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Abstract

Many data sets exhibit anearly plateauwhere the performance of a learner peeks after seeing a few hundred (or

less) instances. When concepts drift is slower than the time to find that plateau, then a simple windowing policy and

an incremental discretizer lets standard learners like Naı̈veBayes classifiers to scale to very large data sets. Further,

this approach supports forgetting old theories after concept drift and learning faster when concepts drift back to a

context seen previously.

Index Terms

data mining, concept drift, scale up, Naı̈veBayes classifiers, incremental, discretization, SAWTOOTH, SPADE

I. I NTRODUCTION

Our goal is intelligent adapative runtime monitoring of procedural programs augmented with temporal logic

invariants. We want data miners to monitor Monte Carlo simulations and learn constraints to input ranges which

increase the number of logic violations. To this end, we explore how to simplify the task of scaling up induction

to very large data sets. Such data sets are readily obtainable in our domain: just run the Monte Carlo simulations

on the spare CPUs left behind when our co-workers go home for the night.

Standard classifiers are not designed to handle very large data sets: they usually assume that the data will be

represented as a single, memory-resident table [1]. Nevertheless, for data sets that exhibitearly plateauswe show

here that the following combination tools can scale to very large data sets: (i) a Naı̈veBayes classifier; (ii) an

incremental discretizer called SPADE; (iii) a simple windowing sampling policy called SAWTOOTH.

Fig. 1. Incremental 10*10 cross val-

idation experiments on soybean. Error

bars show±1 standard deviations for

the accuracies over the repeats.

A data set exhibitsearly plateauswhen the peak performance of a learner

requires just a few hundred instances. Figure 1 shows such an early plateau in

the soybean [2] data set. Figure 1 is aincremental R*N-way cross-validation

experiment. ForR = 10 repeats, data was randomly shuffled. The data in each

random ordering was then dividedN=10 ways. Two learners, J48 and nbk1, were

then trained using the firsti divisions and tested using remainingN-i divisions.

As might be expected, as more data is used for training (i.e. running fori=1. . . (N-

1)), the accuracy of the learned theory increased. For the soybean data set, this

increase peaked 88%/91% for J48/nbk respectively after seeing 60% of the data

(409 instances).

Other data sets plateau even earlier than soybean. Figure 2 shows plateaus

found by four learners (J48,nbk, LSR, and M5’2) in 20 data sets. Those plateaus

were found before seeing most of the data: usually, after seeing 50%, and mostly

1Both learners come from the WEKA toolkit [3]. J48 is release eight of C4.5 [4] ported to JAVA and nbk is a Naı̈veBayes classifier using

John and Langley’s kernel estimation method [5]

2LSR and M5’ come from the WEKA [3]. LSR/M5’ assumes values can be fitted to one/many (respectively) n-dimensional linear models [6].
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Fig. 2. R=10*N=10 incremental cross validation experiments on 20 UCI data sets [2]. A:heart-c, B:zoo; C:vote; D:heart-statlog; E:lymph,

F:autos. G:ionosphere, H:diabetes, I:balance-scale, J:soybean, K:bodyfat. L:cloud, M:fishcatch, N:sensory, O:pwLinear, Q:strike, R:pbc,

S:autoMpg, T:housing. Data sets A..J have discrete classes while Data sets K..T have continuous classes. Data sets are sorted according to

how many instances were required. to reach plateau using nbk (left-hand side) or M5’ (right-hand side).

before after seeing 60% (exceptions: E and F). For any learner in Figure 2, in

8
10 ths of the data sets, learning did not improve significantly (computed using

t-tests withα = 0.05) after seeing 200 instances.

Figure 2 suggests that, for many data sets and many learners, learning could proceed inwindowsof a few hundred

instances. Learning could be disabled once performance peaks within those windows. If the learner’s performance

falls off the plateau (i.e. due to concept drift), the learner could start afresh to learn a new theory. Given early

plateaus like those in Figure 2, this new learning should take only a few more hundred instances. Further, since

learning only ever has to process a few hundred instances at a time, this approach should scale to very large data

sets.

This paper tests that speculation. For numerous UCI data sets, some KDD cup data, and in a aircraft flight

simulator, this combination of Bayes+SAWTOOTH+SPADE performs comparatively well, uses less memory, and is

simple to implement. Our conclusion is twofold. Firstly, early plateaus are common and hence very simple methods

can scale to numerous very large data sets. Secondly, at least some of the recent advances in scaling up data mining

are not be due to the sophistication of the data miner. Rather, they may be due to the simplicity of the data in the

test cases.

II. RELATED WORK

Provost and Kolluri [1] note that while the performance of some learners level off quite early, other learners

continue to show accuracy increases as data set size increases. However, that improvement can be quite small.
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For example, Catlett reports differences of less than 1% (on average) between theories learned from 5000 or 2000

randomly selected instances in ten different data sets [7].

Plateaus like Figure 2 have been reported before (although this may be first report of early plateaus in M5’ and

LSR). Oates and Jensen found plateaus in 19 UCI data sets using five variants of C4.5 [8]. In their results, six of

their runs plateaued after seeing 85 to 100% of the data. This is much later than Figure 2 where none of our data

sets needed more than 70% of the data.

We are not motivated to explore different methods for detecting start-of-plateau. The results below show that

learning using our start-of-plateau detector can produce adequate classifiers that scale to very large data sets.

Nevertheless, one possible reason for our earlier plateaus is the method used to identify start-of-plateau. Figure 2

detected plateaus using t-tests to compare performance scores seen in theories learned fromM or N examples

(M < N ) and reported start-of-plateau if no significant (α=0.05) difference was detected between theN and

the lastM with a significant change. On the other hand, Oates and Jensen scanned the accuracies learned from

5, 10, 15% etc. of the data looking for three consecutive accuracy scores that are within 1% of the score gained

from a theory using all the available data. Note that regardless ofwhere they found plateaus, Oates and Jensen’s

results endorse our general thesis that, often, learning need not process all the available examples.

Assuming early plateaus, then very simple learners should scale to large data sets. Our reading of the literature

is that Bayes+SAWTOOTH+SPADE is much simpler than other methods for scaling up data mining. Provost and

Kolluri distinguish three general types of scale-up methods. Firstly, there arerelational representationmethods

that reject the assumption that we should learn from a single memory-resident table. Secondly, there arefaster

algorithms that (e.g.) exploitsparallelism. Thirdly there aredata partitioningmethods to learn from (e.g.) some

subset of the attributes. SAWTOOTH is awindowingdata partitioning scheme where newly arrived examples are

pushed into the start of sliding window of sizeW while the same number of older examples are popped from the

end.

Windowing is used in many systems including FLORA [9] and SAWTOOTH. If the window sizeW is small

relative to the rate of concept drift, then windowing guarantees the maintenance of a a theory relevant to the last

W examples. However, ifW is too small, the learning may never have find an adequate characterization of the

target concept. Similarly, ifW is too large, then the this will slow the learner’s reaction to concept drift.

Like many windowing systems, SAWTOOTH and FLORA select the window size dynamically:W grows till

stable performance is reached; remains constant while performance is stable; then shrinks when concept drift occurs

and performance drops. FLORA changesW using heuristics based on accuracy and other parameters that take into

account the number of literals in the learnt theory. FLORA’s authors comment that their heuristics are “very

sensitive to the description language used”. Hence, they claim that “it seems hopeless (or at least difficult) to make

it completely free of parameters”. This has not been our experience: SAWTOOTH uses simple t-test to determine

window size and, in all our experiments, have kept parameters of those tests constant (atα = 0.01). A SAWTOOTH

window is some integer number oferas of sizeE; i.e. W = nE (default:E=150 instances). SAWTOOTH windows

grow until performance has not changed significantly in aStable (default: 2) number of eras. Each era is viewed
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# GLOBALS: ‘‘F’’: frequeny tables; ‘‘I’’ : number of instances;

# ‘‘C’’: how many classes?; ‘‘N’’: instances per class

function update(class,train)

# OUTPUT: changes to the globals.

# INPUT: a ‘‘train’’ing example containing attribute/value pairs

# plus that case’s ‘‘class’’

I++; if (++N[class]==1) then C++ fi

for <attr,value> in train

if (value != "?") then

F[class,attr,range]++ fi

function classify(test)

# OUTPUT: ‘‘what’’ is the most likely hypothesis for the test case.

# INPUT: a ‘‘test’’ case containing attribute/value pairs.

k=1; m=2 # Control for Laplace and M-estimates.

like = -100000 # Initial, impossibly small likelihood.

for H in N # Check all hypotheses.

{ prior = (N[H]+k)/(I+(k*C)) #⇐=P (H).

temp = log(prior)

for <attr,value> in attributes

{ if (value != "?") then

inc = F[H,attr,value]+(m*prior))/(N[H]+m) #⇐=P (Ei |H).

temp += log(inc) fi

}

if (temp >= like) then like = temp; what=class fi

}

return what

Fig. 3. A Bayes Classifier. “?” denotes “missing values”. Probabilities are multiplied together using logarithms to stop numeric errors when

handling very small numbers. Them and k variables handle low frequencies counts [10,§3.1]. This code computes classlikelihoods not

probabilities. Likelihoods become probabilities when they are normalized over the sum of all likelihoods. However, since maximum probability

comes from maximum likelihood, this code only needs to return the class with maximum likelihood.

as a binomial trial and each window is a record of trail results in the eras1, ...i, j where era=j is the current era

and era=1 is the first report of instability. In each erak, there areSk successful classifications. Equation 1 checks

if the current eraj is different to the proceedings eras1..., i (at confidenceα = 0.01).

−z(α = 0.01) = −2.326 ≤ µj − µ
σ√
E

=
Sj

−
(
∑

i Sx∑
i E

∗ E)

√
E ∗ Sj

E ∗
(
1− Sj

E

)
√

E
(1)

On stability, SAWTOOTH disables theory updates, but keeps collecting theS statistics (i.e. keeps classifying new

examples using the frozen theory). If stability changes to instability, SAWTOOTH shrinksW back to one era’s

worth of data and learning is then re-enabled.

One problem with windowing systems is the the computational cost of continually re-learning. Hence SAW-
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TOOTH uses a learner that can update its knowledge very quickly. Figure 3 shows the Naı̈veBayes classifier used

by SAWTOOTH. The functionupdate in that figure illustrates the simplicity of re-learning for a Bayes classifier:

just increment a frequency tableF holding counts of the attribute values seen in the new training examples.

Apart from rapid updates, Naı̈veBayes classifiers have other advantages. Such classifiers use Bayes’ Theorem:

P (H |E) =
P (H)
P (E)

∏
i

P (Ei |H)

That is, given fragments of evidenceEi and a prior probability for a classP (H), a posterior probabilityP (H |E)

is calculated for the hypothesis given the evidence. The Bayes classifier returns the class with highest probability.

Such classifiers are callednäıve since they assume that the frequencies of different attributes are independent.

In practice [11], the absolute values of the classification probabilities computed by Bayes classifiers are often

inaccurate. However, the relative ranking of classification probabilities is adequate for the purposes of classification.

Many studies (e.g. [12], [13]) have reported that, in many domains, this simple Bayes classification scheme exhibits

excellent performance compared to other learners.

More importantly, Bayes classifiers need very little memory and hence can scale to very large problems. These

learners only need the memory required for the frequency counts plus a buffer just large enough to hold a single

instance. Other researchers have explored incremental Bayes classifiers using modifications to the standard Bayes

classifier: e.g. Gama alters the frequency counts in the summary tables according the success rate of the lastN

classifications [14] while Chai et.al. updates the priors via feedback from the examples seen up till now [15]. In

contrast, we use standard Bayes classifierswithout modification.

Bayes classifiers can be extended to numeric attributes usingkernel estimationmethods. The standard estimator

assumes the central limit theorem and models each numeric attribute using a single gaussian. Other methods don’t

assume a single gaussian; e.g. John and Langley’s gaussian kernel estimator models distributions of any shape as

the sum of multiple gaussians [5]. Other, more sophisticated methods are well-established [16], but several studies

report that even simplediscretization methodssuffice for adapting Bayes classifiers to numeric variables [13], [17].

Many kernel estimation and discretization methods violate theone scanrequirement of a data miner; i.e. learning

needs only one scan (or less) of the data since there many not be time or memory to go back and look at a store

of past instances. For example, Dougherty et.al.’s [13]straw mandiscretization method is10-binswhich divides

attributeai into bins of sizeMAX(ai)−MIN(ai)
10 . If MAX and MIN are calculated incrementally along a stream

of data, then instance data may have to be cached and re-discretized if the bin sizes change. An alternative is to

calculate MAX and MIN after seeingall the data. Both cases require two scans through the data, with the second

scan doing the actual binning. Many other discretization methods (e.g. all the methods discussed by Dougherty

et.al. [13] and Yang and Webb [17]) suffer from this two-scan problem. Similarly, John and Langley’s kernel

estimation method can’t build its distribution untilafter seeing all the data and storing every continuous attribute

it sees during training. An incremental one scan (or less) discretization method is needed for scaling up induction.

SAWTOOTH uses the SPADE method described below.
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Fig. 4. Comparing SPADE and kernel estimation. Data sets: A=vowel, B=iris, C=ionosphere, D=echo, E=horse-colic, F=anneal, G=hypothyroid,

H=hepatitis, I=heart-c, J=diabetes, K=auto-mpg, L=waveform-5000, M=vehicle, N=labor, O=segment.

III. H ANDLING NUMERIC ATTRIBUTES WITH SPADE

Discretization converts continuous ranges to a set of bins storing the tally of numbers that fall into that bin. In

order to process infinite streams of data, we developed a one-pass discretization method called SPADE (Single PAss

Dynamic Enumeration).

Unlike N, SPADE does not assume a normal distribution among attribute values, in fact, it does not assume any

distribution at all. It is similar to10-binsbut the MIN and MAX change incrementally. The first valueN creates

one bin and sets{MIN=N,MAX=N }. If a subsequent new value arrives inside the current{MIN,MAX } range, the

bins from MIN to MAX are searched for an appropriate bin. Otherwise, aSubBins number of new bins are created

(default: SubBins=5) and MIN/MAX is extended to the new value. For example, here are four bins:

i 1 2 3 4 min max

border 10 20 30 40 10 40

Each bin is specified by its lowerbordervalue. A variableN maps to the first/last bin if it is the current{MIN,MAX }

value (respectively). Otherwise it maps to bini whereborderi < N ≤ borderi+1. AssumingSubBins = 5, then

if a new valueN = 50 arrives, five new bins added above the old MAX to a new MAX=50:

i 1 2 3 4 5 6 7 8 9 min max

border 10 20 30 40 42 44 46 48 50 10 50

If the newly created number of bins exceeds aMaxBinsparameter (default=the square root of all the instances

seen to date) then adjacent bins with a tally less thanMinInst (default: same asMaxBins) are merged if the tally

in the merged bins is less than aMaxInstparameter (default: 2*MinInst).

SPADE only scans the input data once and, at anytime during the processing ofX instances, SPADE’s bins are

available. Further, if it ever adjusts bins (e.g. when merging), the information used for that merging comes from the

bins themselves, and not some second scan of the instances. Hence, it can be used for the incremental processing

of very large data sets. A comparison of the algorithmic complexity of Nwith the single gaussian assumption, John

and Langley’s kernel estimation, and SPADE is shown in Figure??.
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It is important to note that SPADE will adjust bins only after the current ERA has been processed, therefore

allowing plenty of room for the generation of multiple bins before they are merged. Preventing the creation of

very few bins with big tallies is essential to avoid a bin splitting policy which is impractical within an incremental

context.

Figure 4 compares results from SPADE and John and Langley’s kernel estimation method using the display

format proposed by Dougherty, Kohavi and Sahami [13]. In that figure, a 10*10-way cross validation used three

learners: (a) NäıveBayes with a single gaussian for every numeric; (b) Naı̈veBayes with John and Langley’s kernel

estimation method (c) the Figure 3 Naı̈veBayes classifier using data pre-discretized by SPADE. Mean classification

accuracies were collected and shown in Figure 4, sorted by the means(c−a)− (b−a); that is, by the difference in

the improvement seen in SPADEor kernel estimationover or abovea simple single gaussian scheme. Hence, the

left-hand-side data sets of Figure 4 show examples where kernel estimation work comparatively better than SPADE

while the right-hand-side shows results where SPADE did comparatively better.

Three features of Figure 4 are noteworthy. Firstly, in a finding consistent with those of Dougherty et.al. [13],

discretization can sometimes dramatically improve classification the accuracy of a Naı̈veBayes classifier (by up to

9% to 15% in data sets C,F,M,0). Secondly, Dougherty et.al. found that even simple discretization schemes (e.g.

10-bins) can be competitive with more sophisticated schemes. We see the same result here where, in13
15 of these

experiments, SPADE’s mean improvement was within 3% of John and Langley’s kernel estimation method. Thirdly,

in two cases, SPADE’s one scan method lost information and performed worse than assuming a single gaussian. In

Gaussian Assumption Kernel Estimation SPADE

Operation Time Space Time Space Time Space

Train onn instances O(nk) O(k) O(nk) O(nk) O(nk) O(kb) = O(k)

Test onm instances O(mk) O(mnk) O(mkb) = O(mk)

Fig. 5. Algorithmic complexity of three different numeric handling techniques for the Naı̈veBayes classifier, givenn training instances and

k attributes. Also,b is the number of bins generated by SPADE, which becomes a constant when the minimum and maximum values of each

attribute are encountered. SPADE then has, effectively, the same unbeatable low algorithmic complexity of the single gaussian assumption
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Fig. 6. SAWTOOTH and the KDD’99 data
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incremental batch

data set #instancesSAWTOOTH NB nbk j48

labor 57 91.13± 11.76 93.87± 11.26 92.67± 11.46 78.67± 17.65-

iris 150 93.13± 6.03 95.67± 5.14 + 96.13± 4.85 + 94.53± 5.87

hepatitis 155 85.67± 9.15 83.28± 10.04- 84.38± 9.92 78.28± 9.49 -

echo 130 80.08± 10.09 78.85± 11.01 80.23± 9.98 80.77± 11.34

audiology 226 61.42± 10.45 69.84± 10.35+ 69.84± 10.35 + 76.55± 9.10 +

heart-c 303 83.74± 6.46 83.50± 6.97 84.16± 6.24 76.23± 7.71 -

primary-tumor 339 47.83± 7.34 49.37± 7.09 49.37± 7.09 41.73± 7.63 -

ionosphere 351 89.54± 5.09 82.09± 7.70 - 91.73± 4.31 + 89.66± 5.28

horse-colic 368 68.41± 7.55 67.58± 7.64 68.81± 7.44 67.31± 8.18

auto-mpg 398 74.24± 7.48 74.85± 8.37 73.95± 7.83 75.73± 8.17

vote 435 89.98± 4.32 89.96± 4.35 89.96± 4.35 96.58± 2.97 +

soybean 683 89.38± 4.76 92.42± 4.21 + 92.42± 4.21 + 90.49± 6.04

diabetes 798 74.70± 4.81 75.54± 4.36 75.10± 4.64 74.15± 5.41

vehicle 846 61.62± 4.73 44.64± 4.95 - 60.77± 4.28 72.42± 5.52 +

anneal 898 94.50± 2.97 86.61± 3.59 - 94.49± 2.47 98.69± 1.02 +

vowel 990 59.72± 6.51 66.42± 5.31 + 72.56± 6.33 + 76.91± 9.14 +

segment 2310 88.91± 2.24 80.04± 2.34 - 85.73± 2.09 - 96.87± 1.19 +

hypothyroid 3772 95.36± 1.30 95.30± 1.06 95.93± 0.98 99.53± 0.32 +

waveform-500 5000 80.16± 1.77 80.00± 1.93 79.84± 1.95 75.12± 2.03 -

letter 20000 72.44± 1.26 64.05± 1.11 - 74.28± 1.08 + 88.01± 0.83 +

MEAN 79.10 77.69 80.62 81.41
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Fig. 7. mean ± standard deviations seen in 10*10-way cross validation experiments on UCI Irvine data sets. “NB” and “nbk” denote

NäıveBayes classifiers that use gaussians model continuous attributes. “NB” uses a single gaussian while “nbk” uses a sum of gaussians in the

method recommended by John and Langley [5]. The plot top-right sorts the differences in the accuracies found by SAWTOOTH and all the

other learners. Some of those differences aren’t statistically significant: the “+” or “-” in the left-hand-side table denote mean differences that

are significantly different to SAWTOOTH at theα = 0.05 level. The significant differences between all the learners are shown in the win-loss

statistics of the bottom-right table.

data set A, the loss was minimal (-1%) and in data set B SPADE’s results were still within 3% of kernel estimation.

In our view, the advantages of SPADE (incremental, one scan processing, distribution independent) compensates

for its occasional performing worse than state-of-the-art alternatives which require far more memory.

IV. EXPERIMENTS

In all the following experiments, SPADE was run continuously on all incoming data while SAWTOOTH worked

on windows containing a variable number of eras. Also, when SAWTOOTH accuracies are reported, they are the

accuracies seen on new instancesbefore those instances update the frequency tables of the Naı̈veBayes classifier.

That is, all the SAWTOOTH accuracies reported below come from datanot (yet) used to train the classifier.

A. KDD’99 Data

In order to stress test our system, we ran it on the 5,300,000 instances used in the 1999 KDD cup3. The KDD data

dealt with network intrusion detection and was divided into a training set of about five million instances and atest

3http://www.ai.univie.ac.at/˜bernhard/kddcup99.html
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Fig. 8. SAWTOOTH and Concept Drift

set of 311,029 instances. The data comprised 6 discrete attributes, 34 continuous attributes, and 38 classes which

fell into four main categories:normal (no attack);probe (surveillance and other probing);DOS (denial-of-service);

U2R (unauthorized access to local super-user privileges); andR2L (unauthorized access from a remote machine).

The 24 KDD’99 cup entrants ran their learners to generated a matrixM [i, j] showing the number of times

classi was classifiedj. Entries were scored by computing the meanM [i, j] ∗ C[i, j] value whereC[i, j] was the

cost of mis-classifying (e.g.) unauthorized access to super-user as (e.g.) just a simple probe. Note thatM ∗ C are

mis-classificationscores so alower score is better.

Figure 5 shows themean M*C scoresfor SAWTOOTH and the KDD’99 entrants. SAWTOOTH’s meanM ∗C

results were close to the winning score of entrant #1; very similar to entrants 10,11,12,13,14,15,16; and better

than entrants 18,19,20,21,22,23,24. These results are encouraging since SAWTOOTH is a much simpler tool that

the winning entry (which classified the security incidents using an ensemble of decision trees built from a 50*10

cross-val).

Another encouraging result is the# bins with tally=Xplot of Figure 5. One concern with SPADE is that several

of its internal parameters are linked to the number of processed instances; e.g.MaxBins is the square root of the

number of instances. The 5,300,000 instances of KDD’99 could therefore, in the worst case, generate thousands of

bins for each numeric attribute. In all our experiments, we have never seen this worst-case behavior. In KDD’99,

for example, SPADE only ever generated 2 bins for 20 of the 40 attributes. Also, for only two of the attributes,

did SPADE generate more than 50 bins. Lastly, SPADE never generated more than 100 bins.

B. UCI Data

Figure 5 explored SAWTOOTH’s competencies on one large data set. Figure 6 explores SAWTOOTH’s com-

petency on many smaller data sets. The large table on the left shows the mean and standard deviations of the

accuracy seen in 10*10 cross-validation experiments. The win-loss table (bottom-right of Figure 6) use t-tests

to compare the performance of our learners. SAWTOOTH performs marginally better than a simple Naı̈veBayes
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classifier but is out-performed by both J48 and nbk. This is not surprising: Provost and Kolluri [1, p22] comment

that sequential learning strategies like windowing usually performs worse that learning from the total set. However,

what is encouraging is thesizeof the difference in mean accuracies SAWTOOTH and the other learners. The plot

shown top-right of Figure 6 sorts all those differences. In 80% of our experiments, SAWTOOTH performed within

±5% of other methods.

C. Data with Concept Drift

Figure 5 and Figure 6 showed SAWTOOTH processing static data. Figure 7 shows SAWTOOTH running on

data with concept drift. To generate that figure, a flight simulator was executed where a airplane moved from a

nominal mode to one of five error conditions (labeleda,b,c,d,e). Data was taken from the simulator in eras of size

100 instances. Each error mode lasted two eras and three times, the simulator returned to each error mode. The top

of Figure 7 shows the results of SAWTOOTH’s stability tests as well as when SAWTOOTH enabled or disabled

learning. Each error mode introduced a period of instability which, in turn, enabled a new period of learning.

The first time SAWTOOTH saw a new error mode (at eras 15,23,31,39,and 47), the accuracy drops sharply and

after each mode, accuracy returns to a high level (usually, over 80%). Thesecondtime SAWTOOTH returned to

a prior error mode (at eras 63,71,79,87 and 95), the accuracies drop, but only very slightly.

Three features of Figure 7 are worthy of mention. Firstly, the large drop in accuracy when entering a new context

means SAWTOOTH can be used to recognize new contexts (watch for the large drops). In terms of certifying an

adaptive system, this is a very significant result: learning systems can alert their uses when they areleaving the

region of their past competency. Secondly, there is no such large drop when SAWTOOTH returns to old contexts.

That is, SAWTOOTH canretain knowledge of old contextsand reuse that knowledgewhen contexts re-occur.

Thirdly, between concept drifts, the accuracy stabilizes and SAWTOOTH mostly disables the learner. That is, for

much of Figure 7 the SAWTOOTH “learner” isdoing no learning at all.

V. CONCLUSION

Holte argue forsimplicity-first approach to data mining; i.e. researchers should try simpler methods before

complicating existing algorithms [21]. While Provost and Kolluri endorse “simplicity-first”, they note in their review

of methods for scaling up inductive algorithms that “it is not clear now muchleveragecan be obtained through the

use of simpler classifiers to guide subsequent search to addressspecific deficienciesin their performance” [1, p32].

This paper has been a simplicity-first approach to scaling up data miners. We havelevered two features of

NäıveBayes classifiers that make them good candidates for handling large datasets: fast updates of the current theory

and small memory foot print. Severaldeficiencieswith NäıveBayes classifiers have been addressed: incremental

discretization and dynamic windowing means that Bayes classifiers need not hold all the data in RAM at one time.

Our Bayes+SAWTOOTH+SPADE toolkit works via one scan of the data and can scale to millions of instances.

Our toolkit is much simpler than other scale-up methods such as FLORA or the winner of KDD’99. Even so

it performs as well as many other data mining schemes (see Figure 5). Further, the same toolkit without any
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modifications can be used to detect concept drift, to repair a theory after concept drift, and can reuse old knowledge

when old contexts re-occur (see Figure 7).

A drawback with out toolkit is that we can’t guarantee that our learner operates in small constant time per

incoming instance. Several of SPADE’s internal parameters are functions of the total number of instances. In the

worst case, this could lead to runaway generation of bins. On a more optimistic note, we note that this worst case

behavior has yet to be observed in our experiments: usually, the number number of generated bins is quite small

(see Figure 5).

Why can such a simple toolkit like Bayes+SAWTOOTH+SPADE be so competent? Our answer is that many data

sets (such as all those processed in our experiments) exhibit early plateaus and such early plateaus can be exploited

to build very simple learners. If a particular data sets does not contain early plateaus then our simple toolkit should

be exchanged for a more sophisticated scheme. Also, our toolkit is inappropriate if concept drift is occurringfaster

than the time required to collect enough instances to find the plateau. Further, our scheme is designed forlarge

data sets and so does not perform as well as other commonly used schemes when used onsmaller data sets (but

often achieves accuracy on small data sets within±5% of other learners schemes- see Figure 6).

Finally, we recommend that other data mining researchers check for early plateaus in their data sets. If such

plateaus are a widespread phenmema, thenvery simple tools(like Bayes+SAWTOOTH+SPADE) should be adequate

for the purposes of scaling up induction.
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