
Random DDP Model Instance Generator

Andres Orrego
Global Science & Technology, Inc.

Fairmont, WV, USA
andres.orrego@gst.com

ABSTRACT
Currently, the number of DDP models generated at JPL is very lim-
ited due to the relatively short period of time these models have
been around and the long time it takes to get the right project peo-
ple to meet and discuss requirements, risks, and mitigations. In
order to find the best search method to find the best solution to
these models, more instances need to be explored and therefore an
instance generator is required. Such instance generator has to fol-
low the constraints set by the model and randomize the values of
its variables so the external validity of studies done using them is
not compromised. This paper explains the rules followed for the
implementation a DDP model instance generator.

Keywords: Random generator, DDP models, AI search

1. INTRODUCTION
In recent years WVU and JPL have partnered together to study

ways to improve software development processes. One example of
such effort is the development and research of DDP models [1]. A
DDP model defines the relationship between requirements, risks,
and risk mitigation strategies so they can be evaluated intelligently
to reduce project costs while achieving the maximum requirements
coverage. Generating these models requires a series of long meet-
ings among the best project engineers at JPL to collect require-
ments, identify risks and discuss the cost and impact of mitigation
strategies so the most requirements are achieved at the lowest cost.
Finding the particular point where this goal is maximized is not a
trivial task as the solution space grows exponentially based on the
number of requirements, risks, and mitigations. It would be impos-
sible for humans to search such vast space and therefore machines
need to be used to test for the best solution. In some instances,
when the models are not very big, it is possible to explore all pos-
sibilities and find the best solution that satisfies our goal but some
other times this task becomes time-prohibitive and heuristic search
based software engineering methods are required.

2. BACKGROUND
The defect detection and prevention (DDP) approach was first

invented in 1998 by Steven Cornford, at the Jet Propulsion Labora-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

tory. It is a risk-based requirements model that assists in early life-
cycle decision making to help developers select assurance activities
in a cost-effective maner. That is, maximizing requirements attain-
ment while minimizing mitigation costs. This model, as we study
it, is based on three concepts: requirements, risks, and mitigations.
Values are assigned to each of these factors to reflect importance,
likelihood, and cost respectively. Each requirement is assigned a
numeric Weight ranging from 0 to a MAXWEIGHT, usually 100.
This number denotes the priority of the requirement in terms of how
important it is to attain it compared to other requirements. In terms
of risks, each one of them is assigned a likelihood indicating the
probability of its occurrance in case no mitigation is exercised. This
a-priori likelihood or rAPL is measured as a floating-point number
ranging from 0 to 1 . Lastly, each mitigation is assigned a Cost
which is usually the financial cost it would take to take the steps
necessary to prevent a risk (or risks) from happening. Mitigations
are also assigned a boolean, Selected, that is set to true it will be
performed, false otherwise. In additon to these factors, DDP mod-
els also consider the relationships among them. For instance, risks
and requirements are related in that if the former occurs, the attain-
ment of the latter is negatively impacted. Given that our goal is to
maximize requirement, this impact is measured as the loss of attain-
ment imposed by the risk should it occur in floating-point values
ranging from 0 to 1 (inclusive). An Impact(risk,requirement) value
of 0.5 means that should the risk happen, the requirements attain-
ment is reduced by one half. A second relationship is established
between risks and mitigatins. The effect of a mitigation indicates
how much it reduces each risk, and it is also measured in decimal
values ranging from 0 to 1 inclusive. An Effect(mitigation,risk)
value of 0.5 means that the given mitigation reduces the risk by one
half. Given these factors and the relationships among them we can
then search for the best way to control them to achieve the maxi-
mum requirements attainment at the lowest mitigation costs. Keep
in mind that maximizing attainment requires minimizing risks by
implementing costly mitigations. At the same time, minimizing
costs prevents projects from implementing mitigations to reduce
risks.

3. INSTANCE GENERATOR
We developed our instance generator using (almost) pure bash

shell scripting, simplifying the source code but limiting perfor-
mance and constraining the values ranges for certain model param-
eters. In this section we summarize the factors that compose DDP
models and the values they can take in our random generator.

We start by seting the three main factors that set the size of the
model: requirements (or objectives), risks, and mitigations. The
number of requirements, risks and mitigations vary from project to
project. Small subsystems may have only few number of these fac-

tors, while a complete spacecraft software project may have hun-
dreds. For the purposes of generating small to medium size ran-
dom models we establish the number of requirements (O_COUNT),
risks (R_COUNT), and mitigations (M_COUNT) to be integers rang-
ing from 1 to 200. We allow the user to specify these numbers from
the command line.

O_COUNT : USER_DEFINED[1..200]

R_COUNT : USER_DEFINED[1..200]

M_COUNT : USER_DEFINED[1..200]

The next step in the construction of the "model.h" file, which
contains the model, is the definition of the DDP data structure.
Since this step is immutable, that is the DDP data structure does
not change, so all we do is print the c code for the structure, al-
locate memory to hold the structure, and begin to form the model
setup "SetupModel()" function with an array of mitigation costs
"ddpData->mCost".

For each mitigation we randomly assign a cost ranging from 0
to 32767 (signed 16-bit integer). We do this by creating an array
of size MCOUNT, looping through it sequentially and assigning a
random value from the $RANDOM variable.

mCost[M1] = RANDOM [0..32767]

mCost[M2] = RANDOM [0..32767]

...
...

mCost[MM_COUNT] = RANDOM [0..32767]

The limited range for cost is the first constraint imposed by bash
but it has a limited impact on the model as this variable can be
measured in dolars, thousands of dollars, millions of dollars, etc.

We assign an a-priori likelihood (ddpData->rAPL[x]) of 1 to
each one of the identified risks as another initialization step in "Se-
tupModel()." Again, a one-dimensional array is used for this pur-
pose.

rAPL[R1] = 1

rAPL[R2] = 1

...
...

rAPL[RR_COUNT] = 1

For each one of the risks we assign weights (oWeight) ranging
from 0 to 100 (inclusive) at random.

oWeight[O1] = RANDOM [0..100]

oWeight[O2] = RANDOM [0..100]

...
...

oWeight[OO_COUNT] = RANDOM [0..100]

In terms of the relationships between the factors, not every factor
in the relationship is related to every other factor. For instance, not
all risks have an impact on all requirements, therefore the risks and
their impact-related requirements (roImpact[R][O]) are chosen at
random with a 50% chance that a risk impacts a requirement. For
all the selected roImpact relationships a decimal value from 0 to 1
is randomly assigned. Here it is the pseudo-code for this selection:

for i in 1..R_COUNT
{

for j in 1..O_COUNT
{

hasimpact = RANDOM[true,false]
if hasImpact is true
{
roImpact[i][j] = RANDOM[0,1]

}
}

}

A similar approach is used for the effect mitigations have on
risks. Not all mitigations can reduce all risks and therefore our
generator randomly selects the factors involved in this relationship
at a 50% probability. Furthermore, the mrEffect relationship typi-
cally takes values in the range [0,1] but sometimes the effect of a
mitigation can be detrimental to a risk. in other words, trying to
prevent a risk from happening might increase the chance of another
risk. In those special cases the mrEffect can be negative. Even in
more special circumstances, the mrEffect can take a value lesser
than -1. In these cases the mitigation involved not only increases
the likelihood of the given risk, but it actually increases the im-
pact that risk has on requirements. Given the special circumstances
where mrEffect takes such values, our generator selects a decimal
value from 0 to 1 at random and at 5% probability it multiplies it by
-1, effectively making it a negatve number from 0 to 1. As a third
step, at a 25% probability it substracts 1 from the negative value
making it an aggravated risk (rAggrevated). The following is the
pseudo-code for this step.

for i in 1..M_COUNT
{

for j in 1..R_COUNT
{

hasImpact = RANDOM[true,false,0.5]
if hasImpact
{
mrEffect[i][j] = RANDOM[0,1]
isNegative = RANDOM[true,false,0.05]
if isNegative
{
mrEffect[i][j] = mrEffect[i][j] * (-1)
isGrave = RANDOM[true,false,0.25]
if isGrave
{

mrEffect[i][j] = mrEffect[i][j] - 1
}

}
}

}
}

As explained above, at this point is when the model becomes
complex. We start generating the array of risk likelihoods where,
depending on the value mrEffect[Mi][Rj] takes, it may affect the
requirements attainment (oAttainment[Ok]) by creating a risk ag-
gravated impact (rAggrevatedImpact[Ri]) or by reducing the risk
likelihood as follows:

• If mrEffect[Mi][Rj] < −1 then rAggrevatedImpact[Rj]
is increased by multiplying its current value by (1−m[Mi]∗
1 + mrEffect[Mi][Rj]) for each mitigation Mi for which
mrEffect is less than -1.

• If mrEffect[Mi][Rj] between (−1, 0) then rLikelihood[Rj]
is initialized is increased to the value of the currrent risk like-
lihood plus the magnitude of the effect. In short,
rLikelihood[Rj] = Minimum(rlikelihood[Rj]−m[Mi]∗
mrEffect[Mi][Rj]). Note that the "-" sign becomes an ad-
dition because the mrEffect is negative in this case. Also

note that the maximum rLikelihood is enforced to be 1 by
the "Minimum" function.

• For all mrEffect[Mi][Rj] then rLikelihood[Rj] is set
to the product of it’s current value by the sequential fac-
tors of (1 − m[Mi] ∗ mrEffect[Mi][Rj]) where Mi rep-
resents the mitigations that have an effect on the given risk
Rj , and m[Mi] represents the selection of the mitigation Mi

such that if it is equal to 1 when the mitigation has been
selected for implementation or it is equal to 0 when it is
not selected. In short, rLikelihood[Rj] = rAPL[Rj] ∗Q

(1−mrEffect[Mi][Rj]) for all selected mitigations Mi

that have an effect on risk Rj .

The array "mrEffect" is printed inside the "SetupModel()" func-
tion and the function ends. The other two arrays generated, namely
rLikelihood and rAggrevatedImpact, are stored in memory and prin-
ted out inside the "model(float m[])" function after aggravated im-
pacts are initialized to 1 and likelihoods to the risk a-priori likeli-
hoods (rAPL) assigned in the setup funtion. The "model(float m[])"
function therefore is printed in the following order:

• Risk aggravated impacts initialized to 1
• Risk likelihoods initialized to a-priori likelihoods
• Risk aggravated impacts from the rAggrevatedImpact array

generated during setup
• Risk likelihoods from the rLikelihood array generated during

setup

Here it is the pseudo code for printing this first portion of the
model function:

print model funtion header
for REQ in requirements
{

print "rAggrevatedImpact[REQ] = 1"
}
for REQ in requirements
{

print "rLikelihood[REQ] = rAPL[REQ]"
}

The remaining portion of the model funtion consists of print-
ing impacts of risks on requirements attainment proportions (oA-
tRiskProp[REQ]) and requirements attainment (oAttainment[REQ])
for each requirement, the total mitigation cost (costTotal), and the
total requirements attainment (attTotal).

The impacts of risks on requirement attainment proportion is a
per requirement calculation where the product of the risk likeli-
hood, aggravated impact, and the impact of each risks is added. In
short,

oAtRiskProp[Oi] =
X

(rlikelihood[Rj] ∗

rAggrevatedImpact[Rj] ∗
roImpact[Rj][Oi]);

for all risks Rj that have an impact on requirement Oi.
The requirement attainment for each requirement is then calcu-

lated as the requirement priority (oWeight) for the given require-
ment times the inverse proportion of the impact of risks on the at-
tainment for the given requirement (roAtriskProp). In short,

oAttainment[Oi] = oWeight[Oi] ∗
(1−Minimum(1, oAtRiskProp[Oi])

The total attainment is printed next and it is the result of adding
the requirement attainment for each requirement:

For each REQ in requirements Do
{

attTotal =
P

(oAttainment[REQ])
}

Lastly, the total cost is calculated by adding the costs of the im-
plemented mitigations. This is achieved by the following pseudo-
code:

For each MIT in mitigations Do
{

costTotal =
P

(m[MIT]∗ mCost[MIT])
}

4. SOURCE CODE
The following is the complete listing of the code.

#!/bin/bash

declare -a mCost
declare -a oWeight
declare -a rAPL
declare -a roImpactR
declare -a roImpactO
declare -a roImpactV
declare -a mrEffectM
declare -a mrEffectR
declare -a mrEffectV
declare -a rAggImpV
declare -a minVal
declare -a rAggImpT
declare -a mrEP
declare -a oARP

RANDOM=$$$(date +%s)

MCOUNT=5
OCOUNT=4
RCOUNT=3
PHASES=5

FUNCTION: HELP
usage()
{
cat << EOF
usage: $0 [OPTIONS]

This script randomly generates ddp instances according \
to the arguments specified.

OPTIONS:
-h Show this message
-m number of mitigations
-o number of objectives
-r number of requirements

EOF
}

ARGUMENT HANDLING
while getopts "hm:o:r:" OPTION
do

case $OPTION in
m) MCOUNT=$OPTARG;;
o) OCOUNT=$OPTARG;;
r) RCOUNT=$OPTARG;;
h) usage; exit;;
?) usage; exit;;

esac
done

FILE HEADER AND FOOTER
headSU="#include \"model.h\"\n\n#define M_COUNT $MCOUNT\n

#define O_COUNT $OCOUNT\n#define R_COUNT $RCOUNT\n\n"
struct="struct ddpStruct{\n\tfloat oWeight[O_COUNT+1];\n

\tfloat oAttainment[O_COUNT+1];\n
\tfloat oAtRiskProp[O_COUNT+1];\n
\tfloat rAPL[R_COUNT+1];\n
\tfloat rAggrevatedImpact[R_COUNT+1];\n
\tfloat rLikelihood[R_COUNT+1];\n
\tfloat mCost[M_COUNT+1];\n
\tfloat roImpact[R_COUNT+1][O_COUNT+1];\n
\tfloat mrEffect[M_COUNT+1][R_COUNT+1];\n};
\n\nddpStruct *ddpData;\n\nvoid setupModel(void)\n{\n
\tddpData = (ddpStruct *) malloc(sizeof(ddpStruct));"

headM="}\n\nvoid model(float *cost, float *att, float m[])\n{\n
\tfloat costTotal, attTotal;\n"

tail="\n\t*cost = costTotal;\n\t*att = attTotal;\n}\n"

genRandInt(){
min=$1
max=$2
val=$[(($RANDOM % (($max+1) - $min)) + $min)]
echo $val

}

genRandFloat(){
min=$1
max=$2
factor=100
min=$[($min * $factor)]
max=$[($max * $factor)]
val=$(genRandInt $min $max)
echo "scale=3; $val / $factor" | bc

}

genArrays(){

for ((i=1; i<=$MCOUNT; i++)){
val=$(genRandInt 0 32000)
mCost[$i]=$val

}

for ((i=1; i<=$OCOUNT; i++)){
val=$(genRandInt 1 100)
oWeight[$i]=$val

}

roImpactSize=0
for ((i=1; i<=$RCOUNT; i++)){

rAPL[$i]=1
rAggImpV[$i]=1
for ((j=1; j<=$OCOUNT; j++)){

happens=$(genRandInt 0 1)
if [$happens -eq 0]; then

val=$(genRandFloat 0 1)
val=$(printf %1.1f $val)
roImpactSize=$[($roImpactSize + 1)]
roImpactR[$roImpactSize]=$i
roImpactO[$roImpactSize]=$j
roImpactV[$roImpactSize]=$val
oARP[$j]="${oARP[$j]} + (ddpData->rLikelihood[$i] *

ddpData->rAggrevatedImpact[$i] *
ddpData->roImpact[$i][$j]) "

fi
}

}

currPhase=1
minValSize=0
mrEffectSize=0
for ((i=1; i<=$MCOUNT; i++)){

for ((j=1; j<=$RCOUNT; j++)){
happens=$(genRandInt 0 1)
if [$happens -eq 0]; then

val=$(genRandFloat 0 1)
negative=$(genRandInt 0 20)
if [$negative -gt 19]; then

val=$(echo "scale=2; $val * -1" | bc)
aggravated=$(genRandInt 0 4)
if [$aggravated -gt 3]; then

val=$(echo "scale=2; $val - 1" | bc)
rAggImpT[$j]="${rAggImpT[$j]} * (1 - m[$i] *

(1 + ddpData->mrEffect[$i][$j]))"
else

minValSize=$[($minValSize + 1)]
minVal[$minValSize]="ddpData->rLikelihood[$j]=

minValue(1, (ddpData->rLikelihood[$j] -
m[$j] * ddpData->mrEffect[$i][$j]));"

fi
else

SPLIT array in phases
incPhase=$(genRandInt 0 4)
if [$incPhase -gt 3]; then

currPhase=$[($currPhase + 1)]
fi
case $currPhase in

1) mrEP1[$j]="${mrEP1[$j]} *
(1 - m[$i] *
ddpData->mrEffect[$i][$j])";;

2) mrEP2[$j]="${mrEP2[$j]} *
(1 - m[$i] *
ddpData->mrEffect[$i][$j])";;

3) mrEP3[$j]="${mrEP3[$j]} *
(1 - m[$i] *
ddpData->mrEffect[$i][$j])";;

4) mrEP4[$j]="${mrEP4[$j]} *
(1 - m[$i] *
ddpData->mrEffect[$i][$j])";;

?) mrEP5[$j]="${mrEP5[$j]} *
(1 - m[$i] *
ddpData->mrEffect[$i][$j])";;

esac
fi
val=$(printf %1.2f $val)
mrEffectSize=$[($mrEffectSize + 1)]
mrEffectM[$mrEffectSize]=$i
mrEffectR[$mrEffectSize]=$j
mrEffectV[$mrEffectSize]=$val

fi
}

}
}

printFile(){
genArrays

echo -e $headSU
echo -e $struct

for ((i=1; i<=$MCOUNT; i++)){
echo -e "\tddpData->mCost[$i]= ${mCost[$i]};"

}
for ((i=1; i<=$RCOUNT; i++)){

echo -e "\tddpData->rAPL[$i]= ${rAPL[$i]};"
}
for ((i=1; i<=$OCOUNT; i++)){

echo -e "\tddpData->oWeight[$i]= ${oWeight[$i]};"
}
for ((i=1; i<=$roImpactSize; i++)){

echo -e "\tddpData->roImpact[${roImpactR[$i]}]
[${roImpactO[$i]}]= ${roImpactV[$i]};"

}
for ((i=1; i<=$mrEffectSize; i++)){

echo -e "\tddpData->mrEffect[${mrEffectM[$i]}]
[${mrEffectR[$i]}]= ${mrEffectV[$i]};"

}

echo -e $headM

PRINT rAggrevatedImpact initialization
for ((i=1; i<=$RCOUNT; i++)){

echo -e "\tddpData->rAggrevatedImpact[$i] =
${rAggImpV[$i]};"

}

PRINT rLikelihood initialization
for ((i=1; i<=$RCOUNT; i++)){

echo -e "\tddpData->rLikelihood[$i] = ddpData->rAPL[$i];"
}

PRINT rAggrevatedImpact when mrEffect [-1..0]
for ((i=1; i<=$minValSize; i++)){

echo -e "\t${minVal[$i]}"
}

PRINT rAggrevatedImpact when mrEffect < -1
for ((i=1; i<=$RCOUNT; i++)){

if [-n "${rAggImpT[$i]}"]; then
echo -e "\tddpData->rAggrevatedImpact[$i] =

ddpData->rAggrevatedImpact[$i] ${rAggImpT[$i]};"
fi

}

PRINT rLikelihood when mrEffect [0..1]
First, split the likelihoods into PHASES

echo -e "\n\t/* Mitigations Effects on Risk likelihoods */\n
\t/*Phase I mitigation effects*/"

for ((i=1; i<=$RCOUNT; i++)){
if [-n "${mrEP1[$i]}"]; then

echo -e "\tddpData->rLikelihood[$i] =
ddpData->rLikelihood[$i] ${mrEP1[$i]};"

fi
}
echo -e "\t/* Phase II mitigation effects*/"
for ((i=1; i<=$RCOUNT; i++)){

if [-n "${mrEP2[$i]}"]; then
echo -e "\tddpData->rLikelihood[$i] =

ddpData->rLikelihood[$i] ${mrEP2[$i]};"
fi

}
echo -e "\t/* Phase III mitigation effects*/"
for ((i=1; i<=$RCOUNT; i++)){

if [-n "${mrEP3[$i]}"]; then
echo -e "\tddpData->rLikelihood[$i] =

ddpData->rLikelihood[$i] ${mrEP3[$i]};"
fi

}
echo -e "\t/* Phase IV mitigation effects*/"
for ((i=1; i<=$RCOUNT; i++)){

if [-n "${mrEP4[$i]}"]; then
echo -e "\tddpData->rLikelihood[$i] =

ddpData->rLikelihood[$i] ${mrEP4[$i]};"
fi

}
echo -e "\t/* Phase V mitigation effects*/"
for ((i=1; i<=$RCOUNT; i++)){

if [-n "${mrEP5[$i]}"]; then
echo -e "\tddpData->rLikelihood[$i] =

ddpData->rLikelihood[$i] ${mrEP5[$i]};"
fi

}

PRINT oAtRiskProp
echo -e "\n\t/* Risk impacts on objective

attainment proportions */"
for ((i=1; i<=$OCOUNT; i++)){

if [-n "${oARP[$i]}"]; then
echo -e "\tddpData->oAtRiskProp[$i] = 0${oARP[$i]};"

fi
}

PRINT oAttainment
echo -e "\n\t/* Objective Attainments */"
for ((i=1; i<=$OCOUNT; i++)){

echo -e "\tddpData->oAttainment[$i] =
ddpData->oWeight[$i] *
(1 - minValue(1, ddpData->oAtRiskProp[$i]));"

}

PRINT attTotal
for ((i=1; i<=$OCOUNT; i++)){

attTotal="$attTotal + ddpData->oAttainment[$i]"
}
echo -e "\tattTotal = 0$attTotal;"

PRINT costTotal
for ((i=1; i<=$MCOUNT; i++)){

costTotal="$costTotal + m[$i] * ddpData->mCost[$i]"
}
echo -e "\tcostTotal = 0$costTotal;"

echo -e $tail
}
printFile

5. REFERENCES
[1] M. Feather, S. Cornford, K. Hicks, J. Kiper, and T. Menzies.

Application of a broad-spectrum quantitative requirements
model to early-lifecycle decision making. IEEE Software,
2008. Available from
http://menzies.us/pdf/08ddp.pdf.

