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I. INTRODUCTION ) ) o )
Fig. 2. 10*10 incremental cross validation experiments on 20 UCI

Our goal is intelligent adapative controllers of running programgata sets [2]{A:heart-c, B:zoo; C:vote; D:heart-statlog; E:lymph, F:autos.
that are monitored by temporal logic invariants. We want to finG:ionosphere, H:diabetes, I:balance-scale, J:soybean, K:bodyfat. L:cloud,

bugs, or ways to dodge them. Hence, we want data miners to wabéffishcatch, N:sensory, O:pwLinear, Q:strike, R:pbc, S:autoMpg, T:hogsing
Monte Carlo simulations and learn constraints to input ranges whipPgt@ Sets A..J have discrete classes and are scored vactieacyof the
. L . . earned theory; i.e % successful classifications. Data sets K..T have continuous
increase/decrease the number of logic violations. To this end, Wgsses and are scored by ABED(30)of the learned theory; i.e. what % of
explore how to simplify the task of scaling up induction to veryhe estimated values are within 30% of the actual value. Data sets are sorted
large data sets. Given the right systems software such data setsaagerding to how many instances were required. to reach plateau using nbk
readily obtainable: just run the Monte Carlo simulations on the spafgft-hand side) or M5’ (right-hand side).
CPUs left behind when everyone go home for the night.

Standard classifiers are not

designed to handle very large data set, this increase peaked 88%/91% for J48/nbk respectively after

data sets: they usually assume seeing 60% of the data (409 instan(?es). .

that the data will be repre- Other data sets plateau even earlier teapbean Figure 2 shows
sented as a single, memory- 100 ) plateaus found by four learners (J48,nbk, LSR, an_d M 20
resident table [1]. Neverthe- & s __,.---r"""*'ﬁ_* ‘ data sets. Those platt_eaus were found before seeing mogt of the
less, for data sets that ex- E [ ot data: ugually, after seeing 50%, and r_nosFIy befor_e after seeing 60%
hibit early plateauswe show g 50 (exceptlong: E a_nd F). For any Iea_lrn('e_r in Figure Z%ms of th_e data
here that the following com- a5 | ) sgts, learning did not improve glgnlflcantly (computed using t-tests
bination tools can scale to ! W'th. a = 0.05) after seeing 200 instances.

very large data sets: () a ar I]Elﬁ """ T F|gure 2 suggests tha_t, 1_‘or many data sets and many learners,
NaiveBayes classifier: (ii) an YT learning could proceed iwindows of a few hundred instances.

Learning could be disabled once performance peaks within those
bins nsed in training windows. If the learner’'s performance falls off the plateau (i.e. due
dowing sampling policy called _ . to_ concept drift), the Igarner cou_ld s_tart afresh. to learn a new theory.
SAWTOOTH Fig. 1. Incremental 10*10 cross val- Given early plateaus like those in Figure 2, this new learning should

X - idation experiments orsoybean Error  take only a few more hundred instances. Further, since learning only

A data set exhibitsearly ~bars showd1 standard deviations for oo p1ac 16 process a few hundred instances at a time, this approach
plateauswhen the peak per- the accuracies over the repeats. P ' pp
should scale to very large data sets.

formance of a learner requires The rest of this tests that lation using numerous UCI dat
just a few hundred instances. Figure 1 shows such an early plateau € rest ot this tests that speculation using numerous ata

in the soybean[2] data set. Figure 1 is @ncremental R*N-way s_ets, some_KDD_ cup data, and an aircraft flight simulator. Our
cross-validatiorexperiment. Fork = 10 repeats, data was randomlys'mple_ toolkit easily eXt.endS o han(_jle concept drift problems such as
shuffled. The data in each random ordering was then dividetiO recurring contexts and, in unsupervised Iearn!ng, can be used to detect
ways. Two learners, J48 and rpkvere then trained using the firstnovel inputs. ‘The toolkit performs comparatlvely well compared to

1 divisions and tested using remainimdyi divisions. As might be o_ther data miners. Our only exp_lanaﬂon for the success O.f such a
expected, as more data is used for training (i.e. runninggtar. . (N- simple toolkit is that the assumption of early plateaus holds in many

1)), the accuracy of the learned theory increased. Forsthydean datasets.

incremental discretizer called
SPADE; (iii) a simple win-
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quite small. For example, Catlett reports differences of less than 10/8 o - )

. # GLOBALS: “F": frequeny tables; I” : number of instances;
(on average) between theories learned from 5000 or 2000 randogaly “C": how many classes?; “N": instances per class
selected instances in ten different data sets [7]. function update(class,train)

Plateaus like Figure 2 have been reported before (although this may? QUTPUT: changes to the globals. . _

. . ; # INPUT: a “train”ing example containing attribute/value pairs
be first report of early plateaus in M5' and LSR). Oates and Jensen # plus that case’s “class”
found plateaus in 19 UCI data sets using five variants of C4.5 [8]. f|++; if (|++N[0|aSS]?=1)  then C++fi
In their results, six of their runs plateaued after seeing 85 to 100% ;att\;;ﬁ;e‘z oy R
of the data. This is much later than Figure 2 where none of our data ~ F[class,attr,range]++ fi
sets needed more than 70% of the data. function classify(test) . .

. . . # OUTPUT: “what” is the most likely hypothesis for the test case.

We are not motivated to explore different methods for detecting 4 |npuT:  a “test” case containing attribute/value pairs.
start-of-plateau. The results below show that learning using our start- k=1; m=2 # Control for Laplace and M-estimates.
of-plateau detector can produce adequate classifiers that scale to very> ©, -}r?ogloo ilcngfclklgfor?;g{hzgngl likelihood.
large data sets. Nevertheless, one possible reason for our earliery prior = (N[H]+k)/(I+(K*C)) ' #e—=P(H).
plateaus is the method used to identify start-of-plateau. Figure 2 t?mp = |0£|J(pri0r) ) N

. . <
detected plateaus using t-tests to compare performance scores seen in (5 (2%, 1 M
theories learned fromM or N examples {4 < N) and reported start- inc = F[H,attr,value]+(m*prior))/(N[H]+m) #e=P(E; | H).
p p : ! (Ei | H)
of-plateau if no significant(=0.05) difference was detected between temp += log(inc)  fi
the N and the lastM with a significant change. On the other hand, if (temp >= like)  then like = temp; what=class fi
Oates and Jensen scanned the accuracies learned5froinl5% }
etc. of the data looking for three consecutive accuracy scores that are €™M What
within 1% of the score gained from a theory using all the available

data. Note that regardless wherethey found plateaus, Oates and

Jensen’s results endorse our general thesis that, often, learning rfé%lgg' A Bayes Classifier. *?" denotes “missing values”. Probabilities are
multiplied together using logarithms to stop numeric errors when handling

not process all the available examples. very small numbers. The: and k variables handle low frequencies counts
Assuming early plateaus, then very simple learners shoulfithe manner recommended by Yang and Webb B01].
scale to large data sets. Our reading of the literature is that
Bayes+SAWTOOTH+SPADE is much simpler than other methods for
scaling up data mining. Provost and Kolluri distinguish three generafjuation 1 needs some explanation. A SAWTOOTH window is some
types of scale-up methods. Firstly, there ssiational representation integer number okras of size E; i.e. W = nFE (default: E=150
methods that reject the assumption that we should learn frominstances). SAWTOOTH windows grow until performance has not
single memory-resident table. Secondly, there faster algorithms changed significantly in &table (default: 2) number of eras. Each
that (e.g.) exploitsparallelism Thirdly there aredata partitioning era is viewed as a binomial trial and each window is a record of
methods to learn from (e.g.) somsubset of the attributesTwo trail results in the erag,...i, j where eraz is the current era and
such strategies amgindowingandstratified samplingln windowing era=1 is the first report of instability. Each éraholds S, successful
newly arrived examples are pushed into the start of sliding windoslassifications and Equation 1 checks if the currentjeiadifferent
of sizeW while the same number of older examples are popped frotm the proceedings eras.., i.
the end. Instraified samplinginstances are sampled according to the On stability, SAWTOOTH disables theory updates, but keeps
relative frequency of their classes; e.g. instances from the minoritgllecting theS statistics (i.e. keeps classifying new examples using
classes are selected with a higher frequency that instances fromttie frozen theory). If stability changes to instability, SAWTOOTH
majority classes. SAWTOOTH uses explicitwindowing policy and, shrinksW back to one era’s worth of data and learning is then re-
as discussed later, usesplicit stratified sampler. enabled.
Windowing systems need to select an appropriate windowlgize  One problem with windowing systems is the computational cost of
If W is small relative to the rate of concept drift, then windowingontinually re-learning. Hence SAWTOOTH uses a learner that can
guarantees the maintenance of a theory relevant to theWast update its knowledge very quickly. Figure 3 shows théviBayes
examples. However, iV is too small, learning may never have findclassifier used by SAWTOOTH. The functiaipdate in that figure
an adequate characterization of the target concept. Similafy;, i§ illustrates the simplicity of re-learning for a Bayes classifier: just
too large, then this will slow the learner’s reaction to concept driftincrement a frequency tablE holding counts of the attribute values
Many windowing systems like SAWTOOTH and FLORA [9] selecseen in the new training examples.
the window size dynamicallyl¥ grows till stable performance is NaiveBayes classifiers are based on Bayes’ Theorem. Informally,
reached; remains constant while performance is stable; then shrittks theorem sayaew = old * evidence; i.e. our new beliefs are a
when concept drift occurs and performance drops. FLORA chandesction of ourold and anynew More formally:
W using heuristics based on accuracy and other parameters that take P(H)
into account the number of literals in the learnt theory. FLORAS P(H|E)= PE) HP(Ei | H)
authors comment that their heuristics are “very sensitive to the i
description language used”. Hence, they claim that “it seems hopelggs given fragments of evidenc&; and a prior probability for
(or at least difficult) to make it completely free of parameters’a class P(H), the theorem lets us calcuate a posteri probability
This has not been our experience: SAWTOOTH uses the simpig i1 | E). Technically, a Bayes classifier should return the class
standardized test statistic of Equation 1 to determine window size.\{ith highest probability. However, Figure 3 actually, computes class
all our experiments we have kept parameters of those tests constggélihoodsnot probabilities. Likelihoods become probabilities when
o S, — (Zi Si E) they are normalized over the sum of all likelihoods. Since maximum
—z(a=0.01) = —2.326 < Hj _ Ko X, B (1) probability comes from maximum likelihood, this code only needs

VE ,/E*fﬂ*@f%) to return the class with maximum likelihood. Note that unlikely

NG instances have lower frequency counts and hence lower likelihoods.
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In the sequel, we will use this property of likelihoods to recognizing
novel instances in unsupervised learning.

Bayes classifiers are calledaive since they assume that the
frequencies of different attributes are independent. In practice [11],
the absolute values of the classification probabilities computed by
Bayes classifiers are often inaccurate. However, the relative ranking
of classification probabilities is adequate for the purposes of classi-
fication. Many studies (e.g. [12], [13]) have reported that, in many
domains, this simple Bayes classification scheme exhibits excellent Ll i
performance compared to other learners. ABCDEFGHI JKLMNO

In terms of scaling up induction, the most important property of a data sett
Bayes classifier is that they need very little memory: i.e. only what

required for the frequency counts plus a buffer just large enoughR@. 4. Comparing SPADE and kernel estimation. Data sgfs:vowel,

hold a single instance. B=iris, C=ionosphere, D=echo, E=horse-colic, F=anneal, G=hypothyroid,
Other researchers have explored incremental Bayes classifiers u ﬁgepa“t's' I=heart-c, J=diabetes, K=auto-mpg, L=waveform-5000,

modifications to the standard Bayes classifier: e.g. Gama alters the

frequency counts in the summary tables according the success rate
of the lastV classifications [14] while Chai et.al. updates the Priors.y value arrives inside the currefMIN,MAX } range, the bins

via feedback from the examp_lgs_seen up t.”.l now [15]- In contragtom MIN to MAX are searched for an appropriate bin. Otherwise, a
we use standard Bayes classifiershout modification. SubBins number of new bins are created (default: SubBins=5) and

B_aye_s classifiers can be extended to nhumeric attributes keme!| MIN/MAX is extended to the new value. For example, here are four
estimation methods. The standard estimator assumes the cean .

limit theorem and models each numeric attribute using a single

gaussian. Other methods don't assume a single gaussian; e.g. John i 12| 3 | 4]min ‘ maz

and Langley’s gaussian kernel estimator models distributions of any border 10} 40

shape as the sum of multiple gaussians [5]. Other, more sophisticate@ch bin is specified by its lowdordervalue. A variableN maps to

methods are well-established [16], but several studies report that etles first/last bin if it is the currenfMIN,MAX } value (respectively).

simple discretization methodsuffice for adapting Bayes classifiersOtherwise it maps to bin where border; < N < border;ii.

to numeric variables [13], [17]. Assuming SubBins = 5, then if a new valueN = 50 arrives,
John and Langley comment that their method must access all fiwe new bins added above the old MAX to a new MAX=50:

individual numeric values to build their kernel estimator and this is

impractical for large data sets. Many discretization methods violate i

the one scarrequirement of a data miner: i.e. execute using only one *°" 4"

scan (or less) of the data since there many not be time or memory lfiothe newly created number of bins exceedMaxBins parameter

go back and look at a store of past instances. For example, Doughédgfault=the square root of all the instances seen to date) then adjacent

et.al.’s [13]straw mandiscretization method i$0-binswhich divides bins with a tally less thaMinInst (default: same a$/axBing are

attributea; into bins of sizeAX (@) MIN(e:) 1t MAX and MIN  merged if the tally in the merged bins is less thaviaxinstparameter

are calculated incrementally along a stream of data, then instance dd&fault: 2*MinInst). Preventing the creation of very few bins with

may have to be cached and re-discretized if the bin sizes change.g tallies is essential for a practical incremental discretizer. Hence,

alternative is to calculate MAX and MIN after seeiad] the data. SPADE checks for merges only occasionally (at the end of each era),

Both cases require two scans through the data, with the second dtass allowing for the generation of multiple bins before they are

doing the actual binning. Many other discretization methods (e.merged.

all the methods discussed by Dougherty et.al. [13] and Yang andSPADE runs as a pre-processomuodate to NaveBayes. Newly

Webb [17]) suffer from this two-scan problem. arrived numerics get placed into bins and it is this bin number that is
An incremental one scan (or less) discretization method is needeskd as thealue passed tapdate or Figure 3. Also, when SPADE

for scaling up induction. SAWTOOTH uses the SPADE methorherges bins, this causes a similar merging in frequncy tables entries

%delta to NB with single gaussians

ehicle, N=labor, O=segmeft

1 2 3 4 5 6 7 8 9 min | max
10 | 20 | 30 | 40 | 42 | 44 | 46 | 48 | 50 10 50

described below. (the F variable of Figure 3).
The opposite of merging would be ®&plit bins with unusually
[ll. HANDLING NUMERIC ATTRIBUTES WITH SPADE large tallies. SPADE has no split operator since we did not know

Discretization converts continuous ranges to a set of bins storihgw to best divide up a biwithoutkeeping per-bin kernel estimation
the tally of numbers that fall into that bin. In order to process infinitdata (which would be memory-expensive). Our early experiments
streams of data, we developed a one-pass discretization method calleghested that addin§ubBins = 5 new bins between old ranges
SPADE (Sngle PAss Dynamic_Ehumeration). and newly arrived out-of-range values was enough to adequately

SPADE only scans the input data once and, at anytime during ttigide the range. Our subsequent experiments (see below) were so
processing ofX instances, SPADE’s bins are available. Further, if iencouraging that we are not motivated to add a split operator.
ever adjusts bins (e.g. when merging bins with very small tallies), theFigure 4 compares results from SPADE and John and Langley’s
information used for that merging comes from the bins themselvé®rnel estimation method using the display format proposed by
and not some second scan of the instances. Hence, it can be use®argherty, Kohavi and Sahami [13]. In that figure, a 10*10-way
the incremental processing of very large data sets. cross validation used three learners: (a)iiéBayes with a single

Unlike standard NaeBayes classifiers, SPADE makes no assumpgaussian for every numeric; (b) N@Bayes with John and Langley’s
tions about the underlying numeric distributions. SPADE is simildeernel estimation method (c) the Figure 3il&Bayes classifier using
to 10-binsbut the MIN and MAX change incrementally. The firstdata pre-discretized by SPADE. Mean classification accuracies were
value N creates one bin and sets1IN=N,MAX=N }. If a subsequent collected and shown in Figure 4, sorted by the mdanrsa) — (b—a);
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1 —rT — where C[i, j] was the cost of mis-classifying (e.g.) unauthorized
20 - o A access to super-user as (e.g.) just a simple probe. Note\that”

: are mis-classificatiorscores so dower score is better.
15 - i . Figure 5 shows all the sortedean M*C score$rom the KDD’99

i entrants. Also shown in that figure is SAWTOOTH’s me&ah« C
result. SAWTOOTH’s results were close to the winning score of
entrant #1; very similar to entrants 10,11,12,13,14,15,16; and much
better than entrants 18,19,20,21,22,23,24. These results are encour-
aging since SAWTOOTH is a much simpler tool that many of the
other entries. For example, the winning entrant took several runs
to divide the data into smaller subsets and buid an ensemble of
50x10 C5 decision trees using an intricate cost-sensitive bagged
boosting technique. This took more than a day to terminate on a dual-
processor 2x300MHz Ultra-Sparc2 machine with 512MB of RAM
Fig. 5. SAWTOOTH and the KDD'99 data using the commercially available implementation of C5, written in

“C". In contrast, our toolkit written in interpreted scripting langauges

. . . ) . (gawk/bash), processed all 5,300,000 instances in one scan of the data
tha_t 1S, _by the difference in th_e |mpro_vement seenin SPADEemel using less than 3.5 Megabytes of memory. This took 11.5 hours on
estimationover or abovea simple single gaussian scheme. Henc%, GHz Pentium 4, with 500MB of RAM, runing Windows/Cygwin

the. Ieft-.hand-5|de data set§ of Figure 4 show example§ where .kergﬁ,' we conjecture that that this runtime could be greatly reduced by
estimation work comparatively better than SPADE while the ”ghborting our toolkit to “C”

hand-side shows results where SPADE did comparatively better. Another encouraging result is theattributes with X bingplot of

Th_ree featgres of Figure 4 are noteworthy. Flrgtly, n a.f'ndmgigure 5. One concern with SPADE is that several of its internal
consistent with those of Dougherty et.al. [13], discretization can

) . . e parameters are linked to the number of processed instances; e.g.
sometimes dramatically improve classification the accuracy of

MaxBinsis the square root of the number of instances. The 5,300,000
. - 0 o | € . ,300,

Nr?Jd\I/eBgyesth?tssmterl(l;y unp dt(t)hgt/o to iS '/riwml drzt.a S‘ret? Ct’.F’r':A’O)H Srslﬁstances of KDD'99 could therefore generate an impractically large
ondly, bougnerly et.al. found that even simple discretization SCheMes e of pins for each numeric attribute. This worst-case scenario
(e.g. 10-bins) can be competitive with more sophisticated scheme

1 . \Wduld occur if each consecutive group SfubBins number of
we see: the same result here whe_re,_@w of these experiments, numeric values has different values from the previously seen groups
SPADE's mean improvement was within 3% of John and Langley’s . . . . .
andthey are sorted in ascending or descending order. If this unlikely

kernel estimation method. Thirdly, in two cases, SPADE's one SC%fgembination of events doawt occur then the resulting bins would

method lost information and performed worse than assuming a sin . ) L . )
: - . aave tallies tharM/inInst, encouraging it to merge with the next bin.
gaussian. In data set A, the loss was minimal (-1%) and in data

AT - .. _Inall our experiments, we have never seen this worst-case behavior.
K 0,
|Sr?toBrs\?:\,[\:Etshéezlél\t,znvtvaei:tglf Vélg]Alrlle Aéino;gri?rilaf Sg?:t'socnér}] KDD'99, for example, SPADE only ever generated 2 bins for 20
ur view, the advantag ! _of ﬁhe 40 attributes. Also, for only two of the attributes, did SPADE
processing, distribution independent) compensates for its occasiona

. . - : nerate more than 50 bins. Further, SPADE never generated more
performing worse than state-of-the-art alternatives which require far . .
than 100 bins for any attribute.
more memory.

Attempts to test our system using other KDD cup data were not
successful, for a variety of reasdns

0.75

0.5

mean M*C scores
# attributes with X bins

0.25

1 10 1824
entrants

IV. EXPERIMENTS

In all the following experiments, SPADE was run continuously on
all incoming data while SAWTOOTH worked on windows containind®- UCI Data
a variable number of eras. Also, when SAWTOOTH accuracies areFigure 5 explored SAWTOOTH's competencies on one large
reported, they are the accuracies seen on new instéietesethose data set. Figure 6 explores SAWTOOTH's competency on many

instances update the frequency tables of thévéayes classifier. smaller data sets from the standard UCI databgsemeal, au-
That is, all the SAWTOOTH accuracies reported below come frodlology, auto-mpg, diabetes, echo, heart-c, hepatitis, horse-colic,

datanot (yet) used to train the classifier. hypothyroid, ionosphere, iris, labor, letter, primary-tumor, segment,
soybean, vehicle, vote, vowel, waveform-b0those data sets ranged
A. KDD'99 Data in size from labor's 57 instances tdetters 20,000 instances. A

In order to stress test our system, we ran it on the 5’300105@ndard 10*10 cross-validation experiment was conducted using
instances used in the 1999 KDD éufKDD'99 dealt with network SAWTOOTH+SPADE+Bayes (using the Figure 3 code); or the J48
intrusion detection and was divided into a training set of abo@gcision tree learner; or two NeeBayes classifiers that used either
five million instances and gest setof 311,029 instances. The data? Single gaussian to model continuous attributes (the “NB” learner)
comprised 6 discrete attributes, 34 continuous attributes, and @g@ Sum of gaussians (the “NBK” learner proposed by John and
classes which fell into four main categoriesormal (no attack); Langley [S]).
probe (surveillance and other probingDOS (denial-of-service); ~ USINg t-tests, significant differences: (= 0.05) between the
U2R (unauthorized access to local super-user privileges); Raid Mean performance of each learner on the 20 data sets could be

(unauthorized access from a remote machine). The KDD'04 ati al fine during th od wh
) ; e evaluation portal was off-line durin e period when
The 24.K.DD 99 .CUP entrants ran t.he" Iearners to ge.n.erf.iteds WTOOTH was being deveploped. The KDD'03 probgllem reguired feature
matrix M i, j] showing the number of times classvas classified. extration from free text- something that is beyond the scope of this research.
Entries were scored by computing the melfis, j] x C[¢, j] value  The data for KDD'02 is no longer on-line. The KDD'01 had data with 130,000
attributes and we don't yet know how to extend our techngie to such a large
Shttp://www.ai.univie.ac.at/"bernhard/kddcup99.html attribute space. We had trouble following the KDD’00 documentation.
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'eiger W'”l'o'oss ek '2555 t'zeos Three features of Figure 7 are worthy of mention. Firstly, between
NBK 8 17 9 34 concept drifts, the accuracy stabilizes and SAWTOOTH mostly
SAWJgOTH _'162 192 ;? 28 disables the learner, thus implementingithelicit stratified sampling
” policy mentioned above irgll. Consider a run containing eras
Tl R 1,2,...,50 where all eras come from class1 except eras 10,11 which
I? 0l #t contain class2. If plateau takes two eras, then, at most, SAWTOOTH
5 s :ﬁ* would only use two eras of class2 data (since that is all there is)
§ or W#W#%W#W . and four eras of classl data (the first two eras after the start and two
P more eras after the class2 eras). This means that SAWTOOTH would
g -0 'f 1 under-sample the majority class and ignore 88% of the classl data.
g iz o . . . ] Secondly, the large drop in accuracy when entering a new context
0 10 20 30 40 50 60 means SAWTOOTH can be used to recognize new contexts (watch
delta accuracies, sorted for the large drops). In terms of certifying an adaptive system, this is
a very useful result: learning systems can alert their uses when they
Fig. 6. SAWTOOTH exeucting on UCI data. are leaving the region of their past competendhirdly, and most

importantly, there is no such large drop when SAWTOOTH returns
to old contexts. That is, SAWTOOTH caetain knowledge of old

detected. Win/lossfties statistics for each pair of learners on egghtextsand reuse that knowledgehen contexts re-occur
data set was then collected. The results, shown top of Figure 6

shows SAWTOOTH performing marginally better than NB classifier ) )
but worse that both J48 and NBK. This is not surprising: Provo& Unsupervised Learning

and Kolluri [1, p22] comment that sequential learning strategies like Figure 5, Figure 6, and Figure 7 were all examplesupervised

windowing usually performs worse than learning from the total sefearning In supervised learning (when each instance is stamped with
However, what is encouraging is theze of the difference in 3 class symbol), handling concept drift meaesognizingwhen the

mean accuracies SAWTOOTH and the other learners. The plot ShCMfﬂjeﬂying data generating phenomenum has changedepaiting

bottom of Figure 6 sorts all those differences. In 80% of oufe current classifier to cope with that change.

experiments, SAWTOOTH performed within5% of other methods.  Figure 8 shows anun-

supervised learning experi-
C. Data with Concept Drift ment (where instances lack Average Max Likelihood

Figure 5 and Figure 6 showed SAWTOOTH processing static daf{}y class symbol). In unsu-
Figure 7 shows SAWTOOTH running on data with concept drifP€vised learning, it no longer  o.0001
To generate that figure, a flight simulator was executed Whereng\kes_sense tepair the clas-
airplane moved from a nominal mode to one of five error conditioril '€’ since there are no classes
(labeled a,b,c,d,¢. Data was taken from the simulator in eras of° classify. quever, the F"Ob'
size 100 instances. Each error mode lasted two eras and e'sd Of recognizingnovel situ-
such mode was encountered twice. The top of Figure 7 shows {iPNS remains. Such novelty
results of SAWTOOQOTH's stability tests as well as when SAWTOOTIEFetemors ‘?OUld monitor (e.g.)
enabled or disabled learning. Each error mode introduced a perfdd _adapatlve controller er a
of instability which, in turn, enabled a new period of learning. J_et fighter and propose SW'tc_h'

The first time SAWTOOTH saw a new error mode (at erad9 o ma_mual <_:ontr0| (or bail-
15,23,31,39,and 47), the accuracy drops sharply and after each mdy OUt)_ if the inputs are rad- 1 5 9 15
accuracy returns to a high level (usually, over 80%). $aeondime ically different to what has train monitor. - efror
SAWTOOTH returned to a prior error mode (at eras 63,71,79,87 aR§en seen before.

95), the accuracies drop, but only very slightly. In the Figure 8 experiment, i, g | caring normal flight (eras
the class of all instances were1 to 8); monitoring five different flights
replaced with a single label: a,b,..e (eras 9 to 16); injecting errors into

class0. Eras one to eight of eras 15,16.

1le-05 |

1le-06 g

ameot [T T T T T T T natfgure show SAWTOOT
0] processing eight eras (of 100 instances) of nominal flight simulator
g Sé?gt')elgzﬁg C i data. Updating the frequency tables was then disabled and the system
watched over five entirely different flights, each ending with one
100 - of our errorsa,b,c,d,e The classify routine of Figure 3 was
75 modified to return the classification with the maximum likelihcasl
-~ well asthat maximum likelihood value. Figure 8 shows the average
8 S0 maximum likelihood seen in each era. In all cases, the era 15,16 errors
§ 25 L dramatically changed the likelihoods: they droppedtbwy orders
;\g of magnitudefrom the pre-error values and they droppeelow the
0r liklihooods seen during training (eras 1 to 8).
L L nu L nn Figure 8 suggets that SAWTOOTH could be used for novelty
eraz1 o b c der?a:so abecd era=10C detection in unsupervised learning as follows. Without even knowing

the target classes of a system, a V&V agent could monitor the
average maximum likelihood of the input examples. If that likelihood
Fig. 7. SAWTOOTH and concept drift suddenly drops by orders of magnitude, then the agent could raise
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an alert that it is unlikely that the adaptative system is seeing inp#sd Mission Assurance under the Software Assurance Research

similar to what is has handled previously. Program led by the NASA IV&V Facility. Reference herein to any
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learning using a variety of complex methods: association rules ttademark, manufacturer, or otherwise, does not constitute or imply

learn expected patterns in attribute values [18]; or SVDDs to recoigs endorsement by the United States Government.
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