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Abstract

Many data sets exhibit aearly plateauwhere the performance of a learner peeks after seeing a few hundred
(or less) instances. When concepts drift is slower than the time to find that plateau, then a simple windowing policy
and an incremental discretizer lets standard learners likeeBayes classifiers to scale to very large data sets. Our
tookit is simple to implment; can scale to millions of instances; works as many other data mining schemes; and,
with trivial modifications, can be used to detect concept drift; to repair a theory after concept drift; can reuse old

knowledge when old contexts re-occur and can detect novel inputs during unsupervised learning.

Index Terms

data mining, concept drift, scale up, NaBayes classifiers, incremental, discretization, SAWTOOTH, SPADE,

novelty detection

I. INTRODUCTION

Our goal is intelligent adapative controllers of running programs that are monitored by temporal logic invariants.
We want to find bugs, or ways to dodge them. Hence, we want data miners to watch Monte Carlo simulations and
learn constraints to input ranges which increase/decrease the number of logic violations. To this end, we explore
how to simplify the task of scaling up induction to very large data sets. Given the right systems software such data
sets are readily obtainable: just run the Monte Carlo simulations on the spare CPUs left behind when everyone go
home for the night.

Standard classifiers are not designed to handle very large data sets: they usually

assume that the data will be represented as a single, memory-resident table [1].

Nevertheless, for data sets that exhiedérly plateauswe show here that the
following combination tools can scale to very large data sets: (i) iveéBayes N Lo gy
classifier; (ii) an incremental discretizer called SPADE; (iii) a simple windowin@ 73 b |
sampling policy called SAWTOOTH. 2 20
25t 1
A data set exhibitearly plateauswhen the peak performance of a learner ol T |
MHE om

requires just a few hundred instances. Figure 1 shows such an early plateau in e

123458 7E89
the soybean[2] data set. Figure 1 is &ncremental R*N-way cross-validation bins vsed in training
experiment. ForR = 10 repeats, data was randomly shuffled. The data in each

random ordering was then dividét=10 ways. Two learners, J48 and rbkvere Fig. 1. Incremental 1010 cross val-

then trained using the firgtdivisions and tested using remainihgi divisions. idation experiments orsoybean Error

As might be expected, as more data is used for training (i.e. runnirigfor. (N-  P&'S show=:1 standard deviations for

. _ the accuracies over the repeats.
1)), the accuracy of the learned theory increased. Foistybeandata set, this

1Both learners come from the WEKA toolkit [3]. J48 is release eight of C4.5 [4] ported to JAVA and nbk isvaBéges classifier using
John and Langley’s kernel estimation method [5]

November 14, 2004 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. Y, AUGUST 2005 3

Naive Bayes (with kernel estimation M5: model trees
"7 #instances —— "7 #instances ——
% data —=— % data —=—
ACC L PRED(30)
400 - 1 20
200
300 + B 150 b |
200 100 | i
100 B 50
50 /.\.‘\__\-/H o 7/'<-/\-/'_'\./'/- |
ABCDEFGHIJ KLMNOPQRST
data set data set
J48 (entrophy-based decision trees, LSR: linear regression
" 7 #instances " #instances’
% data —=— % data —=—
ACC 300 PRED(30), 1
400 + 1 250 b i
300 4 200
200 150 1
100 r 1
100 B 50 A a
50 s = = N\l N\
ABCDEFGHIJ KLMNOPQRST
data set data set

Fig. 2. 10*10incremental cross validation experiments on 20 UCI data set{f2heart-c, B:zoo; C:vote; D:heart-statlog; E:lymph, F:autos.
G:ionosphere, H:diabetes, I:balance-scale, J:soybean, K:bodyfat. L:cloud, M:fishcatch, N:sensory, O:pwLinear, Q:strike, R:pbc, S:autoMpg,
T:housing. Data sets A..J have discrete classes and are scored vactheacyof the learned theory; i.e % successful classifications. Data

sets K..T have continuous classes and are scored b RED(30)of the learned theory; i.e. what % of the estimated values are within 30%

of the actual value. Data sets are sorted according to how many instances were required. to reach plateau using nbk (left-hand side) or M5’
(right-hand side).

increase peaked 88%/91% for J48/nbk respectively after seeing 60% of the data
(409 instances).

Other data sets plateau even earlier teapbeanFigure 2 shows plateaus found by four learners (J48,nbk, LSR,
and M57?) in 20 data sets. Those plateaus were found before seeing most of the data: usually, after seeing 50%,
and mostly before after seeing 60% (exceptions: E and F). For any learner in Figuret2hsnof the data sets,
learning did not improve significantly (computed using t-tests witk 0.05) after seeing 200 instances.

Figure 2 suggests that, for many data sets and many learners, learning could progeetbimsof a few hundred
instances. Learning could be disabled once performance peaks within those windows. If the learner’s performance
falls off the plateau (i.e. due to concept drift), the learner could start afresh to learn a new theory. Given early
plateaus like those in Figure 2, this new learning should take only a few more hundred instances. Further, since
learning only ever has to process a few hundred instances at a time, this approach should scale to very large data
sets.

The rest of this tests that speculation using numerous UCI data sets, some KDD cup data, and an aircraft flight
simulator. Our simple toolkit easily extends to handle concept drift problems such as recurring contexts and, in
unsupervised learning, can be used to detect novel inputs. The toolkit performs comparatively well compared to

other data miners. Only only explanation for the success of such a simple toolkit is that the assumption of early
2LSR and M5’ come from the WEKA [3]. LSR/M5’ assumes values can be fitted to one/many (respectively) n-dimensional linear models [6].
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plateaus holds in many datasets.

Il. RELATED WORK

Provost and Kolluri [1] note that while the performance of some learners level off quite early, other learners
continue to show accuracy increases as data set size increases. However, that improvement can be quite small.
For example, Catlett reports differences of less than 1% (on average) between theories learned from 5000 or 2000
randomly selected instances in ten different data sets [7].

Plateaus like Figure 2 have been reported before (although this may be first report of early plateaus in M5’ and
LSR). Oates and Jensen found plateaus in 19 UCI data sets using five variants of C4.5 [8]. In their results, six of
their runs plateaued after seeing 85 to 100% of the data. This is much later than Figure 2 where none of our data
sets needed more than 70% of the data.

We are not motivated to explore different methods for detecting start-of-plateau. The results below show that
learning using our start-of-plateau detector can produce adequate classifiers that scale to very large data sets.
Nevertheless, one possible reason for our earlier plateaus is the method used to identify start-of-plateau. Figure 2
detected plateaus using t-tests to compare performance scores seen in theories learngddrakh examples
(M < N) and reported start-of-plateau if no significaat=0.05) difference was detected between fkieand
the lastM with a significant change. On the other hand, Oates and Jensen scanned the accuracies learned from
5,10,15% etc. of the data looking for three consecutive accuracy scores that are within 1% of the score gained
from a theory using all the available data. Note that regardlesgshefethey found plateaus, Oates and Jensen’s
results endorse our general thesis that, often, learning need not process all the available examples.

Assuming early plateaus, then very simple learners should scale to large data sets. Our reading of the literature
is that Bayes+SAWTOOTH+SPADE is much simpler than other methods for scaling up data mining. Provost and
Kolluri distinguish three general types of scale-up methods. Firstly, thereetatonal representatiormethods
that reject the assumption that we should learn from a single memory-resident table. Secondly, tliesteare
algorithmsthat (e.g.) exploitparallelism Thirdly there aredata partitioningmethods to learn from (e.g.) some
subset of the attributesTwo such strategies amindowingand stratified samplingIn windowing newly arrived
examples are pushed into the start of sliding window of gizevhile the same number of older examples are popped
from the end. Instraified samplinginstances are sampled according to the relative frequency of their classes; e.g.
instances from the minority classes are selected with a higher frequency that instances from the majority classes.
SAWTOOTH uses amxplicit windowing policy and, as discussed later, usaplicit stratified sampler.

Windowing systems need to select an appropriate window1§izéf 17 is small relative to the rate of concept
drift, then windowing guarantees the maintenance of a theory relevant to thé/lastamples. However, itV is
too small, learning may never have find an adequate characterization of the target concept. Simifariy, to
large, then this will slow the learner’s reaction to concept drift.

Many windowing systems like SAWTOOTH and FLORA [9] select the window size dynamicBllygrows

till stable performance is reached; remains constant while performance is stable; then shrinks when concept drift
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occurs and performance drops. FLORA changéausing heuristics based on accuracy and other parameters that

take into account the number of literals in the learnt theory. FLORA's authors comment that their heuristics are “very
sensitive to the description language used”. Hence, they claim that “it seems hopeless (or at least difficult) to make
it completely free of parameters”. This has not been our experience: SAWTOOTH uses the simple standardized

test statistic of Equation 1 to determine window size. In all our experiments we have kept parameters of those tests

constant. 2.8
o S 7( it E)
—a(a =001 = 2326 < W T @
VB i o))
- vVE

Equation 1 needs some explanation. A SAWTOOTH window is some integer numbetafof size F; i.e.

W = nFE (default: E=150 instances). SAWTOOTH windows grow until performance has not changed significantly
in a Stable (default: 2) number of eras. Each era is viewed as a binomial trial and each window is a record of
trail results in the erag, ...i, ; where eraz is the current era and era=1 is the first report of instability. Each era

k holds Sy successful classifications and Equation 1 checks if the current isrdifferent to the proceedings eras
1...,4.

On stability, SAWTOOTH disables theory updates, but keeps collectingSteeatistics (i.e. keeps classifying
new examples using the frozen theory). If stability changes to instability, SAWTOOTH shiinkack to one era’s
worth of data and learning is then re-enabled.

One problem with windowing systems is the computational cost of continually re-learning. Hence SAWTOOTH
uses a learner that can update its knowledge very quickly. Figure 3 shows theBlges classifier used by
SAWTOOTH. The functionupdate in that figure illustrates the simplicity of re-learning for a Bayes classifier:
just increment a frequency table holding counts of the attribute values seen in the new training examples.

Apart from rapid updates, N\eeBayes classifiers have other advantages. Such classifiers use Bayes’ Theorem:
P(H)
P(H|FE)= ———= | IP E;|H

That is, given fragments of evidendg and a prior probability for a clasB(H ), a posterior probabilityP(H | E)
is calculated for the hypothesis given the evidence. The Bayes classifier returns the class with highest probability.
Such classifiers are callegkive since they assume that the frequencies of different attributes are independent.
In practice [11], the absolute values of the classification probabilities computed by Bayes classifiers are often
inaccurate. However, the relative ranking of classification probabilities is adequate for the purposes of classification.
Many studies (e.g. [12], [13]) have reported that, in many domains, this simple Bayes classification scheme exhibits
excellent performance compared to other learners.

In the sequel, when we discussisupervised learningthe following detail will become important. Figure 3
actually, computes cladikelihoodsnot probabilities. Likelihoods become probabilities when they are normalized
over the sum of all likelihoods. However, since maximum probability comes from maximum likelihood, this code

only needs to return the class with maximum likelihood.
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# GLOBALS: “F": frequeny tables; “I" : number of instances;
# “C"”: how many classes?; “N": instances per class

function update(class,train)
# OUTPUT: changes to the globals.
# INPUT: a “train”ing example containing attribute/value pairs
# plus that case’s “class”
I++; if (++N[class]==1) then C++ fi
for <attr,value> in train
if (value != "?") then

F[class,attr,range]++ fi

function classify(test)
# OUTPUT: “what” is the most likely hypothesis for the test case.
# INPUT: a “test” case containing attribute/value pairs.

k=1; m=2 # Control for Laplace and M-estimates.
like = -100000 # Initial, impossibly small likelihood.
for H in N # Check all hypotheses.
{ prior = (N[H]+k)/(I+(k*C)) #<—=P(H).
temp = log(prior)
for <attr,value> in attributes
{if (value != "?") then
inc = F[H,attr,value]+(m*prior))/(N[H]+m) #<—P(E,; | H).
temp += log(inc) fi
}
if (temp >= like) then like = temp; what=class fi

}

return what

Fig. 3. A Bayes Classifier. “?” denotes “missing values”. Probabilities are multiplied together using logarithms to stop numeric errors when

handling very small numbers. The andk variables handle low frequencies counts in the manner recommended by Yang and Wej31[10,

In terms of scaling up induction, the most important property of a Bayes classifier is that they need very little
memory. These learners only need the memory required for the frequency counts plus a buffer just large enough
to hold a single instance. Other researchers have explored incremental Bayes classifiers using modifications to the
standard Bayes classifier: e.g. Gama alters the frequency counts in the summary tables according the success rate
of the lastV classifications [14] while Chai et.al. updates the priors via feedback from the examples seen up till
now [15]. In contrast, we use standard Bayes classifigisout modification.

Bayes classifiers can be extended to numeric attributes usimgl estimatiormethods. The standard estimator
assumes the central limit theorem and models each numeric attribute using a single gaussian. Other methods don’t
assume a single gaussian; e.g. John and Langley’s gaussian kernel estimator models distributions of any shape as
the sum of multiple gaussians [5]. Other, more sophisticated methods are well-established [16], but several studies

report that even simpldiscretization methodsuffice for adapting Bayes classifiers to numeric variables [13], [17].
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John and Langley comment that their method must access all the individual numeric values to build their kernel
estimator and this is impractical for large data sets. Many discretization methods violateetlsearequirement
of a data miner: i.e. execute using only one scan (or less) of the data since there many not be time or memory

to go back and look at a store of past instances. For example, Dougherty et.al.strE@] mandiscretization

method is10-binswhich divides attributes; into bins of sizeAX (@l MIN(@) it MAX and MIN are calculated
incrementally along a stream of data, then instance data may have to be cached and re-discretized if the bin sizes
change. An alternative is to calculate MAX and MIN after seaifighe data. Both cases require two scans through
the data, with the second scan doing the actual binning. Many other discretization methods (e.g. all the methods
discussed by Dougherty et.al. [13] and Yang and Webb [17]) suffer from this two-scan problem.

An incremental one scan (or less) discretization method is needed for scaling up induction. SAWTOOTH uses

the SPADE method described below.

IIl. HANDLING NUMERIC ATTRIBUTES WITH SPADE

Discretization converts continuous ranges to a set of bins storing the tally of numbers that fall into that bin. In
order to process infinite streams of data, we developed a one-pass discretization method called SRADPAS
Dynamic_Ehumeration).

SPADE only scans the input data once and, at anytime during the processkgnsfances, SPADE’s bins are
available. Further, if it ever adjusts bins (e.g. when merging bins with very small tallies), the information used for
that merging comes from the bins themselves, and not some second scan of the instances. Hence, it can be used
for the incremental processing of very large data sets.

Unlike standard NizeBayes classifiers, SPADE makes no assumptions about the underlying numeric distributions.
SPADE is similar tol0-binsbut the MIN and MAX change incrementally. The first valiecreates one bin and
sets{MIN=N,MAX=N }. If a subsequent new value arrives inside the curfditN,MAX } range, the bins from
MIN to MAX are searched for an appropriate bin. Otherwis&wdBins number of new bins are created (default:

SubBins=5) and MIN/MAX is extended to the new value. For example, here are four bins:

i 1 2 3 4 min
border | 10 | 20 | 30 | 40 10

Each bin is specified by its lowéordervalue. A variableV maps to the first/last bin if it is the currefiIN,MAX }

max

40

value (respectively). Otherwise it maps to binvhereborder; < N < border; 1. AssumingSubBins = 5, then

if a new valueN = 50 arrives, five new bins added above the old MAX to a new MAX=50:

g 1 2 3 4 5 6 7 8 9 | min
border | 10 | 20 | 30 | 40 | 42 | 44 | 46 | 48 | 50 10

max

50

If the newly created number of bins exceedslaxBinsparameter (default=the square root of all the instances seen

to date) then adjacent bins with a tally less tiMiminst (default: same aMaxBing are merged if the tally in the
merged bins is less thanMaxInstparameter (default: 2ininst). Preventing the creation of very few bins with

big tallies is essential for a practical incremental discretizer. Hence, SPADE checks for merges only occasionally

(at the end of each era), thuss allowing for the generation of multiple bins before they are merged.
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Fig. 4. Comparing SPADE and kernel estimation. Data s¢fssvowel, B=iris, C=ionosphere, D=echo, E=horse-colic, F=anneal,
G=hypothyroid, H=hepatitis, |=heart-c, J=diabetes, K=auto-mpg, L=waveform-5000, M=vehicle, N=labor, O=segment

SPADE runs as a pre-processorupdate to NaveBayes. Newly arrived numerics get placed into bins and it
is this bin number that is used as thelue passed tapdate or Figure 3. Also, when SPADE merges bins, this
causes a similar merging in frequncy tables entries fheariable of Figure 3).

The opposite of merging would be &plit bins with unusually large tallies. SPADE has no split operator since
we did not know how to best divide up a bimithout keeping per-bin kernel estimation data (which would be
memory-expensive). Our early experiments suggested that addibgins = 5 new bins between old ranges and
newly arrived out-of-range values was enough to adequately divide the range. Our subsequent experiments (see
below) were so encouraging that we are not motivated to add a split operator.

Figure 4 compares results from SPADE and John and Langley’s kernel estimation method using the display
format proposed by Dougherty, Kohavi and Sahami [13]. In that figure, a 10*10-way cross validation used three
learners: (a) N&eBayes with a single gaussian for every numeric; (bivBRayes with John and Langley’s kernel
estimation method (c) the Figure 3 NaBayes classifier using data pre-discretized by SPADE. Mean classification
accuracies were collected and shown in Figure 4, sorted by the nieans — (b — a); that is, by the difference in
the improvement seen in SPAD# kernel estimatiorover or abovea simple single gaussian scheme. Hence, the
left-hand-side data sets of Figure 4 show examples where kernel estimation work comparatively better than SPADE
while the right-hand-side shows results where SPADE did comparatively better.

Three features of Figure 4 are noteworthy. Firstly, in a finding consistent with those of Dougherty et.al. [13],
discretization can sometimes dramatically improve classification the accuracy af/@Bdges classifier (by up to
9% to 15% in data sets C,F,M,0). Secondly, Dougherty et.al. found that even simple discretization schemes (e.g.
10-bins) can be competitive with more sophisticated schemes. We see the same result here Wheoé thiese
experiments, SPADE’s mean improvement was within 3% of John and Langley’s kernel estimation method. Thirdly,
in two cases, SPADE’s one scan method lost information and performed worse than assuming a single gaussian. In
data set A, the loss was minimal (-1%) and in data set B SPADE's results were still within 3% of kernel estimation.

In our view, the advantages of SPADE (incremental, one scan processing, distribution independent) compensates
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Fig. 5. SAWTOOTH and the KDD'99 data

for its occasional performing worse than state-of-the-art alternatives which require far more memory.

IV. EXPERIMENTS

In all the following experiments, SPADE was run continuously on all incoming data while SAWTOOTH worked
on windows containing a variable number of eras. Also, when SAWTOQOTH accuracies are reported, they are the
accuracies seen on new instanteforethose instances update the frequency tables of thigeBayes classifier.

That is, all the SAWTOOTH accuracies reported below come from dat#yet) used to train the classifier.

A. KDD’99 Data

In order to stress test our system, we ran it on the 5,300,000 instances used in the 1999 KDRDID®9
dealt with network intrusion detection and was divided into a training set of about five million instancegestd a
setof 311,029 instances. The data comprised 6 discrete attributes, 34 continuous attributes, and 38 classes which
fell into four main categoriesnormal (no attack);probe (surveillance and other probingpOS (denial-of-service);

U2R (unauthorized access to local super-user privileges);Rid(unauthorized access from a remote machine).

The 24 KDD’99 cup entrants ran their learners to generated a mafiix j] showing the number of times
classi was classifiedj. Entries were scored by computing the me#ii, j] « C[i, j] value whereC([:, j] was the
cost of mis-classifying (e.g.) unauthorized access to super-user as (e.g.) just a simple probe. Ndte thatre
mis-classificatiorscores so dower score is better.

Figure 5 shows all the sortethean M*C scoredfrom the KDD'99 entrants. Also shown in that figure is
SAWTOOTH’s meanM x C result. SAWTOOTH's results were close to the winning score of entrant #1; very
similar to entrants 10,11,12,13,14,15,16; and much better than entrants 18,19,20,21,22,23,24. These results are
encouraging since SAWTOOTH is a much simpler tool that many of the other entries. For example, the winning

entrant took several runs to divide the data into smaller subsets and buid an ensemble of 50x10 C5 decision

Shitp://www.ai.univie.ac.at/"bernhard/kddcup99.html
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trees using an intricate cost-sensitive bagged boosting technique. This took more than a day to terminate on a dual-
processor 2x300MHz Ultra-Sparc2 machine with 512MB of RAM using the commercially available implementation
of C5, written in “C”. In contrast, our toolkit written in interpreted scripting langauges (gawk/bash), processed all
5,300,000 instances in one scan of the data using less than 3.5 Megabytes of memory. This took 11.5 hours on a
2GHz Pentium 4, with 500MB of RAM, runing Windows/Cygwin and we conjecture that that this runtime could
be greatly reduced by porting our toolkit to “C”.

Another encouraging result is the attributes with X binglot of Figure 5. One concern with SPADE is that
several of its internal parameters are linked to the number of processed instancb&ydmsis the square root
of the number of instances. The 5,300,000 instances of KDD'99 could therefore generate an impractically large
number of bins for each numeric attribute. This worst-case scenario would occur if each consecutive group of
SubBins number of numeric values has different values from the previously seen gamuitbey are sorted in
ascending or descending order. If this unlikely combination of events mimezccur then the resulting bins would
have tallies than\/inInst, encouraging it to merge with the next bin. In all our experiments, we have never seen
this worst-case behavior. In KDD’99, for example, SPADE only ever generated 2 bins for 20 of the 40 attributes.
Also, for only two of the attributes, did SPADE generate more than 50 bins. Further, SPADE never generated more
than 100 bins for any attribute.

Attempts to test our system using other KDD cup data were not successful, for a variety of feasons

B. UCI Data

Figure 5 explored SAWTOOTH's competencies on one large data set. Figure 6 explores SAWTOOTH’s com-
petency on many smaller data sets from the standard UCI databaseeal, audiology, auto-mpg, diabetes,
echo, heart-c, hepatitis, horse-colic, hypothyroid, ionosphere, iris, labor, letter, primary-tumor, segment, soybean,
vehicle, vote, vowel, waveform-500Those data sets ranged in size fréeor's 57 instances tdetters 20,000
instances. A standard 10*10 cross-validation experiment was conducted using SAWTOOTH+SPADE+Bayes (using
the Figure 3 code); or the J48 decision tree learner; or twiveBayes classifiers that used either a single gaussian
to model continuous attributes (the “NB” learner) or a sum of gaussians (the “NBK” learner proposed by John and
Langley [5]).

Using t-tests, significant differencea & 0.05) between the mean performance of each learner on the 20 data
sets could be detected. Win/lossl/ties statistics for each pair of learners on each data set was then collected. The
results, shown top of Figure 6 shows SAWTOOTH performing marginally better than NB classifier but worse that
both J48 and NBK. This is not surprising: Provost and Kolluri [1, p22] comment that sequential learning strategies

like windowing usually performs worse than learning from the total set.

4The KDD'04 evaluation portal was off-line during the period when SAWTOOTH was being developed. The KDD’03 problem required
feature extration from free text- something that is beyond the scope of this research. The data for KDD'02 is no longer on-line. The KDD’'01
had data with 130,000 attributes and we don’t yet know how to extend our techngie to such a large attribute space. We had trouble following
the KDD’00 documentation.

November 14, 2004 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. Y, AUGUST 2005 11

However, what is encouraging is tezeof the difference in mean accuracies SAWTOOTH and the other learners.
The plot shown bottom of Figure 6 sorts all those differences. In 80% of our experiments, SAWTOOTH performed
within £5% of other methods.

learner win - loss | win loss | ties
J48 10 25 15 20
NBK 8 17 9 34
SAWTOOTH -6 12 18 30
NB -12 9 21 30
~ 20 T T T T T
Q +
£ 15 -
° +
z 10 + ]
o 5 +
2 0t +H—¢+H*H++*+H+++ R
E #*—H##W#%
a 5 e
& 0 f -
o +
3 -15 ke B
(5}
< 20 1 1 1 1 1

0 10 20 30 40 50 60
delta accuracies, sorted

Fig. 6. SAWTOOTH exeucting on UCI data.

C. Data with Concept Drift

Figure 5 and Figure 6 showed SAWTOQOTH processing static data. Figure 7 shows SAWTOOTH running on
data with concept drift. To generate that figure, a flight simulator was executed where a airplane moved from a
nominal mode to one of five error conditions (labekb,c,d,¢. Data was taken from the simulator in eras of size

100 instances. Each error mode lasted two eras and each such mode was encountered twice. The top of Figure 7

learn=off |- " ----1 o o e ‘ W

learn=on |- -- -t ter ot hS s bt

SrniT ar

stable:yes i Tt R Tt i T ! I T T
stable=no + - [H] o0 AR TR

status

100

75

50

%accuracy
N
6]
T

ab cde a b c de
era=1 era=50 era=10C

Fig. 7. SAWTOOTH and concept drift
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shows the results of SAWTOOTH'’s stability tests as well as when SAWTOOTH enabled or disabled learning. Each
error mode introduced a period of instability which, in turn, enabled a new period of learning.

The first time SAWTOOTH saw a new error mode (at eras 15,23,31,39,and 47), the accuracy drops sharply and
after each mode, accuracy returns to a high level (usually, over 80%)s@dendtime SAWTOOTH returned to
a prior error mode (at eras 63,71,79,87 and 95), the accuracies drop, but only very slightly.

Three features of Figure 7 are worthy of mention. Firstly, between concept drifts, the accuracy stabilizes and
SAWTOOTH mostly disables the learner, thus implementingriaicit stratified samplingpolicy mentioned above
in §ll. Consider a run containing eras 1,2,...,50 where all eras come from classl except eras 10,11 which contain
class2. If plateau takes two eras, then, at most, SAWTOOTH would only use two eras of class2 data (since that is
all there is) and four eras of classl data (the first two eras after the start and two more eras after the class2 eras).
This means that SAWTOOTH would under-sample the majority class and ignore 88% of the classl data.

Secondly, the large drop in accuracy when entering a new context means SAWTOOTH can be used to recognize
new contexts (watch for the large drops). In terms of certifying an adaptive system, this is a very useful result:
learning systems can alert their uses when theyleaeing the region of their past competendyirdly, and most
importantly, there is no such large drop when SAWTOQOTH returns to old contexts. That is, SAWTOOTétaan

knowledge of old contex@nd reuse that knowledgehen contexts re-occur

D. Unsupervised Learning

Figure 5, Figure 6, and Figure 7 were all examplesubervised learningln supervised learning (when each
instance is stamped with a class symbol), handling concept drift meamaegnizingwhen the underlying data
generating phenomenum has changed; @pairing the current classifier to cope with that change.

Figure 8 shows amnsupervised learningxperiment (where instances lack
any class symbol). In unsupervised learning, it no longer makes semepatio

Average Max Likelihood

the classifier since there are no classes to classify. However, the problem of

recognizingnovel situations remains. Such novelty detectors could monitor (e.g.) 0.0001
an adapative controller for a jet fighter and propose switching to manual control
(or bailing out) if the inputs are radically different to what has been seen before.

In the Figure 8 experiment, the class of all instances were replaced with a singlele'05 3
label: class0. Eras one to eight of that figure show SAWTOOTH processing eight

eras (of 100 instances) of nominal flight simulator data. Updating the frequency 1006 L

tables was then disabled and the system watched over five entirely different L L L
tra:ILin ° mogitor erlrgr

flights, each ending with one of our erraaish,c,d,e The classify routine of
Figure 3 was modified to return the classification with the maximum likelihood

as well asthat maximum likelihood value. Figure 8 shows the average maximuamg. 8. Learning normal flight (eras
e]dtqrzl’,); monitoring five different flights
a,b,..e (eras 9 to 16); injecting errors into
eras 15,16.

likelihood seen in each era. In all cases, when the errors were encounter
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era 15, the likelihood’s in the monitor learned from the nominal flight dropped
by around two orders of magnitude.

Figure 8 suggets that SAWTOOTH could be used for novelty detection in unsupervised learning as follows.
Without even knowing the target classes of a system, a V&V agent could monitor the average maximum likelihood
of the input examples. If that likelihood suddenly drops by orders of magnitude, then the agent could raise an alert
that it is unlikely that the adaptative system is seeing inputs similar to what is has handled previously.

Elsewhere, we have explored novelty detection in unsupervised learning using a variety of complex methods:
association rules to learn expected patterns in attribute values [18]; or SVDDs to recognize boundaries between
expected and novel inputs [19]. Figure 8 suggests that SAWTOOTH could perform the same task, but in a much

simpler way.

V. DISCUSSION

Holte argue forsimplicity-first approach to data mining; i.e. researchers should try simpler methods before
complicating existing algorithms [20]. While Provost and Kolluri endorse “simplicity-first”, they note in their review
of methods for scaling up inductive algorithms that “it is not clear now maehragecan be obtained through the
use of simpler classifiers to guide subsequent search to adsfresific deficienciem their performance” [1, p32].

This paper has been a simplicity-first approach to scaling up data miners. Weldvaved two features of
NaiveBayes classifiers that make them good candidates for handling large datasets: fast updates of the current theory
and small memory foot print. Severdeficiencieswith NaiveBayes classifiers have been addressed: incremental
discretization and dynamic windowing means that Bayes classifiers need not hold all the data in RAM at one time.

Our Bayes+SAWTOOTH+SPADE toolkit works via one scan of the data and can scale to millions of instances
and works as many other data mining schemes (see Figure 5). The same toolkit with trivial modifications, can
be used to detect concept drift; to repair a theory after concept drift; can reuse old knowledge when old contexts
re-occur (see Figure 7); and can detect novel inputs during unsupervised learning (see Figure 8).

A drawback with out toolkit is that we can’t guarantee that our learner operates in small constant time per
incoming instance. Several of SPADE’s internal parameters are functions of the total number of instances. In the
worst case, this could lead to runaway generation of bins. On a more optimistic note, we note that this worst case
behavior has yet to be observed in our experiments: usually, the number number of generated bins is quite small
(see Figure 5).

Our toolkit much simpler than other data miners such as FLORA, the winner of KDD'99, or the SVDDs we
used previously for detecting novel inputs. Why can such a simple toolkit like Bayes+SAWTOOTH+SPADE be
so competent? Our answer is that many data sets (such as all those processed in our experiments) exhibit early
plateaus and such early plateaus can be exploited to build very simple learners. If a particular data sets does not
contain early plateaus then our simple toolkit should be exchanged for a more sophisticated scheme. Also, our
toolkit is inappropriate if concept drift is occurrirfgsterthan the time required to collect enough instances to find

the plateau. Further, our scheme is designeddigre data sets and so does not perform as well as other commonly
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used schemes when used smallerdata sets (but often achieves accuracy on small data sets wifi¥inof other
learners schemes- see Figure 6).

Finally, we recommend that other data mining researchers check for early plateaus in their data sets. If such
plateaus are a widespread phenmema, tleey simple toolglike Bayes+SAWTOOTH+SPADE) should be adequate

for the purposes of scaling up induction.
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