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I. INTRODUCTION ABCDEFGHIJ KLMNOPQRST

.. . . . data set data set
Our goal is intelligent adapative controllers of running programs

that are monitored by temporal logic invariants. We want to finE. . o i
. ig. 2. R=10*N=10 incremental cross validation experiments on 20 UCI
bugs, or Ways.to do‘?'ge them. Hence, we yvant dfita miners to w " sets [2]{A:heart-c, B:zoo; C:vote; D:heart-statlog; E:lymph, F:autos.
Monte Carlo simulations and learn constraints to input ranges whicfionosphere, H:diabetes, I:balance-scale, J:soybean, K:bodyfat. L:cloud,
increase/decrease the number of logic violations. To this end, Wdishcatch, N:sensory, O:pwLinear, Q:strike, R:pbc, S:autoMpg, T:hogsing

explore how to simplify the task of scaling up induction to ver ata sets A..J _have discrete classes_ _and_ are scored victieacy of the_
ned theory; i.e % successful classifications. Data sets K..T have continuous

!arge data sets. Such data_ sets gre readily obtainable in our domgﬁses and are scored by RRED(30)of the learned theory; i.e. what % of

just run the Monte Carlo simulations on the spare CPUs left behigg estimated values are within 30% of the actual value. Data sets are sorted

when our co-workers go home for the night. according to how many instances were required. to reach plateau using nbk
Standard classifiers are not designed to handle very large dég§-hand side) or M5’ (right-hand side).

sets: they usually assume that the data will be represented as a

single, memory-resident table [1]. Nevertheless, for data sets that ) )

exhibit early plateauswe show here that the following combination Other data sets plateau even earlier than soybean. Figure 2 shows

tools can scale to very large data sets: (i) dvdBayes classifier; Plateaus found by four learners (J48,nbk, LSR, and Wi 20

(i) an incremental discretizer called SPADE:; (iii) a simple windowing!at@ sets. Those plateaus were found before seeing most of the
sampling policy called SAWTOOTH. data: usually, after seeing 50%, and mostly before after seeing 60%

(exceptions: E and F). For any learner in Figure Z%Ihs of the data

A data set exhibitsearl
Y sets, learning did not improve significantly (computed using t-tests

plateauswhen the peak per-

formance of a learner requires with o = 0.05) after seeing 200 instances.
just a few hundred instances Figure 2 suggests that, for many data sets and many learners,
Figure 1 shows such an early 100 P learning could proceed imwindows of a few hundred instances.
plateau in the soybean [2] data & -« | = F"" i Learning could be disabled once performance peaks within those
set. Figure 1 is ancremental g T | windows. If the learner's performance falls off the plateau (i.e. due
R*N-way cross-validatiorex- g 50 to concept drift), the learner could start afresh to learn a new theory.
periment. ForR = 10 repeats a5 | i Given early plateaus like those in Figure 2, this new learning should
data was randomly shuffled. ol T ] tea\l/keer Egg; few more hfundrhed :jnst;lr_]cets. Furthetr, stl_nce Iteha_lrnlng onIyh
The data in each random or- 148 x process a few hundred instances at a time, this approac
; - - S— : should scale to very large data sets.
dering was then dividet=10 L23456 789

This paper tests that speculation. For numerous UCI data sets, some
bins nsed in trainin i ; ; i i inati

nbk!, were then trained us- 2 KDD cup data, and in a aircraft flight simulator, th_ls combination
ing the firsti divisions and _ ) of Bayes+SAWTO_OTI_—|+SPAD!E performs comparatlve_ly v_veII, uses

: i Fig. 1o Incremental 10*10 cross val- [ess memory, and is simple to implement. Our conclusion is twofold.
tested using remaininy di- " idation experiments on soybean. Ermorgiystly, early plateaus are common and hence very simple methods
visions. As might be expected, pars show=+1 standard deviations for ' | | d S dl |
as more data is used for train-the accuracies over the repeats. can scale to numerous very large ata sets._ econdly, at least some

of the recent advances in scaling up data mining are not be due to

ing (i.e. running fori=1...(N- S .
1)), the accuracy of the learned theory increased. For the soybégﬁ sophistication of the data miner. Rather, they may be due to the

data set, this increase peaked 88%/91% for J48/nbk respectively aﬂ@?p“dty of the data in the test cases.
seeing 60% of the data (409 instances).

ways. Two learners, J48 and

Il. RELATED WORK

Manuscript received XXX, 2004, revised August YYY, 2004. Provost and Kolluri [1] note that while the performance of some
b arTrInn;g'\.Ari;Zléleﬁ V&'é?}gggﬁ/‘gg;ﬁg'?g&;; //l;g:ﬁgg.nset?te University@ learers level off quite early, other learners continue to show accuracy
Andres Orrego is with Computer Science, West Virginia University, USAiNcreases as data set size increases. However, that improvement can be
Andres.S.Orrego@ivv.nasa.gov quite small. For example, Catlett reports differences of less than 1%
1Both learners come from the WEKA toolkit [3]. J48 is release eight of
C4.5 [4] ported to JAVA and nbk is a Me&Bayes classifier using John and 2LSR and M5’ come from the WEKA [3]. LSR/M5’ assumes values can
Langley’s kernel estimation method [5] be fitted to one/many (respectively) n-dimensional linear models [6].
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(on average) between theories learned from 5000 or 2000 randorflgtOBALS: “F": frequeny tables;  *I" : number of instances;
. . . # C”: how many classes?; “N": instances per class

selected instances in ten different data sets [7].

Plateaus like Figure 2 have been reported before (although this miayction updatE(ﬁlass,train) he alobal

: ; ) # OUTPUT: changes to the globals.
be first report Of_ early plateaus in M5 gnd l_‘SR)' Qates and ‘]ensen# INPUT: a “train”ing example containing attribute/value pairs
found plateaus in 19 UCI data sets using five variants of C4.5 [8]. # plus that case’s “class”
In their results, six of their runs plateaued after seeing 85 to 100% !++; if (++N[class]==1)  then C++fi
. . for <attr,value> in train

of the data. This is much later than Figure 2 where none of our data™ i aue 1= ") then
sets needed more than 70% of the data. Flclass,attr,range]++ fi

We are not motivated to explore different methods for detectin% . :

) . nction classify(test)
start-of-plateau. The results below show that Iea_r_nlng using our starty ouTPUT: “what” is the most likely hypothesis for the test case.
of-plateau detector can produce adequate classifiers that scale to very INPUT: = a “test” case containing aftribute/value pairs.
large data sets. Nevertheless, one possible reason for our earlie ”;e’:m_‘l%oooo zﬁﬁ?;ﬂé%;';;ﬂ@fﬁ;?“'\lféﬁﬁgg”;tes'
plateaus is the method used to identify start-of-plateau. Figure 2 for H in N # Check all hypotheses.
detected plateaus using t-tests to compare performance scores seen if Prior = (N[H]+K)/(1+(k*C)) #e=P(H).
. temp = log(prior)

theories learned from/ or N examples {4/ < N) and reported start- for <attrvalue> in attributes
of-plateau if no significant¢{(=0.05) difference was detected between {if (value 1= ") then
the N and the last\/ with a significant change. On the other hand, tomp f:[HI'gg(ri}:’;'“e]*("f“i prion)/(N[H]+m) #e=P(E; | H).
Oates and Jensen scanned the accuracies learned5froinl5%
etc. of the data looking for three consecutive accuracy scores that are  if (temp >= like)  then like = temp; what=class fi
within 1% of the score gained from a theory using all the available
data. Note that regardless wtherethey found plateaus, Oates and
Jensen’s results endorse our general thesis that, often, learning need
not proce_ss all the available examples. ) Fig. 3. A Bayes Classifier. “?” denotes “missing values”. Probabilities are

Assuming early plateaus, then very simple learners shoulfﬂltiplied together using logarithms to stop numeric errors when handling
scale to large data sets. Our reading of the literature is thery small numbers. Thex andk variables handle low frequencies counts [10,
Bayes+ SANTOOTHSPADE is much sler han aher methods 8 3, T2 S0 conmuss Sesseliois ol poveics, Jiatiencs,
scaling up data mining. PrOVO,St and Kolluri d',Stmgu'Sh three generlg wever, since maximum probability comes from maximum likelihood, this
types of scale-up methods. Firstly, there etational representation code only needs to return the class with maximum likelihood.
methods that reject the assumption that we should learn from a single
memory-resident table. Secondly, there &aster algorithmsthat
(e.g.) exploitsparallelism Thirdly there aredata partitioningmeth-

ods to learn from (e.g.) sonmibset of the attribute SAWTOOTH is

return what

Si — (%5 *B)

awindowingdata partitioning scheme where newly arrived examples —2(a=0.01) = —2.326 < Hi — B _ i B 1)
are pushed into the start of sliding window of sidéwhile the same v/ E*i*(l—i)
number of older examples are popped from the end. #

Windowing is used in many systems including FLORA [9] and
SAWTOOTH. If the window sizelV is small relative to the rate On stability, SAWTOOTH disables theory updates, but keeps col-
of concept drift, then windowing guarantees the maintenance of d€4ting thes statistics (i.e. keeps classifying new examples using the
theory relevant to the lasl’ examples. However, iV is too small, frozen theory). If stability changes to instability, SAWTOOTH shrinks
the learning may never have find an adequate characterization of theback to one era’s worth of data and learning is then re-enabled.
target concept. Similarly, if¥ is too large, then the this will slow  ©One problem with windowing systems is the the computational cost
the learner’s reaction to concept drift. of continually re-learning. Hence SAWTOQTH uses a learner that can

Like many windowing systems, SAWTOOTH and FLORA selectPpdate its knowledge very quickly. Figure 3 shows théviBayes
the window size dynamicallyW grows till stable performance is classifier used by SAWTOOTH. The functiaipdate in that figure
reached; remains constant while performance is stable; then shriflikstrates the simplicity of re-learning for a Bayes classifier: just
when concept drift occurs and performance drops. FLORA changgsrement a frequency table holding counts of the attribute values
W using heuristics based on accuracy and other parameters that &80 in the new training examples.
into account the number of literals in the learnt theory. FLORAs Apart from rapid updates, NeeBayes classifiers have other ad-
authors comment that their heuristics are “very sensitive to tantages. Such classifiers use Bayes' Theorem:
description language used”. Hence, they claim that “it seems hopeless P(H)

(or at least difficult) to make it completely free of parameters”. P(H|FE) = mHP(EHH)

This has not been our experience: SAWTOOTH uses simple t-test i

to determine window size and, in all our experiments, have kephat is, given fragments of evidendg, and a prior probability for
parameters of those tests constantdat 0.01). A SAWTOOTH a classP(H), a posterior probability?(H | E) is calculated for the
window is some integer number afras of size E; i.e. W = hypothesis given the evidence. The Bayes classifier returns the class
nE (default: E=150 instances). SAWTOOTH windows grow until with highest probability. Such classifiers are callwive since they
performance has not changed significantly irf@able (default: 2) assume that the frequencies of different attributes are independent.
number of eras. Each era is viewed as a binomial trial and eachpractice [11], the absolute values of the classification probabilities
window is a record of trail results in the eras...i, ; where eraz is computed by Bayes classifiers are often inaccurate. However, the
the current era and era=1 is the first report of instability. In each emrative ranking of classification probabilities is adequate for the
k, there areS, successful classifications. Equation 1 checks if theurposes of classification. Many studies (e.g. [12], [13]) have reported
current ergj is different to the proceedings eras., i (at confidence that, in many domains, this simple Bayes classification scheme
a = 0.01). exhibits excellent performance compared to other learners.
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More importantly, Bayes classifiers need very litle memory and
hence can scale to very large problems. These learners only need
the memory required for the frequency counts plus a buffer just
large enough to hold a single instance. Other researchers have
explored incremental Bayes classifiers using modifications to the
standard Bayes classifier: e.g. Gama alters the frequency counts
in the summary tables according the success rate of theNast
classifications [14] while Chai et.al. updates the priors via feedback
from the examples seen up till now [15]. In contrast, we use standard Lottt
Bayes classifiersvithout modification. ABCDEFGHI JKLMNO

Bayes classifiers can be extended to numeric attributes kemgl data sett
estimation methods. The standard estimator assumes the central
limit theorem and models each numeric attribute using a singfg. 4. Comparing SPADE and kernel estimation. Data sets: A=vowel,
gaussian. Other methods don’t assume a single gaussian; e.g. Jotfs, C=ionosphere, D=echo, E=horse-colic, F=anneal, G=hypothyroid,
and Langley’s gaussian kernel estimator models distributions of aﬂihepf"mt's' _|=heart-c, J=diabetes, K=auto-mpg, ~L=waveform-5000,

. . . . _M=yehicle, N=labor, O=segment.
shape as the sum of multiple gaussians [5]. Other, more sophlstlcate(y
methods are well-established [16], but several studies report that even
simple discretization methodsuffice for adapting Bayes classifiersotherwise it maps to bin where border; < N < borderi;i.
to numeric variables [13], [17]. Assuming SubBins = 5, then if a new valueN = 50 arrives,

John and Langley comment that their method must access all i new bins added above the old MAX to a new MAX=50:

individual numeric values to build their kernel estimator and this is

impractical for large data sets. Many discretization methods violate i

the one scarrequirement of a data miner: i.e. execute using only oneborder

scan (or less) of the data since there many not be time or memory tfiothe newly created number of bins exceedMaxBinsparameter

go back and look at a store of past instances. For example, Doughédsgfault=the square root of all the instances seen to date) then adjacent

et.al’s [13]straw mandiscretization method i$0-binswhich divides bins with a tally less thaMininst (default: same adMaxBing are

attributea; into bins of sizeAX (@) =MIN(ei) it MAX and MIN  merged if the tally in the merged bins is less thaviaxInstparameter

are calculated incrementally along a stream of data, then instance dd&fault: 2*MinInst). Preventing the creation of very few bins with

may have to be cached and re-discretized if the bin sizes change.g tallies is essential for a practical incremental discretizer. Hence,

alternative is to calculate MAX and MIN after seeiad] the data. SPADE checks for merges only occasionally (at the end of each era),

Both cases require two scans through the data, with the second stauss allowing for the generation of multiple bins before they are

doing the actual binning. Many other discretization methods (e.merged.

all the methods discussed by Dougherty et.al. [13] and Yang andSPADE runs as a pre-processomuodate to NaveBayes. Newly

Webb [17]) suffer from this two-scan problem. arrived numerics get placed into bins and it is this bin number that
An incremental one scan (or less) discretization method is neededised as thealue is passed tapdate or Figure 3. Also, when

for scaling up induction. SAWTOOTH uses the SPADE metho8PADE merges bins, this causes a similar merging in frequncy tables

%delta to NB with single gaussians

1 2 3 4 5 6 7 8 9 min | max
10 | 20 | 30 | 40 | 42 | 44 | 46 | 48 | 50 10 50

described below. entries (theF' variable of Figure 3).
The opposite of merging would be ®&plit bins with unusually
1. HANDLING NUMERIC ATTRIBUTES WITH SPADE large tallies. SPADE has no split operator since we did not know

.how to best divide up a biwithoutkeeping per-bin kernel estimation

'Bta (which would be memory-expensive). Our early experiments

tait:?%f]ested that addin§ubBins = 5 new bins between old ranges
newly arrived out-of-range values was enough to adequately

Discretization converts continuous ranges to a set of bins stor
the tally of numbers that fall into that bin. In order to process infini
streams of data, we developed a one-pass discretization method c

SPéﬁ\SAlégnglle &ssgtll:ar'mc%:r?eratlon). d at ime during t ivide the range. Our subsequent experiments (see below) were so
only scans the input data once and, at anytime during ﬁcouraging that we are not motivated to add a split operator.

processing ofX instances, SPADE’s bins are available. Further, if it Figure 4 compares results from SPADE and John and Langley’s

ever adjusts bins (e.g. when merging bins with very small ta”ies)’ﬂl}%rnel estimation method using the display format proposed by
information used for that merging comes from the bins themselv?
r

d d fthe i H . b ?ugherty, Kohavi and Sahami [13]. In that figure, a 10*10-way
an _not Some secon sc_an of the instances. Hence, it can be use s validation used three learners: (a)iveBayes with a single
the incremental processing of very large data sets.

i(‘gaussian for every numeric; (b) N@Bayes with John and Langley’s
APhel estimation method (c) the Figure 3ieBayes classifier using

about the underlying numeric distributions. SPADE makes no suﬁgta pre-discretized by SPADE. Mean classification accuracies were

assumptions. It is_similar 'FOlO-bInS but the MIN a_nd MAX " collected and shown in Figure 4, sorted by the mdansa) — (b—a);
change incrementally. The first valu¥ creates one bin and sets

. o that is, by the difference in the improvement seen in SPADEernel
{MIN=N,MAX=N }. If a subseq_uent new value arrives inside th%stimationover or abovea simple single gaussian scheme. Hence,
current{MIN,MAX } range, the F"“S from MIN to MAX are searghedthe left-hand-side data sets of Figure 4 show examples where kernel
for an appropriate bin. Otherwise, #ubBins number of new bins o qimation work comparatively better than SPADE while the right-
are created (default: SubBins=5) and MI_N/ MAX is extended to th}‘?and-side shows results where SPADE did comparatively better.
new value. For example, here are four bins: Three features of Figure 4 are noteworthy. Firstly, in a finding
i [T T 2737 4] min|ma consistent with those of Dougherty et.al. [13], discretization can
border 10| 40 sometimes dramatically improve classification the accuracy of a
Each bin is specified by its lowéordervalue. A variableN maps to NaiveBayes classifier (by up to 9% to 15% in data sets C,F,M,0). Sec-
the first/last bin if it is the currenfMIN,MAX } value (respectively). ondly, Dougherty et.al. found that even simple discretization schemes
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(e.g. 10-bins) can be competitive with more sophisticated schemes. 1 —1— — T

We see the same result here where,1ih of these experiments, 20 - 7

SPADE’s mean improvement was within 3% of John and Langley’s " ‘ <

kernel estimation method. Thirdly, in two cases, SPADE’s one scan g 0.75 |sawtooth H !‘ 15 | —

method lost information and performed worse than assuming a single & ‘ I

gaussian. In data set A, the loss was minimal (-1%) and in data ¢ : £ 10+ e

set B SPADE’s results were still within 3% of kernel estimation. E 05 [ i

In our view, the advantages of SPADE (incremental, one scan e " £ 5 -

processing, distribution independent) compensates for its occasional E *

performing worse than state-of-the-art alternatives which require far 0.25 == 7 ot -
1 1 1 1 1 1 1 1

more memaory.
1 10 1824 0 25 50 75

entrants tall
IV. EXPERIMENTS v

In all the following experiments, SPADE was run continuously ORig. 5. SAWTOOTH and the KDD'99 data
all incoming data while SAWTOOTH worked on windows containing
a variable number of eras. Also, when SAWTOOQOTH accuracies are
reported, they are the accuracies seen on new instéretesethose number of bins for each numeric attribute. This worst-case scenario
instances update the frequency tables of thévéBayes classifier. wwould occur if each consecutive group &fubBins number of
That is, all the SAWTOOTH accuracies reported below come froRumeric values has different values from the previously seen groups

datanot (yet) used to train the classifier. andthey are sorted in ascending or descending order. If this unlikely
combination of events doa®t occur then the resulting bins would
A. KDD'99 Data have tallies tharl/inInst, encouraging it to merge with the next bin.

all our experiments, we have never seen this worst-case behavior.

In order to stress test our system, we ran it on the 5,300,0 .
. - , . n KDD’99, for example, SPADE only ever generated 2 bins for 20
instances used in the 1999 KDD c°’up<DD 99 dealt with network f the 40 attributes. Also, for only two of the attributes, did SPADE

intrusion detection and was divided into a training set of aboﬁ)t .
five million instances and #est setof 311,029 instan(?es. The datagenerate ”?‘“e than 50 b!ns. Further, SPADE never generated more
comprised 6 discrete attributes, 34 continuous attributes, and tﬁ]@n 100 bins for any atribute. .

classes which fell into four main categoriesormal (no attack); Attempts o test our system using other KDD cup data were not
probe (surveillance and other probingDOS (denial-of-service); successful, for a variety of reaséns

U2R (unauthorized access to local super-user privileges); Rad

(unauthorized access from a remote machine). B. UCI Data

The 24 KDD'99 cup entrants ran their learners to generated arijgure 5 explored SAWTOOTH's competencies on one large data
matrix M [z, j] showing the number of times classvas classifiedi. ggt, Figure 6 explores SAWTOOTH's competency on many smaller
Entries were scored by computing the meffji, j] = C[i, j] value  gata sets. The large table on the left shows the mean and standard de-
where C[i, j] was the cost of mis-classifying (e.g.) unauthorizedjations of the accuracy seen in 10¥10 cross-validation experiments.
access to super-user as (e.g.) just a simple probe. Note\thal'  The win-loss table (bottom-right of Figure 6) use t-tests to compare
are mis-classificatiorscores so dower score is better. the performance of our learners. SAWTOOTH performs marginally

Figure 5 shows all the sortedean M*C scoresrom the KDD'99  petter than a simple NeeBayes classifier but is out-performed by
entrants. Also shown in that figure is SAWTOOTH's me&h+ C'  poth J48 and nbk. This is not surprising: Provost and Kolluri [1,
result. SAWTOOTH's results were close to the winning score Qf22] comment that sequential learning strategies like windowing
entrant #1; very similar to entrants 10,11,12,13,14,15,16; and myg§yally performs worse than learning from the total set. However,
better than entrants 18,19,20,21,22,23,24. These results are encgit is encouraging is thsizeof the difference in mean accuracies
aging since SAWTOOTH is a much simpler tool that many of the AWTOOTH and the other learners. The plot shown top-right of
other entries. For example, the winning entrant took several TUBRyure 6 sorts all those differences. In 80% of our experiments,

to divide the data into smaller subsets and buid an ensemble YP\WTOOTH performed withint5% of other methods.
50x10 C5 decision trees using an intricate cost-sensitive bagged

boosting technique. This took more than a day to terminate on a dual- . )

processor 2x300MHz Ultra-Sparc2 machine with 512MB of RAI\P Data with Concept Drift

using the commercially available implementation of C5, written in Figure 5 and Figure 6 showed SAWTOOTH processing static data.

“C”. In contrast, our toolkit written in interpreted scripting langauge&igure 7 shows SAWTOOTH running on data with concept drift.

(gawk/bash), processed all 5,300,000 instances in one scan of the datggenerate that figure, a flight simulator was executed where a

using less than 3.5 Megabytes of memory. This took 11.5 hours atiplane moved from a nominal mode to one of five error conditions

a 2GHz Pentium 4, with 500MB of RAM, runing Windows/Cygwin(labeleda,b,c,d,. Data was taken from the simulator in eras of size

and we conjecture that that this runtime could be greatly reduced B0 instances. Each error mode lasted two eras and three times, the

porting our toolkit to “C”. simulator returned to each error mode. The top of Figure 7 shows the
Another encouraging result is th# bins with tally=X plot of results of SAWTOOTH?s stability tests as well as when SAWTOOTH

Figure 5. One concern with SPADE is that several of its internal

parameters are linked to the number of processed instances; e)é).;he KDD'04 evaluation portal was off-line during the period when

- - TOOTH was being developed. The KDD'03 problem required feature
MaxBinsis the square root of the number of instances. The 5’300'0§ ration from free text- something that is beyond the scope of this research.

instances of KDD99 could therefore generate an impractically larg®e data for KDD'02 is no longer on-line. The KDD'01 had data with 130,000
attributes and we don't yet know how to extend our techngie to such a large
Shttp://www.ai.univie.ac.at/"bernhard/kddcup99.html attribute space. We had trouble following the KDD’00 documentation.
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[ incremental batch |
data set #instance$ SAWTOOTH NB nbk j48 ~ 20 T T T T T
labor 57 [91.134+ 11.76 | 93.87+ 11.26 92.67+ 11.46 78.67+ 17.65v £ 15} 1
iris 150 |93.134+ 6.03 | 95.67+ 5.14A 96.134+ 4.85 A 9453+ 5.87 S ol +
hepatitis 155|85.67+ 9.15 | 83.284 10.04v 84.38+ 9.92  78.284+ 9.49v T e
echo 130|80.08+ 10.09 | 78.85+ 11.01 80.23+ 9.98 80.77+ 11.34 8 5 o
audiology 226 |61.424+ 10.45 | 69.84+ 10.354 69.84+ 10.35A 76.55+ 9.10a § o H##%#H%W*# 1
heart-c 303|83.74+ 6.46 | 83.50+ 6.97 84.16+ 6.24 76.23t+ 7.71v S 5 i
primary-tumor 339(47.83+ 7.34 | 49.37+ 7.09 4937+ 7.09 41.73+ 7.63V 5 a0l M J
ionosphere 351/89.54+ 5.09 | 82.09+ 7.70v 91.73+ 4.31 A 89.66+ 5.28 g 15 ;j i
horse-colic 368(68.41+ 7.55 | 67.58+ 7.64 68.81+ 7.44 67.31+ 8.18 S L
auto-mpg 398|74.24+ 7.48 | 74.85+ 837 73.95+ 7.83 7573+ 8.17 20 o 20 30 20 50 60
vote 435 |89.98+ 4.32 | 89.96+ 4.35 B89.96: 4.35 9658+ 2.97a defta accuracies, sorted
soybean 683|89.384+ 4.76 | 92.424 4.21a 92424+ 4.21 A 9049+ 6.04
diabetes 798| 74.704+ 4.81 | 75544+ 4.36 7510+ 4.64 7415+ 5.41
vehicle 846 |61.62+ 4.73 | 44.64+ 4.95v 60.77+ 4.28 72.42+ 5.52a
anneal 898|94.504+ 2.97 | 86.61+ 3.59v 94.49+ 2.47 98.69+ 1.02a
vowel 990 |59.72+ 6.51 | 66.42+ 5.31A 7256+ 6.33 A 76.91+ 9.14a learner Win ~Toss T win T Toss T fies
segment 2310(88.91+ 2.24 | 80.04+ 2.34v 85.73+ 2.09 v 96.87+ 1.19a 748 0 5515 T 30
hypothyroid 3772195.36+ 1.30 | 9530+ 1.06 95.93+ 0.98 99.53+ 0.32a nbk 8 17 9 34
waveform-500 5000/ 80.16+ 1.77 | 80.00+ 1.93 79.84+ 1.95 75.12+ 2.03v SAWTOOTH 6 12 18 30
letter 20000 | 72.444+ 1.26 | 64.05+ 1.11v 74.28+ 1.08 A 88.01+ 0.83a NB 12 9 21 30
MEAN 79.10 77.69 80.62 81.41

Fig. 6. mean =+ standard deviations seen in 10*10-way cross validation experiments on UCI Irvine data sets. “NB” and “nbk” dendteBéges

classifiers that use gaussians model continuous attributes. “NB” uses a single gaussian while “nbk” uses a sum of gaussians in the method recommended by
John and Langley [5]. The plot top-right sorts the differences in the accuracies found by SAWTOOTH and all the other learners. Some of those differences
aren't statistically significant: tha or ¥ symbols in the left-hand-side table denote mean differences that are significantly more or less (respectively) to
SAWTOOTH at thea = 0.05 level. The significant differences between all the learners are shown in the win-loss statistics of the bottom-right table.

learn=off |-
learn=on -

stable=yes |- 1 ‘
stable=no - - H -

100 - B

status

75 - B

50 - —

25 - B

%accuracy

a b o d e a b o d e a b o d e
era=50 era=100 era=140

era=1

Fig. 7. SAWTOOTH and Concept Drift

enabled or disabled learning. Each error mode introduced a peraddorithms [18]. While Provost and Kolluri endorse “simplicity-

of instability which, in turn, enabled a new period of learning. first”, they note in their review of methods for scaling up inductive
The first time SAWTOOTH saw a new error mode (at eraslgorithms that “it is not clear now mudeveragecan be obtained

15,23,31,39,and 47), the accuracy drops sharply and after each mdlaimugh the use of simpler classifiers to guide subsequent search to

accuracy returns to a high level (usually, over 80%). $beondime addressspecific deficiencies their performance” [1, p32].

SAWTOQOTH returned to a prior error mode (at eras 63,71,79,87 andrhjs paper has been a simplicity-first approach to scaling up data

95), the accuracies drop, but only very slightly. miners. We havdeveredtwo features of NaveBayes classifiers that
Three features of Figure 7 are worthy of mention. Firstly, the largfake them good candidates for handling large datasets: fast updates

drop in accuracy when entering a new context means SAWTOOTf the current theory and small memory foot print. Seveleficien-

can be used to recognize new contexts (watch for the large drops)cids with NaiveBayes classifiers have been addressed: incremental

terms of certifying an adaptive system, this is a very significant resuifiscretization and dynamic windowing means that Bayes classifiers
learning systems can alert their uses when theyeséing the region need not hold all the data in RAM at one time.

of their past competencypecondly, there is no such large drop when Our Bayes+SAWTOOTH+SPADE toolkit works via one scan of

SAWTOOTH returns to old contexts. That is, SAWTOOTH catain
knowledge of old contextnd reuse that knowledgehen contexts

re-occur Thirdly, between concept drifts, the accuracy stabilizes.

and SAWTOOTH mostly disables the learner. That is, for much
Figure 7 the SAWTOOTH “learner” igloing no learning at all

V. CONCLUSION

Holte argue forsimplicity-first approach to data mining; i.e. re-
searchers should try simpler methods before complicating exist

the data and can scale to millions of instances. Our toolkit is

much simpler than other scale-up methods such as FLORA or the
(\Jl¥|nner of KDD’99. Even so it performs as well as many other data

mining schemes (see Figure 5). Further, the same toolkit without any
modifications can be used to detect concept drift, to repair a theory
after concept drift, and can reuse old knowledge when old contexts
re-occur (see Figure 7).

A drawback with out toolkit is that we can’t guarantee that our
il@rner operates in small constant time per incoming instance. Several
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of SPADE'’s internal parameters are functions of the total number pfi]
instances. In the worst case, this could lead to runaway generation
of bins. On a more optimistic note, we note that this worst Caifz]
behavior has yet to be observed in our experiments: usually, the
number number of generated bins is quite small (see Figure 5).
Why can such a simple toolkit like Bayes+SAWTOOTH+SPADH13]

Z. Z. Zheng and G. Webb, “Lazy learning of bayesian ruléddchine
Learning vol. 41, no. 1, pp. 53-84, 2000, Available fronttp://
www.csse.monash.edu/"webb/Files/ZhengWebb00.pdf .

M.A. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mininglEEE Transactions On Knowledge And
Data Engineeringvol. 15, no. 6, pp. 1437— 1447, 2003.

James Dougherty, Ron Kohavi, and Mehran Sahami, “Supervised and

be so competent? Our answer is that many data sets (such as all unsupervised discretization of continuous features,” Iriternational

those processed in our experiments) exhibit early plateaus and SH(Z‘@

Conference on Machine Learnin995, pp. 194-202.
J. Gama, “Iterative bayeslhtelligent Data Analysispp. 475-488, 2000.

early plateaus can be exploited to build very simple learners. If[g5] K. Chai, H. Ng, and H. Chieu, “Bayesian online classifiers for text

particular data sets does not contain early plateaus then our simple
toolkit should be exchanged for a more sophisticated scheme. Also,
our toolkit is inappropriate if concept drift is occurrifigsterthan the
time required to collect enough instances to find the plateau. Further,
our scheme is designed ftarge data sets and so does not perfornfi6]
as well as other commonly used schemes when usesinafierdata
sets (but often achieves accuracy on small data sets withi} of
other learners schemes- see Figure 6). [17
Finally, we recommend that other data mining researchers
check for early plateaus in their data sets. If such plateaus
are a widespread phenmema, themry simple tools (like (18]
Bayes+SAWTOOTH+SPADE) should be adequate for the purposes
of scaling up induction.
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