
Towards Faster Model-Aided Decision Making

Andres Orrego
Global Science & Technology

Fairmont, WV, USA
andres.orrego@gst.com

Tim Menzies
West Virginia University
Morgantown, WV, USA
tim@menzies.us

Gregory Gay
West Virginia University
Morgantown, WV, USA

gregoryg@csee.wvu.edu

ABSTRACT
Previously we have achieved significant performance improvements
in model optimization using our KEYS2 search algorithm on defect
detection and prevention (DDP) models from JPL. In these models
we seek the reduction of software development costs while max-
imizing requirements attainment. Unfortunately, as these models
grow larger, the search space typically grows at an exponential rate,
and the demand for faster optimizations methods increases. In this
study we generate large risk models and attempt to speed up the
KEYS2 search engine. After some experimentation and analysis
we arrived at a fairly simple optimization technique that maintains
the level of attainment and cost reductions of KEYS2 but also sig-
nificantly reduces the run time on larger models so the engineers
making decisions based on model simulations do not have to spend
their valuable time waiting for the results of the tool to come back.

Keywords: Model optimization, AI search

1. INTRODUCTION
Model-based design is now a software engineering technique

employed at various degrees by software engineering teams in nu-
merous large organizations such as as Microsoft [9]; Lockheed
Martin [14]; the Object Management Group [2]; and the NASA’s
Jet Propulsion Laboratory [7].

Such models can be queried to find combinations of options that
might be otherwise missed. For example, with DDP, the goal is a
non-linear optimization that seeks the least costly project options
that most increases the chance of attaining more requirements.

Paradoxically, prior successes [7, 8, 12] with DDP have caused a
problem. The reality is that as the DDP models grow larger, the de-
mand for faster optimization methods also increases, particularly
when those models are used by a large room of debating experts
as part of rapid interactive dialogues. Hence, there is a pressing
need for “real-time requirements optimization”; i.e. requirements
optimizers that can offer advice before an expert’s attention wan-
ders to other issues. Our user community now expects an auto-
matic model-based cost-benefit analysis for larger and larger JPL
models containing more variants. Further, as requirements change
(as is frequently the case), our users are demanding a complete re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

analysis of all past decisions. Extrapolating into the near future, we
expect to fall off a computational cliff where our models will be too
complex for automatic analysis.Accordingly, we explore optimiza-
tions for model-based design.

Prior experiments with simulated annealing [7] or treatment learn-
ing [8] terminated in minutes to hours. Subsequent optimization
attempts by Jalali et. al. resulted in a method, called “KEYS”,
that runs significantly faster, e.g. for one model, KEYS ran 13,000
times faster than treatment learning (40 minutes to 0.18 secs) [10].
Although this speed gain is very impressive, KEYS performance
starts to degrade rapidly for growing models. Results from exper-
iments in this study show that KEYS takes on average 99 seconds
to find a solution for the largest DDP model we generated.

We recently achieved another significant speedup in DDP model
optimization with KEYS2. This later algorithm is based on the
original KEYS algorithm but runs four orders of magnitude faster.
In our experiments, KEYS2’s takes on average an impressive 8.7
seconds over our largest model.

Given that these models will keep growing in size and complex-
ity, in this study we analyze the KEYS and KEYS2 algorithms
searching for areas of improvement in their implementation. We
then address address those areas in order to achieve faster perfor-
mance, particularly for larger models.

The rest of this paper described JPL’s DDP modeling systems;
the KEYS and KEYS2 algorithms; our latest improvements; and
experiments performed on large, randomly-generated DDP models.

2. DDP MODEL
The defect detection and prevention (DDP) approach was first

invented in 1998 by Steven Cornford, at the Jet Propulsion Labora-
tory [4]. It is a risk-based requirements model that assists in early
life-cycle decision making to help developers select assurance ac-
tivities in a cost-effective maner. That is, maximizing requirements
attainment while minimizing mitigation costs.

The process by which DDP is employed is as follows:

• 6 to 20 experts are gathered together for short, intensive knowl-
edge acquisition sessions (typically, 3 to 4 half-day sessions).
These sessions must be short since it is hard to gather to-
gether these experts for more than a very short period of time.

• The DDP tool supports a graphical interface for the rapid
entry of the assertions. Such rapid entry is essential, lest
using the tool slows up the debate.

• Assertions from the experts are expressed in using an ultra-
lightweight decision ontology (e.g. see Figure 1). The ontol-
ogy must be ultra-lightweight since:

– Only brief assertions can be collected in short knowl-
edge acquisition sessions.

– If the assertions get more elaborate, then experts may
be unable to understand technical arguments from out-
side their own field of expertise.

The result of these sessions is a network of influences connecting
project requirements to risks to possible mitigations.

The ontology of Figure 1 may appear too weak for useful rea-
soning. However, in repeated sessions with DDP, it has been seen
that the ontology is rich enough to structure and guide debates be-
tween NASA experts. For example, DDP has been applied to over
a dozen applications to study advanced technologies such as

• a computer memory device;

• gyroscope design;

• software code generation;

• a low temperature experiments apparatus;

• an imaging device;

• circuit board like fabrication;

• micro electro-mechanical devices;

• a sun sensor;

• a motor controller;

• photonics; and

• interferometry.

DDP assertions are either:

• Requirements (free text) describing the objectives and con-
straints of the mission and its development process;

• Weights (numbers) associated with requirements, reflecting
their relative importance;

• Risks (free text) are events that damage requirements;

• Mitigations: (free text) are actions that reduce risks;

• Costs: (numbers) effort associated with mitigations, and re-
pair costs for correcting Risks detected by Mitigations;

• Mappings: directed edges between requirements, mitiga-
tions, and risks that capture quantitative relationships among
them. The key ones are impacts, each one of which is a quan-
titative estimate of the proportion of a requirement that would
be lost should a risk occur, and effects, each one of which is a
quantitative estimate of the proportion by which a risk would
be reduced were a mitigation to be employed (the ontology is
also able to capture the phenomenon of a mitigation making
some risks worse).

• Part-of relations structure the collections of requirements,
risks and mitigations;

Figure 1: DDP’s ontology

In those studies, DDP sessions have led to cost savings exceeding
$1 million in at least two instances, and lesser amounts (exceed-
ing $100,000) in some others. The DDP sessions have also gener-
ated numerous design improvements such as savings of power or
mass, and shifting of risks from uncertain architectural ones to bet-
ter understood (and hence more predictable and manageable) de-
sign ones. Further, at these meetings, some non-obvious significant
risks have been identified and mitigated. Lastly, DDP can be used
to document the information and decision making of these studies.
Hence, DDP, although not mandated, remains in use at JPL:

• not only for its original purpose (group decision support);

• but also as a design rationale tool to document decisions.

Note that DDP is not just a software design tool. At JPL, soft-
ware and hardware are designed together. DDP is best viewed as a
software systems engineering tool where the interactions between
hardware and software can be quickly explored.

2.1 DDP Model Format
In the implementation of DDP models, values for risks, require-

ments, and mitigations are assigned to reflect importance, likeli-
hood, and cost respectively. Each requirement is assigned a nu-
meric Weight ranging from 0 to a MAXWEIGHT, usually 100. This
number denotes the priority of the requirement in terms of how im-
portant it is to attain it compared to other requirements. In terms of
risks, each one of them is assigned a likelihood indicating the prob-
ability of its occurrance in case no mitigation is exercised. This
a-priori likelihood or rAPL is measured as a floating-point number
ranging from 0 to 1 . Lastly, each mitigation is assigned a Cost
which is usually the financial cost it would take to take the steps
necessary to prevent a risk (or risks) from happening. Mitigations
are also assigned a boolean, Selected, that is set to true it will be
performed, false otherwise.

In additon to these factors, DDP models also consider the re-
lationships among them. For instance, risks and requirements are
related in that if the former occurs, the attainment of the latter is
negatively impacted. Given that our goal is to maximize require-
ment, this impact is measured as the loss of attainment imposed
by the risk should it occur in floating-point values ranging from 0
to 1 (inclusive). An Impact(risk,requirement) value of 0.5 means
that should the risk happen, the requirements attainment is reduced
by one half. A second relationship is established between risks and
mitigatins. The effect of a mitigation indicates how much it reduces
each risk, and it is also measured in decimal values ranging from
0 to 1 inclusive. An Effect(mitigation,risk) value of 0.5 means that
the given mitigation reduces the risk by one half.

Given these factors and the relationships among them we can
then search for the best way to control them to achieve the maxi-
mum requirements attainment at the lowest mitigation costs. Keep
in mind that maximizing attainment requires minimizing risks by
implementing costly mitigations. At the same time, minimizing
costs prevents projects from implementing mitigations to reduce
risks.

One of the measures that we have taken to improve the runtimes
of previous experiments is to use a method called knowledge com-
pilation. Knowledge compilation is a technique where certain in-
formation is compiled into a target language. Previous work with
knowledge compilation has focused on compilation languages uti-
lizing CNF equations, state machines, or BDD [1,5]. None of these
made sense for our experiments, we instead compiled the DDP
models into a structure used by the C programming language.

These compiled models are used to rapidly answer a large num-
ber of queries while the main program is running [5, 13]. This

include ‘‘model.h’’

#define M_COUNT 2
#define O_COUNT 3
#define R_COUNT 2

struct ddpStruct
{
float oWeight[O_COUNT+1];
float oAttainment[O_COUNT+1];
float oAtRiskProp[O_COUNT+1];
float rAPL[R_COUNT+1];
float rLikelihood[R_COUNT+1];
float mCost[M_COUNT+1];
float roImpact[R_COUNT+1][O_COUNT+1];
float mrEffect[M_COUNT+1][R_COUNT+1];

};

ddpStruct *ddpData;

void setupModel(void)
{
ddpData = (ddpStruct *) malloc(sizeof(ddpStruct));
ddpData->mCost[1]=11;
ddpData->mCost[2]=22;
ddpData->rAPL[1]=1;
ddpData->rAPL[2]=1;
ddpData->oWeight[1]=1;
ddpData->oWeight[2]=2;
ddpData->oWeight[3]=3;
ddpData->roImpact[1][1] = 0.1;
ddpData->roImpact[1][2] = 0.3;
ddpData->roImpact[2][1] = 0.2;
ddpData->mrEffect[1][1] = 0.9;
ddpData->mrEffect[1][2] = 0.3;
ddpData->mrEffect[2][1] = 0.4;

}

void model(float *cost, float *att, float m[])
{
float costTotal, attTotal;
ddpData->rLikelihood[1] = ddpData->rAPL[1] *

(1 - m[1] * ddpData->mrEffect[1][1]) *
(1 - m[2] * ddpData->mrEffect[2][1]);

ddpData->rLikelihood[2] = ddpData->rAPL[2] *
(1 - m[1] * ddpData->mrEffect[1][2]);

ddpData->oAtRiskProp[1] = (ddpData->rLikelihood[1] *
ddpData->roImpact[1][1]) +
(ddpData->rLikelihood[2] *
ddpData->roImpact[2][1]);

ddpData->oAtRiskProp[2] = (ddpData->rLikelihood[1] *
ddpData->roImpact[1][2]);

ddpData->oAtRiskProp[3] = 0;
ddpData->oAttainment[1] = ddpData->oWeight[1] *

(1 - minValue(1, ddpData->oAtRiskProp[1]));
ddpData->oAttainment[2] = ddpData->oWeight[2] *

(1 - minValue(1, ddpData->oAtRiskProp[2]));
ddpData->oAttainment[3] = ddpData->oWeight[3] *

(1 - minValue(1, ddpData->oAtRiskProp[3]));
attTotal = ddpData->oAttainment[1] +

ddpData->oAttainment[2] +
ddpData->oAttainment[3];

costTotal = m[1] * ddpData->mCost[1] +
m[2] * ddpData->mCost[2];

*cost = costTotal;

*att = attTotal;
}

Figure 2: A trivial DDP model

pushes a large percentage of the computational overhead into the
compilation phase. This cost is amortized over time as we increase
the number of on-line queries. Some of the algorithms that we use
make thousands of calls to these DDP models; therefore, the run-
time increase from knowledge compilation is significant.

This knowledge compilation process stores a flattened form of
the DDP requirements tree. In standard DDP:

• Requirements form a tree;

• The relative influence of each leaf requirement is computed
via a depth-first search from the root down to the leaves.

• This computation is repeated each time the relative influence
of a requirement is required.

In our compiled form, the computation is performed once and added
as a constant to each reference of the requirement.

For example, here is a trivial DDP model where mitigation1
costs $10,000 to apply and each requirement is of equal value (100):

$10,000z }| {
mitigation1 →|{z}

0.9

risk1→

* 0.1z}|{
→ (requirement1 = 100)
→|{z}
0.99

(requirement2 = 100)

(The other numbers show the impact of mitigations on risks, and
risks on requirements).

The knowledge compiler converts this trivial DDP model into
setupModel and model functions similar to those in Figure 2.
The setupModel function is called once and sets several con-
stant values. The model function is called whenever new cost and
attainment values are needed. The topology of the mitigation net-
work is represented as terms in equations within these functions.
As our models grows more complex, so do these equations. For ex-
ample, our biggest model, which contains 99 mitigations, generates
1427 lines of code.

Knowledge compilation is useful for more than just runtime op-
timization, it has actually made some of this research possible in
the first place. This method allows JPL to retain their proprietary
information. In turn, this has given researchers outside of JPL ac-
cess to their models. For our experiments, JPL ran the knowledge
compiler and passed West Virginia University models like those
shown in Figure 2. These models have been anonymized to remove
proprietary information while still maintaining their computational
nature. JPL could assure its clients that any project secrets would
be safe while allowing outside researchers to perform valuable ex-
periments.

3. GENERATING BIGGER MODELS
Currently, the number of DDP models generated at JPL is very

limited due to the relatively short period of time these models have
been around and the long time it takes to get the right project people
to meet and discuss requirements, risks, and mitigations.So far we
have access to the five models summarized in Figure 3.

Model LOC Objectives Risks Mitigations Run-Time*
model1.c 43 3 2 2 0.0018
model2.c 260 1 30 31 0.0139
model3.c 58 3 2 3 0.0019
model4.c 1226 50 31 58 0.0906
model5.c 1412 32 70 99 0.1751

*average over 100 runs (in seconds)

Figure 3: Details of Five DDP Models.

Model LOC Objectives Risks Mitigations

R
an

do
m

-g
en

er
at

ed
M

od
el

s

model2_1.c 264 1 30 31
model2_2.c 502 2 60 62
model2_4.c 978 4 120 124
model2_8.c 1930 8 240 248
model2_16.c 3834 16 480 496
model4_1.c 1233 50 31 58
model4_2.c 2428 100 62 116
model4_4.c 4818 200 124 232
model4_8.c 9598 400 248 464
model4_16.c 19158 800 496 928
model5_1.c 1545 32 70 99
model5_2.c 3053 64 140 198
model5_4.c 6069 128 280 396
model5_8.c 12101 256 560 792
model5_16.c 24165 512 1120 1584

Figure 4: Details of incrementally bigger randomly-generated
DDP Models.

One aspect to note from these available models is the increase
in size; from 43 lines of code to 1,412. In order to find the best
search method to find the best solution to these increasingly larger
models, more instances need to be explored and therefore an in-
stance generator is required. Such instance generator has to follow
the constraints set by the model and randomize the values of its
variables so the external validity of studies done using them is not
compromised.

For this study we focused on models 2, 4 and 5, and developed
our own random generator of models and artificially grow the orig-
inal JPL models by a factor of 2, 4, 8, and 16, obtaining the models
in Figure 4. We use these models for comparing our optimization
algorithms.

4. KEYS
The premise of KEYS is that within the space of possible deci-

sions, there exist a small number of key decisions that determine
all others [11]. If a model contains keys, then a general search
through a large space of options is superfluous. A better (faster,
simpler) approach would be to just explore the keys. KEYS uses
support-based Bayesian sampling to quickly find these important
variables.

There are two main components to KEYS - a greedy search and
the BORE ranking heuristic.

4.1 Greedy Search
KEYS searches a space of M mitigations over the course of

M “eras”. Initially, the entire set of mitigations is set randomly.
During each era, one more mitigation is set to Mi = Xj , Xj ∈
{true, false}. Each era e generates a set < input, score > as
follows:

1a: Selected[1. . .(e− 1)] are settings from previous eras.

1b: Guessed are randomly selected values for unfixed mitiga-
tions.

1c: Input = selected ∪ guessed.

1d: Call model to compute score = ddp(input);

After 100 repeats of steps 1a,1b,1c,and 1d:

2: The 100 scores are divided into 10% best and 90% rest.

3: The mitigation values in the input sets are then scored using
BORE (described below).

1. Procedure KEYS
2. while FIXED_MITIGATIONS != TOTAL_MITIGATIONS
3. for I:=1 to 100
4. SELECTED[1...(I-1)] = best decisions up to this step
5. GUESSED = random settings to the remaining mitigations
6. INPUT = SELECTED + GUESSED
7. SCORES= SCORE(INPUT)
8. end for
9. for J:=1 to NUM_MITIGATIONS_TO_SET
10. TOP_MITIGATION = BORE(SCORES)
11. SELECTED[FIXED_MITIGATIONS++] = TOP_MITIGATION
12. end for
13. end while
14. return SELECTED

Figure 5: Pseudocode for KEYS

4: The top ranked mitigation value is fixed and stored in selected[e].

KEYS then moves to the era e+1 and repeats steps 1,2,3,4. KEYS
stops when every mitigation has a setting. For full details, see Fig-
ure 5.

4.2 BORE = Best Or Rest
BORE [3] is bayesian ranking measure we use for find those

most influential “key” variables. BORE assumes that the output
scores are divided into two classes - one class for best outcomes
and one for the rest. In such two-class systems, BORE searches
for mitigation values that have a high probability of belonging to
the best set.

BORE divides numeric scores seen over K runs and stores the
top 10% in best and the remaining 90% scores in the set rest. It
then computes the probability that a value is found in best using
Bayes theorem. The theorem uses evidence E and a prior probabil-
ity P (H) for hypothesis H ∈ {best, rest}, to calculate a posteri-
ori probability P (H|E) = P (E|H)P (H) / P (E). Such simple
Bayes classifiers are often called “naïve” since they assume inde-
pendence of each variable. Domingos and Pazzani have shown that
the independence assumption is a problem in a vanishingly small
percent of cases [6]. This explains the repeated empirical result that
seemingly naïve Bayes classifiers perform as well as other more so-
phisticated schemes (e.g. see Table 1 in [6]).

When applying the theorem, likelihoods are computed from ob-
served frequencies. These likelihoods are then normalized to create
probabilities (this normalization cancels out P (E) in Bayes theo-
rem). For example, after K = 10, 000 runs are divided into 1,000
best solutions and 9,000 rest, the value mitigation31 = false
might appears 10 times in the best solutions, but only 5 times in
the rest. Hence:

E = (mitigation31 = false)

P (best) = 1000/10000 = 0.1

P (rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01

freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) · P (best) = 0.001

like(rest|E) = freq(E|rest) · P (rest) = 0.000504

P (best|E) =
like(best|E)

like(best|E) + like(rest|E)
= 0.66 (1)

Previously [3], we have found that Bayes theorem is a poor rank-
ing heuristic since it is easily distracted by low frequency evidence.
For example, note how the probability of E belonging to the best
class is moderately high even though its support is very low; i.e.

P (best|E) = 0.66 but freq(E|best) = 0.01.
To avoid the problem of unreliable low frequency evidence, we

augment Equation 1 with a support term. Support should increase
as the frequency of a value increases, i.e. like(best|E) is a valid
support measure. Hence, step 3 of our greedy search raks values
via

P (best|E) ∗ support(best|E) =
like(best|E)2

like(best|E) + like(rest|E)
(2)

4.3 KEYS2
For each era, KEYS samples the DDP models and fixes the top

N = 1 settings. N = 1 is, perhaps, an overly conservative search
policy.

At least for the DDP models, the improvement in costs and at-
tainments generally increase for each era of KEYS. This lead to the
speculation that we could jump further and faster into the solution
space by fixing N ≥ 1 settings per era. Such a jump policy can be
implemented as a small change to KEYS:

• Standard KEYS assigns the value of one to
NUM_MITIGATIONS_TO_SET
(see the pseudo-code of Figure 5);

• Other variants of KEYS assigns larger values.

KEYS2 sets i settings in each era i. Note that, in era 1, KEYS2
behaves exactly the same as KEYS while in (say) era 3, KEYS2
will fix the top 3 ranked ranges. Since it sets more variables at each
era, KEYS2 terminates earlier than KEYS.

4.4 Areas of Improvement
KEYS2 achieves a significant improvement in speed by setting

an increasing number of mitigations at a time which in turn reduces
the number of model instances generated and scored. For further
speed up, we could simply set more mitigations at each era, but
prior experimentation showed that doing so reduces the algorithm’s
ability to reach more optimal solutions. This may be caused by the
incremental decrease of support.

Note that in (say) era 5, KEYS2 will fix the top 5 ranked ranges.
The first key set in this era is selected using BORE on 100 in-
stances. Let us assume that this key is set to true, so Key5−1 =
true. For each one of the 100 instances scored in era 5, there is a
50% probability that they have Key5−1 = false, rendering half
of the instances unfit to rank the second key. Thus, Key5−2 is se-
lected from about 50 instances. Similarly, Key5−3 is selected from
around 25, and so on. On large models, this effect can have some
performance consequences.

We therefore need to explore other areas of improvemnt that do
not affect the cost and attainment performance of the algorithm.
One effective way to achieve a more efficient algorithm is profil-
ing its implementation to find bottlenecks. Running “gprof” on
KEYS with our largest model shows that the algorithm spends 86%
of its runtime scoring instances of the model. All other functions
run either very fast or are not executed as many times.This finding
prompted us to try find ways to reduce the number of calls to the
model without compromising support.

A simple way to address both problems is to only call the model
for the instances that become invalid after each era. This can be
achieved calling a new function that searches for the roughly 50%
of mitigations that become invalid for selection of the next mitiga-
tion, and a slight modification of the original code so that it only
generates and scores replacement instances for the invalid ones.
Such method effectively uses valid instances already scored and

1. Procedure KEYS
2. while FIXED_MITIGATIONS != TOTAL_MITIGATIONS
3. for I:=1 to 100
A. if INVALID then
4. SELECTED[1...(I-1)] = best decisions up to this step
5. GUESSED = random settings to the remaining mitigations
6. INPUT = SELECTED + GUESSED
7. SCORES= SCORE(INPUT)
B. end if
8. end for
9. for J:=1 to NUM_MITIGATIONS_TO_SET
10. TOP_MITIGATION = BORE(SCORES)
11. SELECTED[FIXED_MITIGATIONS++] = TOP_MITIGATION
12. end for
C. INVALIDS = INPUT \cup SELECTED
13. end while
14.return SELECTED

Figure 6: Pseudocode for KEYS improvement. Additional
steps A. B. and C.

Attainment: Overall
Rank Algorithm 50%

1 K2-OPT r
1 K1-OPT r
1 KEYS2 r
1 KEYS r

Attainment: Largest Model
Rank Change 50%

1 K2-OPT r
1 K1-OPT r
1 KEYS2 r
1 KEYS r

Figure 7: Attainment: Maximum attainment achieved at low-
est cost (normalized 0..100%): optimizations are shaded.

Cost: Overall
Rank Algorithm 50%

1 KEYS r
2 K1-OPT r
3 K2-OPT r
3 KEYS2 r

Cost: Largest Model
Rank Change 50%

1 KEYS r
2 K1-OPT r
3 K2-OPT r
3 KEYS2 r

Figure 8: Cost: Minimum cost to achieve maximum attainment
(normalized 0..100%): optimizations are shaded.

saves roughly 50% of the calls to the model while always having
a full set of valid instances to select the next mitigation. Figure 6
displays the pseudo-code for the proposed changes.

5. RESULTS
Our experiments with KEYS, KEYS2, and their optimizations

are summarized in Figures 8, 7, and 9. In those figures:

• All results are normalized to run 0..100, 0..max, where max
is calculated by running the model with all mitigations set.

• Each row shows the 25% to 75% quartile range of the nor-
malized scores collected during the simulation.

• The median result is shown as a black dot.

• All the performance scores get better when the observed scores
get smaller.

Runtime: Overall
Rank Algorithm 50%

1 K2-OPT r
2 KEYS2 r
3 K1-OPT r
4 KEYS r

Runtime: Largest Model
Rank Change 50%

1 K2-OPT r
2 KEYS2 r
3 K1-OPT r
4 KEYS r

Figure 9: Runtime: Time to produce a solution (normalized
0..100%): optimizations are shaded.

• The “none” row comes from Monte Carlo simulations of the
current ranges, without any changes.

• The top sumarizes the performance of the algorithms across
all fifteen randomly-generated models, giving us a general
indication of their performance on small and large models.

• The bottom part of each figure depicts the performance of
each algorithm specific to their execution on the largest of
our models, model5_16.c (see Figure 4).

• “K1-OPT” and “K2-OPT” denote the runs of the optimized
version of KEYS and KEYS2 respectively.

In each figure, the rows are sorted by the number of times an
algorithm scores below (looses to) another. In order to assess num-
ber of losses, we used the Mann-Whitney test at 95% confidence
(this test was chosen due to (a) the random nature of Monte Carlo
simulations which results in non-paired tests; and (b) ranked tests
make no assumption about the normality of the results). Two rows
have the same rank if there is no statistical difference in their distri-
butions. The shaded rows in Figures 8, 7, and 9 identify our latest
optimizations.

In terms of attainment, Figure Figure 7 shows that it is consis-
tently maximized across all algorithms with no significant differ-
ences among them. They all achieve (very close to) the maximum
possible attainment indicating that our new version of the algo-
rithms do not affect the performance on this aspect. It is important
to note that achieving maximum requirements attainment simpli-
fies our analysis because it reduces the dimensionality of the resuls
such that we can concentrate on the other two aspects of this study,
cost and runtime reduction.

The first differences among algorithms start to appear when we
look at cost reduction. Not surprisingly, Figure 8 shows the original
KEYS as the best algorithm to reduce costs. What strikes us a sur-
prising is that our K1-OPT has a slightly lower performance than
KEYS given that both select their keys based on the same number
of simulations. We expected to see a tie similar to the performances
of KEYS2 and K2-OPT. They perform, on average, very close to
each other, but K2-OPT is more stable (lower variance). This phe-
nomenon may be explained by the fact that at each era K2-OPT is
selecting keys from half of the same instances from which the pre-
vious key was selected. That might also explain the slim decrease
in average cost minimization performance by K1-OPT, but it needs
further study.

The third and main aspect of our study is the runtimes. The main
goal of our study is the reduction of the optimization runtimes so
that results can be obtained in near real-time. Figure 9 shows re-
sults very close to our expectations. Overall, applying our opti-
mization improving technique on both KEYS and KEYS2 for the

Figure 10: Runtime (secs) Vs. model size increase (LOC%)

largest model results in shorter runtimes. In the case of KEYS, K1-
OPT reduces the average execution time to 36.5 seconds from 99
seconds. A 63% runtime speedup. K2-OPT also improves KEYS2
runtime on the largest model but not as much. KEYS2 takes on
average 8.7 seconds while K2-OPT takes 8.5 seconds. A speedup
of 2.3%.

A more clear view of the speed gains achieved by our improve-
ment technique can bee seen in Figure 10. Note the big difference
in the KEYS and K1-OPT slopes. Following the trend, the bigger
the model the more KEYS beneffits from our improvement. The
same applies to KEYS2 and K2-OPT, but at the model sizes we are
running our experiments it is barely apparent.

Although our technique’s gain for KEYS2 is not as large as it is
for KEYS, it is statistically significant at 95% confidence level and
we believe it increases as the models become even larger. Further-
more, applying our simple speed up technique is easy and maintains
the performance of the other aspects of the model-optimization al-
gorithms within acceptable margins.

6. CONCLUSION
In this paper we evaluate and analyze the performance of the

KEYS and KEYS2 model optimization algorithms using artificially-
grown models. We then identify and address their deficiencies and
inefficiencies and attempt to speed up their runtimes so optimal so-
lutions for incrementally larger models can be obtained near real-
time.

Our analysis identifies the execution of the model as the main
bottleneck in the efficiency of the algorithms. KEYS spends 86%
of the runtime, running model simulations. Our modified versions
attempt to reduce the number of times the model is called without
significantly affecting the ability to optimize the search for a solu-
tion. The technique employed to achieve that reduction consists of
maintaining valid model instances between eras and generating and
executing new instances only to replace the invalid ones.

The results show that this fairly simple technique significantly
reduces the runtimes at a slight decrease in cost minimization. The
time reduction is particulaly large (more than 50%) for the KEYS
algorithm.

7. FUTURE WORK
We believe that time savings benefit of our improvemnt tech-

nique increases as the models become larger. As part of the future
work we would like to perform of the relevant experimentation with

even bigger models.
Another aspect worth exploring is multi-threading. In theory this

technique is promising for large to huge models due to the fact that
KEYS bottleneck lies in calling the model scoring function mil-
lions of times but these calls can be done in paralel at every era.
Early experimentation shows a slightly better runtimes when using
available cores in a multi-processor, multi-core server environment.
Cloud computing is the logical next step for our future experimen-
tation.

8. REFERENCES
[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic

model checking without bdds. In In Proceedings of Tools and
Algorithms for the Analysis and Construction of Systems,
page 193207, May 1999.

[2] A. Brown, S. Iyengar, and S. Johnston. A rational approach
to model-driven development. IBM Systems Journal,
45(3):463–480, 2006.

[3] R. Clark. Faster treatment learning. Master’s thesis,
Computer Science, Portland State University, 2005.

[4] S. L. Cornford. Managing risk as a resource using the defect
detection and prevention process. In Internationa Conference
on Probabilistic Safety Assessment and Management,
September 1998.

[5] A. Darwiche and P. Marquis. A knowledge compulation
map. Journal of Artifical Intelligence Research, 17:229–264,
2002. Available from ww.jair.org/media/989/
live-989-2063-jair.pdf.

[6] P. Domingos and M. J. Pazzani. On the optimality of the
simple bayesian classifier under zero-one loss. Machine
Learning, 29(2-3):103–130, 1997.

[7] M. Feather, S. Cornford, K. Hicks, J. Kiper, and T. Menzies.
Application of a broad-spectrum quantitative requirements
model to early-lifecycle decision making. IEEE Software,
2008. Available from
http://menzies.us/pdf/08ddp.pdf.

[8] M. Feather and T. Menzies. Converging on the optimal
attainment of requirements. In IEEE Joint Conference On
Requirements Engineering ICRE’02 and RE’02, 9-13th
September, University of Essen, Germany, 2002. Available
from http://menzies.us/pdf/02re02.pdf.

[9] J. Greenfield and K. Short. Software factories : assembling
applications with patterns, models, frameworks, and tools.
Wiley Publishing, Indianapolis, IN, 2004.

[10] O. Jalali, T. Menzies, and M. Feather. Optimizing
requirements decisions with keys. In Proceedings of the
PROMISE 2008 Workshop (ICSE), 2008. Available from
http://menzies.us/pdf/08keys.pdf.

[11] T. Menzies, D.Owen, and J. Richardson. The strangest thing
about software. IEEE Computer, 2007.
http://menzies.us/pdf/07strange.pdf.

[12] T. Menzies and Y. Hu. Data mining for very busy people. In
IEEE Computer, November 2003. Available from
http://menzies.us/pdf/03tar2.pdf.

[13] B. Selman and H. Kautz. Knowledge compilation and theory
approximation. Journal of the ACM, 43(2):193–224, 1996.
Available from http://citeseer.nj.nec.com/
article/selman96knowledge.html.

[14] D. Waddington and P. Lardieri. Model-centric software
development. IEEE Computer, 39(2):28–29, February. 2006.

