

max = a s o r t (s c o r e s , s o r t e d)

showRanks (memo , s o r t e d , max)

f o r (i =max ; i >=1; i−−) # h i g h e s t s c o r e must be f o r s t

r an ke d [max−i +1] = memo[s o r t e d [i]]

re turn max

}

f u n c t i o n showRanks (memo , s o r t e d , max , i , range , tmp , com) {

i f (Verbose) {

com=” s o r t −r −n | c a t −n ”

p r i n t ” #n\ t s c o r e \ t r a n g e ”

p r i n t ”−−−−−−\t−−−−−\t−−−−−−−−−−−−−−”

f o r (i =max ; i >=1; i−−) { # h i g h e s t s c o r e must be f o r s t

r a n g e = memo[s o r t e d [i]]

s p l i t (range , tmp ,)

p r i n t s p r i n t f (” %5.2 f ” , s o r t e d [i]) ”\ t ” Eman [tmp [1]] ” = ” tmp [2] | com

}

c l o s e (com)

p r i n t ” ”

}

}

A.5 discretize.awk

BEGIN{

NumBins= (D i s c r e t i z e ? D i s c r e t i z e : 2)

BinNames = (BinNames ? BinNames : 0)

NoProj = (NoProj ? NoProj : 0)

}

{gsub (/ % . ∗ / , ” ”) }

/ ˆ [\ t]∗ $ / { next }

/ @ r e l a t i o n / { p r i n t $0}#”−”NumBins” Bins ” }

/ @ a t t r i b u t e / { P r o j ? p r i n t P r o j () : i n i t C o l () }

/ @class / { i n i t C l a s s () }

81

/ @pro j ec t / { p r i n t $0 ; P r o j =1 ; In =0 }

In { p r i n t D a t a () }

/ ˆ @data / { p r i n t $0 ; mapBins () ; In =1 }

/ ˆ@/ { next }

f u n c t i o n i n i t C o l (n , i , seen , b inned , name) {

Columns [++ Cols] = $2

name = $2

sub (/ ? / , ” ” , name)

ColName2Indx [name] = Cols

f o r (i = 1 ; i <= NF−2; i ++) {

ColValues [Cols , i] = $ (i +2) # @attr name 1 s t v a l 2 n d v a l 3 r d v a l . . .

}

mapBins (ColValues , Cols , NF−2, BinMap)

p r i n t f $1 ” ” $2

f o r (i = 1 ; i <= NF−2; i ++) {

b i nn ed = BinMap [Cols , $ (i +2)]

i f (! s een [b in ne d]) {

s een [b i nn ed] = 1

p r i n t f ” ”BinMap [Cols , $ (i +2)]

}

}

p r i n t ” ”

}

f u n c t i o n i n i t C l a s s () {

Columns [++ Cols] = $2

C l a s s [Cols] = 1

p r i n t f $1 ” ” $2

f o r (i = 3 ; i <= NF ; i ++) {

p r i n t f ” ” $ i

}

p r i n t ” ”

}

#BinMap [columnNumber , v a l u e] = b i n

f u n c t i o n mapBins (ColValues , c o l I n d x , numValues , BinMap , tmp , i , c) {

f o r (i = 1 ; i <= numValues ; i ++) {

v a l = ColValues [c o l I n d x , i]

82

binWidth = numValues / NumBins

b i n = i n t ((i −1) / b inWidth) +1

i f (BinNames)

BinMap [c o l I n d x , v a l] = ”B” (b i n)

e l s e

BinMap [c o l I n d x , v a l] = ColVa lues [c o l I n d x , i n t (numValues ∗ ((b in −1) / NumBins)) +1]

i f (BinNames && NumBins =5)

BinMap [c o l I n d x , v a l] = rangeName (b i n)

}

}

f u n c t i o n rangeName (bin , name) {

name = ” ”

i f (b i n == 1)

name = ” v l ”

i f (b i n == 2)

name = ” l o ”

i f (b i n == 3)

name = ”md”

i f (b i n == 4)

name = ” h i ”

i f (b i n == 5)

name = ” vh ”

re turn name

}

f u n c t i o n p r i n t D a t a () {

f o r (c = 1 ; c <= Cols ; c ++) {

i f (C l a s s [c])

p r i n t f $c ” ”

e l s e

p r i n t f BinMap [c , $c] ” ”

}

p r i n t ” ”

}

f u n c t i o n p r i n t P r o j (i , s een) {

83

p r i n t f $1 ” ” $2

f o r (i =3 ; i<=NF ; i ++) {

name = $2

sub (/ ? / , ” ” , name)

b i nn ed = BinMap [ColName2Indx [name] , $ i]

i f (! s een [b in ne d]) {

s een [b i nn ed] = 1

p r i n t f ” ” b in ne d

}

}

p r i n t ” ”

}

A.6 neighbors.awk

###

f i n d t h e k−t h n e a r e s t h i s t o r i a l p r o j e c t s near t h e g e n e r a t e d p r o j e c t s

f u n c t i o n e u c l i d e a n (row1 , row2 , da ta1 , da ta2 , n , co l , d , d1 , d2 , key , i g n o r e p , i) {

s p l i t (” ” , i g n o r e p , ” ”)

f o r (key i n K l a s s e s)

i g n o r e p [K l a s s e s [key]] = 1

f o r (c o l =1 ; co l<=Cols ; c o l ++)

i f (! (c o l i n i g n o r e p)) {

d1 = n o r m a l i z e (da ta1 , co l , d a t a 1 [row1 , c o l])

d2 = n o r m a l i z e (da ta2 , co l , d a t a 2 [row2 , c o l])

d += abs (d1 − d2) ˆ2

n++

}

re turn s q r t (d) / s q r t (n)

}

f u n c t i o n d i s t a n c e (row1 , row2 , da ta1 , da ta2 , memo , d) {

d = as100 (e u c l i d e a n (row1 , row2 , da ta1 , d a t a 2))

memo[−1 ∗ d] = row1 # d s t a r t e d a t row1

memo[d] = row2 # d ended a t row2

re turn d

}

84

f u n c t i o n n o r m a l i z e (da t a , co l , n , min , max , d) {

min = d a t a [” min ” , c o l]

max = d a t a [”max” , c o l]

d = min == max ? 1 : (n − min) / (max − min)

re turn d

}

f u n c t i o n n e i g h b o r s (news , new , o lds , old , ne ighbo r , memo , o , n) {

f o r (n =1; n<=news ; n ++)

f o r (o =1; o<=o l d s ; o ++)

push2 (d i s t a n c e (n , o , new , old , memo) , ne ighbo r , n)

}

f u n c t i o n knn (k , news , ne ighbo r , memo , ks , d i s t , n , most , i , d , s o r t e d) {

f o r (n =1; n<=news ; n ++) {

most = n e i g h b o r [n , 0]

f o r (i = 1 ; i <= most ; i ++)

d i s t [++ d] = n e i g h b o r [n , i]

}

knnDebug (d i s t , memo)

a s o r t (d i s t , s o r t e d)

f o r (i =1 ; i<=d ; i ++) {

n = memo[s o r t e d [i]]

i f (++ ks [n]==1) k−−

i f (k == 0) re turn i

}

re turn k

}

A.7 projects.awk

###

g e n e r a t e p r o j e c t s

f u n c t i o n g e t R e l e v a n t (da t a , k , r e l e v a n t , o v e r l a p) {

f o r (row =1; row<=d a t a [0] ; row ++) {

f o r (c o l =1 ; co l<=Cols ; c o l ++) {

i f (p r o j e c t C o n t a i n s (d a t a [row , c o l] , co l , d a t a)) {

o v e r l a p [row]++

}

}

85

o v e r l a p [row] += 0 . 0 1 ∗ rand ()

rowLookup [o v e r l a p [row]] = row

}

m = a s o r t (o v e r l a p)

f o r (i =m; i>=m−k ; i−−) {

r e l e v a n t [rowLookup [o v e r l a p [i]]] = 1

}

}

f u n c t i o n g e t P r o j e c t s (minOverlap , da t a , samples , p r o j e c t s) {

i f (minOver lap) {

r e j e c t P r o j e c t s (minOverlap , da t a , samples , p r o j e c t s)

p r i n t f (Verbose ? ” Found ” p r o j e c t s [0] ” p r o j e c t s o u t o f ” d a t a [0] ” wi th ” 100∗minOver lap ”%

a t t r i b u t e o v e r l a p (v a l u e s c o n t a i n e d w i t h i n p r o j e c t r a n g e s) \n ” : ” ”)

}

e l s e {

g e n e r a t e P r o j e c t s (da t a , samples , p r o j e c t s)

p r i n t f (Verbose ? ” G e n e r a t e d ” samples ” sample s from p r o j e c t r a n g e s \n ” : ” ”)

}

}

f u n c t i o n r e j e c t P r o j e c t s (minOverlap , da t a , news , new , row , co l , p a s s) {

f o r (row =1; row<=d a t a [0] ; row ++) {

f a i l s = 0

f o r (c o l =1 ; co l<=Cols ; c o l ++) {

i f (! p r o j e c t C o n t a i n s (d a t a [row , c o l] , co l , d a t a)) {

f a i l s ++

}

}

i f (f a i l s < (1−minOver lap) ∗ Cols) {

new [0]++

f o r (c o l =1 ; co l<=Cols ; c o l ++)

new [new [0] , c o l]= d a t a [row , c o l]

}

86

}

Find mins and maxes o f a c c e p t e d p r o j e c t s

f o r (c o l =1 ; co l<=Cols ; c o l ++) {

new [”max” , c o l]= −1∗ I n f

new [” min ” , c o l]= I n f

f o r (row =1; row<=new [0] ; row ++) {

new [”max” , c o l] = max (new [”max” , c o l] , new [row , c o l])

new [” min ” , c o l] = min (new [” min ” , c o l] , new [row , c o l])

}

}

}

f u n c t i o n p r o j e c t C o n t a i n s (va lue , co l , da t a , numValues , found , i) {

numValues = d a t a [” r a n g e ” , co l , 0]

found = 0

f o r (i =1 ; i<=numValues ; i ++) {

i f (v a l u e == d a t a [” r a n g e ” , co l , i])

found = 1

}

re turn found

}

f u n c t i o n g e n e r a t e P r o j e c t s (da t a , news , new , row , co l , v) {

new [0] = news

f o r (c o l =1 ; co l<=Cols ; c o l ++) {

new [”max” , c o l]= −1∗ I n f

new [” min ” , c o l]= I n f

f o r (row =1; row<=news ; row ++) {

v = p r o j e c t V a l u e (da t a , c o l)

new [row , c o l] = v

new [”max” , c o l] = max (new [”max” , c o l] , v)

new [” min ” , c o l] = min (new [” min ” , c o l] , v)

}

}

}

f u n c t i o n p r o j e c t V a l u e (da t a , a , max , one) {

87

max = d a t a [” r a n g e ” , a , 0]

one = i n t (rand () ∗ max) + 1

re turn d a t a [” r a n g e ” , a , one]

}

A.8 util.awk

###

mann−w h i t n e y t e s t s

f u n c t i o n mwRank (da ta0 , r anks , da t a , s t a r t e r , n , o ld , s t a r t , s k i p p i n g , sum , i , j , r) {

s t a r t e r =”someCraZYsymBOL” ;

n = a s o r t (da ta0 , d a t a)

o l d = s t a r t e r

s t a r t = 1 ;

f o r (i =1 ; i<=n ; i ++) {

s k i p p i n g = (o l d == s t a r t e r) | | (d a t a [i] == o l d) ;

i f (s k i p p i n g) {

sum += i

} e l s e {

r = sum / (i − s t a r t)

f o r (j = s t a r t ; j<i ; j ++)

r a n k s [d a t a [j]] = r ;

s t a r t = i ;

sum = i ;

}

o l d = d a t a [i]

}

i f (s k i p p i n g)

r a n k s [d a t a [n]] = sum / (i − s t a r t)

e l s e

i f (! (d a t a [n] i n r a n k s))

r a n k s [d a t a [n]] = r +1

}

f u n c t i o n mwu(x , pop1 , pop2 , up , c r i t i c a l ,

i , da t a , r anks , n , n1 , sum1 , ranks1 , n2 , sum2 , ranks2 , \

c o r r e c t i o n , meanU , sdU , z) {

88

f o r (i i n pop1) d a t a [++ n]= pop1 [i]

f o r (i i n pop2) d a t a [++ n]= pop2 [i]

mwRank (da t a , r a n k s)

f o r (i i n pop1) { n1 ++; sum1 += r a n k s 1 [i] = r a n k s [pop1 [i]] }

f o r (i i n pop2) { n2 ++; sum2 += r a n k s 2 [i] = r a n k s [pop2 [i]] }

meanU = n1 ∗ (n1+n2 +1) / 2 # s y m m e t r i c , so we j u s t use pop1 ’ s z−v a l u e

sdU = (n1∗n2 ∗ (n1+n2 +1) / 1 2) ˆ 0 . 5

c o r r e c t i o n = sum1 > meanU ? −0.5 : 0 . 5

z = abs ((sum1 − meanU + c o r r e c t i o n) / sdU)

i f (z >= 0 && z <= c r i t i c a l)

re turn 0

i f (up) {

re turn 1

}

e l s e {

re turn −1

}

}

f u n c t i o n c r i t i c a l V a l u e (con f) {

con f = con f ? con f : 95

i f (con f ==99) re turn 2 .326

i f (con f ==95) re turn 1 .960

i f (con f ==90) re turn 1 .645

}

f u n c t i o n s2a (s , a , tmp , i , n) {

n= s p l i t (s , tmp , / /)

f o r (i =1 ; i<n ; i +=2)

a [tmp [i]] = tmp [i +1]

}

f u n c t i o n median (a r r i n , n , low , a) {

low = i n t (n / 2) ;

re turn oddp (n) ? a [low +1] : (a [low] + a [low + 1]) / 2

}

89

f u n c t i o n m u l t i p l e (a , n , i) { f o r (i i n a) a [i] ∗= n }

f u n c t i o n abs (x) { r e t u r n x < 0 ? −1∗x : x }

f u n c t i o n oddp (n) { re turn n % 2 }

###

s t a n d a r d u t i l s

f u n c t i o n ba rph (s t r) { p r i n t s t r >” / dev / s t d e r r ” ; f f l u s h (” / dev / s t d e r r ”) }

f u n c t i o n push2 (v , a , i) { a [i ,++ a [i , 0]] = v ; re turn v }

f u n c t i o n push (v , a) { a [++ a [0]] = v ; re turn v }

f u n c t i o n as100 (n) { re turn (n ∗100) + rand () / 100 }

f u n c t i o n abs (n) { re turn n < 0 ? −1∗ n : n }

f u n c t i o n max (n1 , n2) { re turn n1<n2 ? n2 : n1 }

f u n c t i o n min (n1 , n2) { re turn n1<n2 ? n1 : n2 }

f u n c t i o n no (s t r) { gsub (, ” , ” , s t r) ; re turn s t r }

f u n c t i o n round (i) { re turn i n t (i + 0 . 5) }

f u n c t i o n copya (sou rce , copy , key) {

s p l i t (” ” , copy , ” ”) # c l e a r copy

f o r (key i n s o u r c e) {

copy [key] = s o u r c e [key]

}

}

doesn ’ t i n t e r p o l a t e f o r even number o f v a l u e s

(i f you want t o g e t a c t u a l c a s e s back)

f u n c t i o n f indAbsMedian (a , n , f l o o r , s o r t e d) {

n = a s o r t (a , s o r t e d)

f l o o r = i n t (n / 2)

i f (n == 1)

re turn s o r t e d [1]

e l s e

re turn s o r t e d [f l o o r]

}

90

doesn ’ t i n t e r p o l a t e f o r even number o f v a l u e s

(i f you want t o g e t a c t u a l c a s e s back)

f u n c t i o n f i n d A b s S p r e a d (a , n , f l o o r 2 5 , f l o o r 7 5 , s o r t e d) {

n = a s o r t (a , s o r t e d)

f l o o r 7 5 = s o r t e d [i n t (3∗ n / 4) +1]

f l o o r 2 5 = s o r t e d [i n t (n / 4) +1]

re turn f l o o r 7 5 − f l o o r 2 5

}

f u n c t i o n f i ndMed ian (a , n , f l o o r , s o r t e d) {

n = a s o r t (a , s o r t e d)

f l o o r = i n t (n / 2)

i f (n == 1)

re turn s o r t e d [1]

e l s e

re turn oddp (n) ? s o r t e d [f l o o r +1] : (s o r t e d [f l o o r] + s o r t e d [f l o o r + 1]) / 2

}

f u n c t i o n medianReduc (a s i s , t o b e) {

re turn 100 ∗ (f i ndMed ian (a s i s) − f i ndMed ian (t o b e)) / f i ndMed ian (a s i s)

}

f u n c t i o n sp readReduc (a s i s , t o b e) {

re turn 100 ∗ (f i n d S p r e a d (a s i s) − f i n d S p r e a d (t o b e)) / f i n d S p r e a d (a s i s)

}

f u n c t i o n f i n d S p r e a d (a , l en , s o r t e d) {

l e n = a s o r t (a , s o r t e d)

i f (l e n == 2)

re turn s o r t e d [2] − s o r t e d [1]

i f (l e n < 2)

re turn 0

re turn f i n d 7 5 (a) − f i n d 2 5 (a)

}

f u n c t i o n f indAbs25 (a , n , s o r t e d) {

91

n = a s o r t (a , s o r t e d)

re turn s o r t e d [i n t (n / 4) +1]

}

f u n c t i o n f indAbs75 (a , n , s o r t e d) {

n = a s o r t (a , s o r t e d)

re turn s o r t e d [i n t (3∗ n / 4) +1]

}

f u n c t i o n f i n d 2 5 (a , n , f l o o r 2 5 , s o r t e d) {

n = a s o r t (a , s o r t e d)

n%4 == 1 ? f l o o r 2 5 = s o r t e d [i n t (n / 4) +1] : f l o o r 2 5 = (s o r t e d [i n t (n / 4)] + s o r t e d [i n t (n / 4)

+ 1]) / 2

re turn f l o o r 2 5

}

f u n c t i o n f i n d 7 5 (a , n , f l o o r 7 5 , s o r t e d) {

n = a s o r t (a , s o r t e d)

n%4 == 1 ? f l o o r 7 5 = s o r t e d [i n t (3∗ n / 4) +1] : f l o o r 7 5 = (s o r t e d [i n t (3∗ n / 4)] + s o r t e d [i n t (3∗

n / 4) + 1]) / 2

re turn f l o o r 7 5

}

f u n c t i o n arrMax (a , n , s o r t e d) {

n = a s o r t (a , s o r t e d)

re turn s o r t e d [n]

}

f u n c t i o n a r rMin (a , n , s o r t e d) {

n = a s o r t (a , s o r t e d)

re turn s o r t e d [1]

}

f u n c t i o n f indAvg (a , n , s o r t e d , sum , num , i) {

n = a s o r t (a , s o r t e d)

f o r (i =1 ; i<=n ; i ++) {

sum += s o r t e d [i]

num ++

}

92

re turn sum / num

}

f u n c t i o n f i n d S t d e v (a , n , s o r t e d , sum , num , mean , i , sumsq) {

n = a s o r t (a , s o r t e d)

f o r (i =1 ; i<=n ; i ++) {

sum += s o r t e d [i]

num ++

}

mean = sum / num

f o r (i =1 ; i<=n ; i ++) {

sumsq += (s o r t e d [i] − mean) ∗ (s o r t e d [i] − mean)

}

re turn s q r t (sumsq / num)

}

f u n c t i o n a r r 2 s t r (a , sep , s , n , tmp) {

sep = (sep ? sep : ” , ”)

n = a s o r t (a , tmp)

f o r (i =1 ; i<=n ; i ++) {

s = (s ? s sep a [i] : a [i])

}

re turn s

}

f u n c t i o n s aya (a , s , b , c ,m, n , key , va l , i , j , tmp , sep) {

p r i n t ” ”

m = a s o r t i (a , b)

f o r (i =1 ; i<=m; i ++) {

key=b [i]

v a l =a [b [i]]

p r i n t f (”%s ” , sep s ” [”)

n= s p l i t (key , tmp ,)

c = ” ”

f o r (j =1 ; j<=n ; j ++) {

p r i n t f (”%s ” , c tmp [j])

93

c=” , ”

}

i f (v a l ˜)

v a l = no (v a l)

p r i n t f (”%s ” , ”]= ” v a l)

sep =”\n ” ;

} ;

p r i n t ” ”

}

f u n c t i o n scoreRow (row , da t a , c l a s s e s , maxes , mins , c l a s s C o u n t , normClassVal , k , s c o r e , sumsqr ,

r e l y C o l) {

n o r m a l i z e v a l u e s

f o r (k i n c l a s s e s) {

maxes [k] = max (T e s t [”max” , c l a s s e s [k]] , T r a i n [”max” , c l a s s e s [k]])

mins [k] = min (T e s t [” min ” , c l a s s e s [k]] , T r a i n [” min ” , c l a s s e s [k]])

c l a s s C o u n t ++

normClassVal [k] = (d a t a [row , c l a s s e s [k]] − mins [k]) / (maxes [k]−mins [k])

}

S i n g l e−goa l s c o r i n g (r e t u r n goa l v a l u e)

i f (c l a s s C o u n t == 1) {

s c o r e = d a t a [row , c l a s s e s [k]]

}

Mul t i−goa l s c o r i n g (c o l l a p s e t o a s i n g l e v a l u e)

e l s e {

Normal i zed E u c l i d e a n

i f (ScoreMethod == 0) {

sumsqr = 0

f o r (k i n normClassVal) {

sumsqr += (normClassVal [k] ∗ normClassVal [k])

}

s c o r e = s q r t (sumsqr)

}

#BFC (b i a s d e f e c t s)

i f (ScoreMethod == 1) {

r e l y C o l = Name [” r e l y ”]

94

i f (! r e l y C o l)

p r i n t ”ERROR: No r e l y column f o r BFC f o r m u l a : ” r e l y C o l

i f (! (” d e f e c t s ” i n c l a s s e s))

p r i n t ”No d e f e c t s c l a s s f o r BFC f o r m u l a ”

sumsqr = 0

f o r (k i n normClassVal) {

i f (k ˜ ” d e f e c t s ”) {

p r i n t ” r e l y v a l : ” d a t a [row , r e l y C o l]

sumsqr += (normClassVal [k] ∗ (1 + 1 . 8 ˆ (d a t a [row , r e l y C o l] − 3))) ˆ2

}

e l s e

sumsqr += normClassVal [k] ˆ 2

}

s c o r e = s q r t (sumsqr)

}

}

re turn s c o r e

}

f u n c t i o n i n j e c t R a n k e d (r u l e s , ranked , r) {

p r i n t ” i n j e c t i n g ”

r =0

whi le (g e t l i n e < r u l e s) {

n = Name [$1]

i f (! ($1 i n Name))

p r i n t ” E r r o r : Couldn ’ t f i n d ” $1 ” i n t h e d a t a s e t ”

e l s e

p r i n t ” Added ” $1 ” , ” $2 ” s u c c e s s f u l l y ”

r an ke d [++ r] = n SUBSEP $2

}

re turn r

}

95

Appendix B

Example Dataset and Project Descriptions

B.1 NASA93 Project Descriptions

B.1.1 NASA Ground Software

@pro jec t

@ a t t r i b u t e ? r e l y 1 2 3 4

@ a t t r i b u t e ? d a t a 2 3

@ a t t r i b u t e ? c p l x 1 2 3 4

@ a t t r i b u t e ? t ime 3 4

@ a t t r i b u t e ? s t o r 3 4

@ a t t r i b u t e ? acap 3 4 5

@ a t t r i b u t e ? apex 2 3 4 5

@ a t t r i b u t e ? pcap 3 4 5

@ a t t r i b u t e ? p l e x 1 2 3 4

@ a t t r i b u t e ? l t e x 1 2 3 4

@ a t t r i b u t e ? pmat 2 3

@ a t t r i b u t e t o o l 2

@ a t t r i b u t e sced 3

B.1.2 NASA Flight Software

@pro jec t

@ a t t r i b u t e ? r e l y 3 4 5

96

@ a t t r i b u t e ? d a t a 2 3

@ a t t r i b u t e ? c p l x 3 4 5 6

@ a t t r i b u t e ? t ime 3 4

@ a t t r i b u t e ? s t o r 3 4

@ a t t r i b u t e ? acap 3 4 5

@ a t t r i b u t e ? pcap 3 4 5

@ a t t r i b u t e ? apex 2 3 4 5

@ a t t r i b u t e ? p l e x 1 2 3 4

@ a t t r i b u t e ? l t e x 1 2 3 4

@ a t t r i b u t e ? pmat 2 3

@ a t t r i b u t e t o o l 2

@ a t t r i b u t e sced 3

B.1.3 NASA Orbital Space Plane (OSP)

@pro jec t

@ a t t r i b u t e ? pmat 1 2 3

@ a t t r i b u t e r e l y 5

@ a t t r i b u t e d a t a 3

@ a t t r i b u t e ? c p l x 5 6

@ a t t r i b u t e ? s t o r 3 4 5

@ a t t r i b u t e pvo l 2

@ a t t r i b u t e ? acap 2 3

@ a t t r i b u t e pcap 3

@ a t t r i b u t e ? apex 2 3

@ a t t r i b u t e p l e x 3

@ a t t r i b u t e ? l t e x 2 3 4

@ a t t r i b u t e ? t o o l 1 2

@ a t t r i b u t e ? sced 1 2 3

B.1.4 NASA Orbital Space Plane 2 (More Limited Scope)

@pro jec t

@ a t t r i b u t e p r e c 4

@ a t t r i b u t e ? pmat 4 5

@ a t t r i b u t e docu 3

@ a t t r i b u t e ? l t e x 2 3 4 5

@ a t t r i b u t e ? sced 2 3 4

@ a t t r i b u t e f l e x 3

97

@ a t t r i b u t e r e s l 4

@ a t t r i b u t e team 3

@ a t t r i b u t e t ime 3

@ a t t r i b u t e s t o r 3

@ a t t r i b u t e d a t a 4

@ a t t r i b u t e pvo l 3

@ a t t r i b u t e r u s e 4

@ a t t r i b u t e r e l y 5

@ a t t r i b u t e acap 4

@ a t t r i b u t e pcap 3

@ a t t r i b u t e pcon 3

@ a t t r i b u t e apex 4

@ a t t r i b u t e p l e x 4

@ a t t r i b u t e t o o l 5

@ a t t r i b u t e c p l x 4

@ a t t r i b u t e s i t e 6

B.2 NASA93 Historical Data for Defects, Effort, and Months

@ r e l a t i o n BFC2−NASA93

@ a t t r i b u t e p r e c 4

@ a t t r i b u t e f l e x 4

@ a t t r i b u t e r e s l 4

@ a t t r i b u t e team 5

@ a t t r i b u t e pmat 2 3 4

@ a t t r i b u t e r e l y 2 3 4 5

@ a t t r i b u t e d a t a 2 3 4 5

@ a t t r i b u t e c p l x 2 3 4 5 6

@ a t t r i b u t e r u s e 3

@ a t t r i b u t e docu 3

@ a t t r i b u t e t ime 3 4 5 6

@ a t t r i b u t e s t o r 3 4 5 6

@ a t t r i b u t e pvo l 2 3 4

@ a t t r i b u t e acap 3 4 5

@ a t t r i b u t e pcap 3 4 5

@ a t t r i b u t e pcon 3

@ a t t r i b u t e apex 2 3 4 5

@ a t t r i b u t e p l e x 1 2 3 4

98

@ a t t r i b u t e l t e x 1 2 3 4

@ a t t r i b u t e t o o l 3 4

@ a t t r i b u t e s i t e 3

@ a t t r i b u t e sced 2 3

@ a t t r i b u t e k l o c 0 . 9 2 . 2 3 3 . 5 5 . 5 6 6 . 2 6 . 5 7 . 2 5 7 . 5 7 . 7 8 8 . 2 9 . 7 10 1 0 . 4 1 1 . 3 1 1 . 4 1 2 . 8 13 14

15 1 5 . 4 16 1 6 . 3 1 9 . 3 1 9 . 7 20 21 24 2 4 . 6 2 5 . 9 2 9 . 5 3 1 . 5 32 3 2 . 5 3 2 . 6 34 3 5 . 5 38 40 41 4 7 . 5

4 8 . 5 50 53 60 65 6 6 . 6 70 78 79 85 90 98 100 101 111 137 144 150 151 162 165 17 7 .9 190 219 227

233 240 271 282 .1 284 .7 302 339 350 352 423 980

@class e f f o r t 8 . 4 1 0 . 8 12 18 24 2 5 . 2 3 1 . 2 36 38 42 48 50 60 62 70 72 82 90 97 9 8 . 8 107 114 117 .6

120 150 155 162 170 192 210 215 239 240 252 278 300 324 352 .8 360 370 400 409 420 430 432 444

458 480 571 .4 576 599 600 636 648 703 720 750 756 882 973 1181 1200 1248 1350 1368 1645 .9

1772 .5 1924 .5 2120 2400 2460 4178 .2 4560 8211

@class d e f e c t s 28 69 109 172 188 226 231 240 256 290 302 324 406 420 427 437 456 470 477 566 575

614 626 636 683 704 765 767 808 810 813 887 920 933 986 1058 1191 1219 1253 1276 1553 1555

1594 1619 1763 2004 2007 2077 2102 2227 2327 2404 2409 2468 2658 2685 2743 2832 2950 2984

3340 3343 4210 4256 4342 4511 4815 4840 4868 4907 5092 5434 5848 6129 6136 6266 6293 7553

7867 7998 8477 8518 8543 8547 8848 9308 9820 10313 11761 17597 18447 50961

@class months 4 . 9 6 . 6 7 . 8 9 . 1 9 . 9 1 0 . 1 1 0 . 4 1 1 . 0 1 1 . 2 1 2 . 0 1 2 . 4 1 2 . 5 1 2 . 8 1 3 . 6 1 3 . 9 1 4 . 4 1 4 . 5

1 4 . 8 1 5 . 0 1 5 . 1 1 5 . 2 1 5 . 3 1 5 . 4 1 5 . 5 1 5 . 6 1 6 . 0 1 6 . 2 1 6 . 4 1 7 . 6 1 8 . 6 1 8 . 7 1 8 . 9 1 9 . 2 1 9 . 3 2 0 . 2

2 0 . 8 2 1 . 0 2 1 . 3 2 1 . 4 2 1 . 5 2 2 . 3 2 3 . 0 2 3 . 2 2 3 . 5 2 4 . 4 2 4 . 9 2 5 . 0 2 5 . 2 2 5 . 4 2 6 . 2 2 6 . 7 2 6 . 9 2 7 . 5

2 8 . 0 2 8 . 8 2 9 . 6 3 0 . 1 3 0 . 3 3 0 . 5 3 1 . 5 3 2 . 2 3 2 . 4 3 2 . 5 3 3 . 6 3 3 . 8 3 4 . 2 3 4 . 5 3 5 . 4 3 5 . 7 3 6 . 2 3 7 . 1

3 7 . 3 3 8 . 1 3 8 . 4 4 1 . 9 4 2 . 8 4 2 . 9 4 3 . 4 4 5 . 9 4 7 . 3 5 3 . 1 9 6 . 4

@data

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 2 5 . 9 117 .6 808 1 5 . 3

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 2 4 . 6 117 .6 767 1 5 . 0

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 7 . 7 3 1 . 2 240 1 0 . 1

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 8 . 2 36 256 1 0 . 4

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 9 . 7 2 5 . 2 302 1 1 . 0

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 2 . 2 8 . 4 69 6 . 6

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 3 . 5 1 0 . 8 109 7 . 8

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 6 6 . 6 352 .8 2077 2 1 . 0

4 4 4 5 4 4 2 4 3 3 6 6 2 4 4 3 4 3 4 4 3 3 7 . 5 72 226 1 3 . 6

4 4 4 5 3 3 2 4 3 3 3 3 2 4 5 3 5 3 4 3 3 3 20 72 566 1 4 . 4

4 4 4 5 3 3 2 4 3 3 3 3 2 4 4 3 5 3 4 3 3 3 6 24 188 9 . 9

4 4 4 5 3 3 2 4 3 3 3 3 2 4 5 3 5 3 4 3 3 3 100 360 2832 2 5 . 2

4 4 4 5 3 3 2 4 3 3 3 3 2 4 3 3 5 3 2 3 3 3 1 1 . 3 36 456 1 2 . 8

4 4 4 5 3 3 2 4 3 3 3 3 4 4 4 3 4 2 1 3 3 3 100 215 5434 3 0 . 1

4 4 4 5 3 3 2 4 3 3 3 3 2 4 4 3 5 3 4 3 3 3 20 48 626 1 5 . 1

99

4 4 4 5 3 3 2 4 3 3 3 3 2 4 3 3 3 3 1 3 3 3 100 360 4342 2 8 . 0

4 4 4 5 3 3 2 4 3 3 3 6 2 4 5 3 5 3 4 3 3 3 150 324 4868 3 2 . 5

4 4 4 5 3 3 2 4 3 3 3 3 2 4 4 3 4 3 4 3 3 3 3 1 . 5 60 986 1 7 . 6

4 4 4 5 3 3 2 4 3 3 3 3 2 4 4 3 5 3 4 3 3 3 15 48 470 1 3 . 6

4 4 4 5 3 3 2 4 3 3 3 6 2 4 3 3 4 3 4 3 3 3 3 2 . 5 60 1276 2 0 . 8

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 1 9 . 7 60 614 1 3 . 9

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 6 6 . 6 300 2077 2 1 . 0

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 2 9 . 5 120 920 1 6 . 0

4 4 4 5 3 4 3 3 3 3 4 3 3 3 4 3 4 3 3 3 3 3 15 90 575 1 5 . 2

4 4 4 5 3 4 3 4 3 3 3 3 3 3 4 3 4 3 3 3 3 3 38 210 1553 2 1 . 3

4 4 4 5 3 3 3 3 3 3 3 3 3 3 4 3 4 3 3 3 3 3 10 48 427 1 2 . 4

4 4 4 5 4 3 5 4 3 3 5 5 2 5 3 3 4 2 4 3 3 2 1 5 . 4 70 765 1 4 . 5

4 4 4 5 4 3 5 4 3 3 5 5 2 5 3 3 4 2 4 3 3 2 4 8 . 5 239 2409 2 1 . 4

4 4 4 5 4 3 5 4 3 3 5 5 2 5 3 3 4 2 4 3 3 2 1 6 . 3 82 810 1 4 . 8

4 4 4 5 4 3 5 4 3 3 5 5 2 5 3 3 4 2 4 3 3 2 1 2 . 8 62 636 1 3 . 6

4 4 4 5 4 3 5 4 3 3 5 5 2 5 3 3 4 2 4 3 3 2 3 2 . 6 170 1619 1 8 . 7

4 4 4 5 4 3 5 4 3 3 5 5 2 5 3 3 4 2 4 3 3 2 3 5 . 5 192 1763 1 9 . 3

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 5 . 5 18 172 9 . 1

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 1 0 . 4 50 324 1 1 . 2

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 14 60 437 1 2 . 4

4 4 4 5 3 4 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 . 5 42 290 1 2 . 0

4 4 4 5 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 13 60 683 1 4 . 8

4 4 4 5 4 3 3 4 3 3 3 3 3 3 4 3 3 3 4 4 3 3 90 444 3343 2 6 . 7

4 4 4 5 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 8 42 420 1 2 . 5

4 4 4 5 3 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3 3 3 16 114 887 1 6 . 4

4 4 4 5 4 3 4 4 3 3 5 4 2 4 4 3 3 2 4 3 3 2 177 .9 1248 7998 3 1 . 5

4 4 4 5 4 4 2 4 3 3 3 3 2 3 4 3 3 3 3 3 3 3 302 2400 8543 3 8 . 4

4 4 4 5 4 3 4 2 3 3 3 3 4 4 3 3 4 3 3 4 3 3 282 .1 1368 9820 3 7 . 3

4 4 4 5 4 4 4 2 3 3 3 3 3 4 3 3 4 3 3 3 3 3 284 .7 973 8518 3 8 . 1

4 4 4 5 3 4 4 3 3 3 3 3 2 3 4 3 4 3 4 3 3 3 79 400 2327 2 6 . 9

4 4 4 5 2 2 3 3 3 3 3 3 2 4 5 3 4 3 4 3 3 3 423 2400 18447 4 1 . 9

4 4 4 5 4 3 3 3 3 3 3 3 2 4 5 3 5 2 4 3 3 3 190 420 5092 3 0 . 3

4 4 4 5 4 3 3 4 3 3 3 4 3 4 3 3 4 3 4 3 3 3 4 7 . 5 252 2007 2 2 . 3

4 4 4 5 2 5 3 6 3 3 4 4 2 3 3 3 4 3 3 4 3 3 21 107 1058 2 1 . 3

4 4 4 5 2 3 4 4 3 3 5 3 3 4 4 3 4 3 4 3 3 3 78 571 .4 4815 3 0 . 5

4 4 4 5 2 3 4 4 3 3 5 3 3 4 4 3 4 3 4 3 3 3 1 1 . 4 9 8 . 8 704 1 5 . 5

4 4 4 5 2 3 4 4 3 3 5 3 3 4 4 3 4 3 4 3 3 3 1 9 . 3 155 1191 1 8 . 6

4 4 4 5 2 4 3 5 3 3 4 4 2 4 3 3 3 4 4 3 3 3 101 750 4840 3 2 . 4

4 4 4 5 2 4 3 4 3 3 4 4 2 3 3 3 4 3 3 3 3 3 219 2120 11761 4 2 . 8

100

4 4 4 5 2 4 3 4 3 3 4 4 2 3 3 3 4 3 3 3 3 3 50 370 2685 2 5 . 4

4 4 4 5 4 5 4 4 3 3 5 5 3 5 5 3 5 3 4 4 3 2 227 1181 6293 3 3 . 8

4 4 4 5 4 3 4 5 3 3 3 3 2 4 5 3 3 2 3 3 3 2 70 278 2950 2 0 . 2

4 4 4 5 4 4 2 4 3 3 3 3 2 3 3 3 3 3 4 3 3 2 0 . 9 8 . 4 28 4 . 9

4 4 4 5 2 5 2 6 3 3 6 5 2 4 4 3 5 1 4 3 3 3 980 4560 50961 9 6 . 4

4 4 4 5 3 3 2 4 3 3 3 3 2 5 5 3 3 4 4 3 3 3 350 720 8547 3 5 . 7

4 4 4 5 4 4 3 6 3 3 4 4 2 4 3 3 3 4 4 4 3 3 70 458 2404 2 7 . 5

4 4 4 5 4 4 3 6 3 3 4 4 2 4 3 3 3 4 4 4 3 3 271 2460 9308 4 3 . 4

4 4 4 5 3 3 3 3 3 3 3 3 2 4 4 3 4 3 4 3 3 3 90 162 2743 2 5 . 0

4 4 4 5 3 3 3 3 3 3 3 3 2 4 4 3 4 3 4 3 3 3 40 150 1219 1 8 . 9

4 4 4 5 3 4 3 4 3 3 4 3 2 4 4 3 4 3 4 3 3 3 137 636 4210 3 2 . 2

4 4 4 5 3 4 3 4 3 3 4 3 4 4 4 3 4 3 4 3 3 3 150 882 5848 3 6 . 2

4 4 4 5 3 5 3 4 3 3 4 3 2 4 4 3 4 3 4 3 3 3 339 444 8477 4 5 . 9

4 4 4 5 3 2 4 2 3 3 3 3 4 4 4 3 4 3 4 3 3 3 240 192 10313 3 7 . 1

4 4 4 5 2 4 3 4 3 3 3 5 2 4 4 3 4 4 4 3 3 2 144 576 6129 2 8 . 8

4 4 4 5 2 3 2 3 3 3 3 5 2 4 4 3 4 4 4 3 3 2 151 432 6136 2 6 . 2

4 4 4 5 2 3 2 4 3 3 3 5 2 4 4 3 4 4 4 3 3 2 34 72 1555 1 6 . 2

4 4 4 5 2 3 3 4 3 3 3 5 2 4 4 3 4 4 4 3 3 2 98 300 4907 2 4 . 4

4 4 4 5 2 3 3 4 3 3 3 5 2 4 4 3 4 4 4 3 3 2 85 300 4256 2 3 . 2

4 4 4 5 2 3 2 3 3 3 3 5 2 4 4 3 4 4 4 3 3 2 20 240 813 1 2 . 8

4 4 4 5 2 3 2 3 3 3 3 5 2 4 4 3 4 4 4 3 3 2 111 600 4511 2 3 . 5

4 4 4 5 2 4 5 4 3 3 3 5 2 4 4 3 4 4 4 3 3 2 162 756 7553 3 2 . 4

4 4 4 5 2 4 4 5 3 3 3 5 2 4 4 3 4 4 4 3 3 2 352 1200 17597 4 2 . 9

4 4 4 5 2 4 3 5 3 3 3 5 2 4 4 3 4 4 4 3 3 2 165 97 7867 3 1 . 5

4 4 4 5 4 4 3 5 3 3 4 4 2 4 3 3 3 4 4 3 3 3 60 409 2004 2 4 . 9

4 4 4 5 4 4 3 5 3 3 4 4 2 4 3 3 3 4 4 3 3 3 100 703 3340 2 9 . 6

4 4 4 5 3 4 5 5 3 3 6 6 4 3 3 3 3 2 2 3 3 3 32 1350 2984 3 3 . 6

4 4 4 5 4 4 4 4 3 3 5 6 4 4 4 3 4 4 4 3 3 3 53 480 2227 2 8 . 8

4 4 4 5 4 4 2 5 3 3 5 6 2 5 5 3 5 1 1 4 3 3 41 599 1594 2 3 . 0

4 4 4 5 4 4 2 5 3 3 5 6 2 5 5 3 5 1 1 4 3 3 24 430 933 1 9 . 2

4 4 4 5 4 5 4 5 3 3 6 6 3 4 4 3 4 4 4 3 3 3 165 4178 .2 6266 4 7 . 3

4 4 4 5 4 5 4 5 3 3 6 6 3 4 4 3 4 4 4 3 3 3 65 1772 .5 2468 3 4 . 5

4 4 4 5 4 5 4 5 3 3 6 6 3 4 4 3 4 4 4 3 3 3 70 1645 .9 2658 3 5 . 4

4 4 4 5 4 5 4 6 3 3 6 6 3 4 4 3 4 4 4 3 3 3 50 1924 .5 2102 3 4 . 2

4 4 4 5 2 5 2 5 3 3 5 6 2 4 3 3 2 1 2 4 3 3 7 . 2 5 648 406 1 5 . 6

4 4 4 5 4 5 4 5 3 3 6 6 3 4 4 3 4 4 4 3 3 3 233 8211 8848 5 3 . 1

4 4 4 5 3 4 3 5 3 3 5 5 4 3 3 3 3 2 2 3 3 3 1 6 . 3 480 1253 2 1 . 5

4 4 4 5 3 4 3 5 3 3 5 5 4 3 3 3 3 2 2 3 3 3 6 . 2 12 477 1 5 . 4

4 4 4 5 3 4 3 5 3 3 5 5 4 3 3 3 3 2 2 3 3 3 3 38 231 1 2 . 0

101

Bibliography

[1] Rombach A. Endres, H.D. A Handbook of Software and Systems Engineering: Empirical

Observations, Laws and Theories. Addison Wesley, 2003.

[2] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological varia-

tions, and system approaches. Artificial Intellegence Communications, 7:39–59, 1994.

[3] J.H. Andrews, F.C.H. Li, and T. Menzies. Nighthawk: A two-level genetic-random unit

test data generator. In IEEE ASE’07, 2007. Available from http://menzies.us/pdf/

07ase-nighthawk.pdf.

[4] Mohammad Azzeh, Daniel Neagu, and Peter Cowling. Improving analogy software effort

estimation using fuzzy feature subset selection algorithm. In PROMISE ’08: Proceedings of

the 4th international workshop on Predictor models in software engineering, pages 71–78,

2008.

[5] Dan Baker. A hybrid approach to expert and model-based effort estimation. Master’s thesis,

Lane Department of Computer Science and Electrical Engineering, West Virginia University,

2007. Available from https://eidr.wvu.edu/etd/documentdata.eTD?documentid=

5443.

[6] F.C. Bartlett. Remembering: A study in experimental and social psychology. The Cambridge

University Press, 1932.

102

[7] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[8] B. Boehm. Safe and simple software cost analysis. IEEE Software, pages 14–17, Septem-

ber/October 2000. Available from http://www.computer.org/certification/beta/

Boehm_Safe.pdf.

[9] Barry Boehm, Barry Boehm, and Hoh In. Software cost option strategy tool (s-cost). In In

Conflict Analysis and Negotiation Aids for Cost-Quality Requirements Annual International

Computer Software and Applications Conference), IEEE Comp, pages 15–20. Society Press,

1996.

[10] Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark, Bert Steece,

A. Winsor Brown, Sunita Chulani, and Chris Abts. Software Cost Estimation with Cocomo

II. Prentice Hall, 2000.

[11] Adam Brady and Tim Menzies. Case-based reasoning vs parametric models for software

quality optimization. In PROMISE’10, 2010. Available from http://menzies.us/pdf/

10cbr.pdf.

[12] Adam Brady, Tim Menzies, Oussama El-Rawas, Ekrem Kocaguneli, and Jacky Keung. Case-

based reasoning for reducing software development effort. Journal of Software Engineering

and Applications, 3, 2010. Available from http://menzies.us/pdf/10w0.pdf.

[13] F. P. Brooks. The Mythical Man-Month, Anniversary edition. Addison-Wesley, 1975.

[14] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis of empirical software engineering

cost models. IEEE Transaction on Software Engineerining, 25(4), July/August 1999.

[15] S. Craw, D. Sleeman, R. Boswell, and L. Carbonara. Is knowledge refinement different from

theory revision? In S. Wrobel, editor, Proceedings of the MLNet Familiarization Workshop

on Theory Revision and Restructuring in Machine Learning (ECML-94), pages 32–34, 1994.

103

[16] W. Dillon and M. Goldstein. Multivariate Analysis: Methods and Applications. Wiley-

Interscience, 1984.

[17] Oussama El-Rawas and Tim Menzies. A second look at faster, better, cheaper. Innovations

in Systems and Software Engineering, 2011.

[18] N. E. Fenton and M. Neil. A critique of software defect prediction models. IEEE Transac-

tions on Software Engineering, 25(5):675–689, 1999. Available from http://citeseer.

nj.nec.com/fenton99critique.html.

[19] Norman E. Fenton, Martin Neil, and Jose Galan Caballero. Using ranked nodes to model

qualitative judgments in bayesian networks. IEEE Trans. on Knowl. and Data Eng.,

19(10):1420–1432, 2007.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

[21] P. Green, T. Menzies, S. Williams, and O. El-waras. Understanding the value of software

engineering technologies. In IEEE ASE’09, 2009. Available from http://menzies.us/

pdf/09value.pdf.

[22] M.A. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class

data mining. IEEE Transactions On Knowledge And Data Engineering, 15(6):1437– 1447,

2003. Available from http://www.cs.waikato.ac.nz/˜mhall/HallHolmesTKDE.pdf.

[23] Mark Harman and Joachim Wegener. Getting results from search-based approaches to soft-

ware engineering. In ICSE ’04: Proceedings of the 26th International Conference on Soft-

ware Engineering, pages 728–729, Washington, DC, USA, 2004. IEEE Computer Society.

[24] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,

23(5):279–295, May 1997.

104

[25] O. Jalali, T. Menzies, and M. Feather. Optimizing requirements decisions with keys. In Pro-

ceedings of the PROMISE 2008 Workshop (ICSE), 2008. Available from http://menzies.

us/pdf/08keys.pdf.

[26] M. Jorgensen and M. Shepperd. A systematic review of software development cost es-

timation studies, January 2007. Available from http://www.simula.no/departments/

engineering/publications/Jorgensen.2005.12.

[27] C.F. Kemerer. An empirical validation of software cost estimation models. Communications

of the ACM, 30(5):416–429, May 1987.

[28] Taghi M. Khoshgoftaar and Naeem Seliya. Fault prediction modeling for software qual-

ity estimation: Comparing commonly used techniques. Empirical Software Engineering,

8(3):255–283, 2003.

[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,

Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[30] C. Kirsopp and M. Shepperd. Making inferences with small numbers of training sets. IEEE

Proc., 149, 2002.

[31] Ekrem Kocaguneli, Gregory Gay, Tim Menzies, Ye Yang, and Jacky W. Keung. When to

use data from other projects for effort estimation. In IEEE ASE’10, 2010. Available from

http://menzies.us/pdf/10other.pdf.

[32] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.

[33] Janet Kolodner. Reconstructive memory: A computer model. Cognitive Science, 7(4):281–

328, 1983.

[34] David Leake and David Mcsherry. Intro. to the special issue on explanation in case-based

reasoning. AI Review, 24:103–108, 2005.

105

[35] David B. Leake. Case-Based Reasoning: Experiences, Lessons and Future Directions. MIT

Press, Cambridge, MA, USA, 1996.

[36] Y Li, M Xie, and T Goh. A study of project selection and feature weighting for analogy

based software cost estimation. Journal of Systems and Software, 82:241–252, 2009.

[37] U. Lipowezky. Selection of the optimal prototype subset for 1-NN classification. Pattern

Recognition Letters, 19:907918, 1998.

[38] E.F. Loftus. Our changeable memories: legal and practical implications. Nature Rev. Neu-

rosci., pages 231–234, 2003.

[39] Michael R. Lowry. Towards predictive models of technology impact on software design

productivity. 2010.

[40] Emilia Mendes, Ian D. Watson, Chris Triggs, Nile Mosley, and Steve Counsell. A compar-

ative study of cost estimation models for web hypermedia applications. Empirical Software

Engineering, 8(2):163–196, 2003.

[41] T. Menzies, O. El-Rawas, J. Hihn, and B. Boehm. Can we build software faster and better and

cheaper? In PROMISE’09, 2009. Available from http://menzies.us/pdf/09bfc.pdf.

[42] T. Menzies, O. Elrawas, D. Baker, J. Hihn, and K. Lum. On the value of stochastic abduction

(if you fix everything, you lose fixes for everything else). In International Workshop on Living

with Uncertainty (an ASE’07 co-located event), 2007. Available from http://menzies.us/

pdf/07fix.pdf.

[43] T. Menzies, O. Elrawas, B. Barry, R. Madachy, J. Hihn, D. Baker, and K. Lum. Accurate esti-

mates without calibration. In International Conference on Software Process, 2008. Available

from http://menzies.us/pdf/08icsp.pdf.

106

[44] T. Menzies, O. Elrawas, J. Hihn, M. Feathear, B. Boehm, and R. Madachy. The busi-

ness case for automated software engineerng. In ASE ’07: Proceedings of the twenty-

second IEEE/ACM international conference on Automated software engineering, pages

303–312, New York, NY, USA, 2007. ACM. Available from http://menzies.us/pdf/

07casease-v0.pdf.

[45] T. Menzies and J.D. Kiper. How to argue less, 2001. Available from http://menzies.us/

pdf/01jane.pdf.

[46] T. Menzies, S. Williams, O. El-rawas, B. Boehm, and J. Hihn. How to avoid drastic software

process change (using stochastic statbility). In ICSE’09, 2009. Available from http://

menzies.us/pdf/08drastic.pdf.

[47] T. Menzies, S. Williams, O. Elrawas, D. Baker, B. Boehm, J. Hihn, K. Lum, and R. Madachy.

Accurate estimates without local data? Software Process Improvement and Practice, 14:213–

225, July 2009. Available from http://menzies.us/pdf/09nodata.pdf.

[48] Tim Menzies, Zhihao Chen, Dan Port, and Jairus Hihn. Simple software cost estimation:

Safe or unsafe? In Proceedings, PROMISE workshop, ICSE 2005, 2005. Available from

http://menzies.us/pdf/05safewhen.pdf.

[49] Tim Menzies, David Raffo, Siri on Setamanit, Ying Hu, and Sina Tootoonian. Model-based

tests of truisms. In Proceedings of IEEE ASE 2002, 2002. Available from http://menzies.

us/pdf/02truisms.pdf.

[50] Tim Menzies and Forrest Shull. The quest for convincing evidence. In A. Oram and

G.Wilson, editors, Making Software: What Really Works and We We Believe it. O’Reilly

Books, 2010.

107

[51] T.J. Menzies. The complexity of trmcs-like spiral specification. In Proceedings of 10th

International Workshop on Software Specification and Design (IWSSD-10), 2000. Available

from http://menzies.us/pdf/00iwssd.pdf.

[52] T.J. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. Defect prediction

from static code features: Current results, limitations, new approaches. Automated Software

Engineering, (4), December 2010. Available from http://menzies.us/pdf/10which.pdf.

[53] A. Miller. Subset Selection in Regression (second edition). Chapman & Hall, 2002.

[54] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki. Robust regression for developing soft-

ware estimation models. J. Syst. Softw., 27(1):3–16, 1994.

[55] Martin Možina, Janez Demšar, Michael Kattan, and Blaž Zupan. Nomograms for visualiza-

tion of naive bayesian classifier. In PKDD ’04: Proceedings of the 8th European Conference

on Principles and Practice of Knowledge Discovery in Databases, pages 337–348, New York,

NY, USA, 2004. Springer-Verlag New York, Inc.

[56] An Ngo-The and G. Ruhe. Optimized resource allocation for software release planning.

Software Engineering, IEEE Transactions on, 35(1):109–123, Jan.-Feb. 2009.

[57] A. Orrego, T. Menzies, and O. El-Rawas. On the relative merits of software reuse. In Inter-

national Conference on Software Process, 2009. Available from http://menzies.us/pdf/

09reuse.pdf.

[58] Thomas J. Ostrand, Elaine J. Weyuker, and Robert M. Bell. Where the bugs are. In ISSTA

’04: Proceedings of the 2004 ACM SIGSOFT international symposium on Software testing

and analysis, pages 86–96, New York, NY, USA, 2004. ACM.

[59] Parag C. Pendharkar, Girish H. Subramanian, and James A. Rodger. A probabilistic model

for predicting software development effort. IEEE Trans. Softw. Eng., 31(7):615–624, 2005.

108

[60] Dietmar Pfahl and Ioana Rus. Special issue on prosim 2004. Software Process: Improvement

and Practice, 10(3):251–253, July/September.

[61] D. Port, A. Olkov, and T. Menzies. Using simulation to investigate requirements priori-

tization strategies. In IEEE ASE’08, 2008. Available from http://menzies.us/pdf/

08simrequire.pdf.

[62] Stuart J. Russell, Peter Norvig, John F. Candy, Jitendra M. Malik, and Douglas D. Edwards.

Artificial intelligence: a modern approach. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 2003.

[63] Roger C. Schank. Dynamic Memory: A Theory of Reminding and Learning in Computers

and People. Cambridge University Press, New York, NY, USA, 1983.

[64] Roger C. Schank and Robert P. Abelson. Scripts, plans, goals and understanding: an inquiry

into human knowledge structures. Erlbaum, 1977.

[65] Thomas Schulz, Lukasz Radlinski, Thomas Gorges, and Wolfgang Rosenstiel. Defect cost

flow model: a bayesian network for predicting defect correction effort. In PROMISE ’10,

pages 16:1–16:11, 2010.

[66] Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies for satisfiability

testing. In Michael Trick and David Stifler Johnson, editors, Proceedings of the Second

DIMACS Challange on Cliques, Coloring, and Satisfiability, Providence RI, 1993.

[67] M. Shepperd. Software project economics: A roadmap. In International Conference on

Software Engineering 2007: Future of Software Engineering, 2007.

[68] M. Shepperd and C. Schofield. Estimating software project effort using analogies. IEEE

Transactions on Software Engineering, 23(12), November 1997. Available from http://

www.utdallas.edu/˜rbanker/SE_XII.pdf.

109

[69] M. J. Shepperd. Case-based reasoning and software engineering. Technical Report TR02-08,

Bournemouth University, UK, 2002.

[70] H. Gall E. Giger T. Zimmermann, N. Nagappan and B. Murphy. Cross-project defect predic-

tion. In ESEC/FSE’09, August 2009.

[71] A. Tosun, A. Bener, and R. Kale. Ai-based software defect predictors: Applications and

benefits in a case study. In Twenty-Second IAAI Conference on Artificial Intelligence, 2010.

[72] Fiona Walkerden and Ross Jeffery. An empirical study of analogy-based software effort

estimation. Empirical Softw. Engg., 4(2):135–158, 1999.

[73] Ian Watson. Applying case-based reasoning: techniques for enterprise systems. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[74] Ian H. Witten and Eibe Frank. Data mining. 2nd edition. Morgan Kaufmann, Los Altos, US,

2005.

[75] David H. Wolpert and R. Waters. The relationship between pac, the statistical physics frame-

work, the bayesian framework, and the vc framework. In Proc. SFI/CNL Workshop Formal

Approaches to Supervised Learning, pages 117–214. Addison-Wesley, 1994.

[76] Y. Zhang, M. Harman, and S.A. Mansouri. The multi-objective next release problem. In In

ACM Genetic and Evolutionary Computation Conference (GECCO 2007), page 11, 2007.

110

