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Abstract

Many data sets exhibit anearly plateauwhere the performance of a learner peeks after seeing a few hundred

(or less) instances. When concepts drift is slower than the time to find that plateau, then a simple windowing policy

and an incremental discretizer lets standard learners like Naı̈veBayes classifiers to scale to very large data sets. Our

tookit is simple to implment; can scale to millions of instances; works as many other data mining schemes; and,

with trivial modifications, can be used to detect concept drift; to repair a theory after concept drift; can reuse old

knowledge when old contexts re-occur and can detect novel inputs during unsupervised learning.

Index Terms

data mining, concept drift, scale up, Naı̈veBayes classifiers, incremental, discretization, SAWTOOTH, SPADE,

novelty detection

I. I NTRODUCTION

Our goal is intelligent adapative controllers of running programs that are monitored by temporal logic invariants.

We want to find bugs, or ways to dodge them. Hence, we want data miners to watch Monte Carlo simulations and

learn constraints to input ranges which increase/decrease the number of logic violations. To this end, we explore

how to simplify the task of scaling up induction to very large data sets. Given the right systems software such data

sets are readily obtainable: just run the Monte Carlo simulations on the spare CPUs left behind when everyone go

home for the night.

Fig. 1. Incremental 10*10 cross val-

idation experiments onsoybean. Error

bars show±1 standard deviations for

the accuracies over the repeats.

Standard classifiers are not designed to handle very large data sets: they usually

assume that the data will be represented as a single, memory-resident table [1].

Nevertheless, for data sets that exhibitearly plateauswe show here that the

following combination tools can scale to very large data sets: (i) a Naı̈veBayes

classifier; (ii) an incremental discretizer called SPADE; (iii) a simple windowing

sampling policy called SAWTOOTH.

A data set exhibitsearly plateauswhen the peak performance of a learner

requires just a few hundred instances. Figure 1 shows such an early plateau in

the soybean[2] data set. Figure 1 is aincremental R*N-way cross-validation

experiment. ForR = 10 repeats, data was randomly shuffled. The data in each

random ordering was then dividedN=10 ways. Two learners, J48 and nbk1, were

then trained using the firsti divisions and tested using remainingN-i divisions.

As might be expected, as more data is used for training (i.e. running fori=1. . . (N-

1)), the accuracy of the learned theory increased. For thesoybeandata set, this

1Both learners come from the WEKA toolkit [3]. J48 is release eight of C4.5 [4] ported to JAVA and nbk is a Naı̈veBayes classifier using

John and Langley’s kernel estimation method [5]
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Fig. 2. 10*10 incremental cross validation experiments on 20 UCI data sets [2]:{A:heart-c, B:zoo; C:vote; D:heart-statlog; E:lymph, F:autos.

G:ionosphere, H:diabetes, I:balance-scale, J:soybean, K:bodyfat. L:cloud, M:fishcatch, N:sensory, O:pwLinear, Q:strike, R:pbc, S:autoMpg,

T:housing}. Data sets A..J have discrete classes and are scored via theaccuracyof the learned theory; i.e % successful classifications. Data

sets K..T have continuous classes and are scored by thePRED(30)of the learned theory; i.e. what % of the estimated values are within 30%

of the actual value. Data sets are sorted according to how many instances were required. to reach plateau using nbk (left-hand side) or M5’

(right-hand side).

increase peaked 88%/91% for J48/nbk respectively after seeing 60% of the data

(409 instances).

Other data sets plateau even earlier thansoybean. Figure 2 shows plateaus found by four learners (J48,nbk, LSR,

and M5’2) in 20 data sets. Those plateaus were found before seeing most of the data: usually, after seeing 50%,

and mostly before after seeing 60% (exceptions: E and F). For any learner in Figure 2, in8
10 ths of the data sets,

learning did not improve significantly (computed using t-tests withα = 0.05) after seeing 200 instances.

Figure 2 suggests that, for many data sets and many learners, learning could proceed inwindowsof a few hundred

instances. Learning could be disabled once performance peaks within those windows. If the learner’s performance

falls off the plateau (i.e. due to concept drift), the learner could start afresh to learn a new theory. Given early

plateaus like those in Figure 2, this new learning should take only a few more hundred instances. Further, since

learning only ever has to process a few hundred instances at a time, this approach should scale to very large data

sets.

The rest of this tests that speculation using numerous UCI data sets, some KDD cup data, and an aircraft flight

simulator. Our simple toolkit easily extends to handle concept drift problems such as recurring contexts and, in

unsupervised learning, can be used to detect novel inputs. The toolkit performs comparatively well compared to

other data miners. Only only explanation for the success of such a simple toolkit is that the assumption of early

2LSR and M5’ come from the WEKA [3]. LSR/M5’ assumes values can be fitted to one/many (respectively) n-dimensional linear models [6].
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plateaus holds in many datasets.

II. RELATED WORK

Provost and Kolluri [1] note that while the performance of some learners level off quite early, other learners

continue to show accuracy increases as data set size increases. However, that improvement can be quite small.

For example, Catlett reports differences of less than 1% (on average) between theories learned from 5000 or 2000

randomly selected instances in ten different data sets [7].

Plateaus like Figure 2 have been reported before (although this may be first report of early plateaus in M5’ and

LSR). Oates and Jensen found plateaus in 19 UCI data sets using five variants of C4.5 [8]. In their results, six of

their runs plateaued after seeing 85 to 100% of the data. This is much later than Figure 2 where none of our data

sets needed more than 70% of the data.

We are not motivated to explore different methods for detecting start-of-plateau. The results below show that

learning using our start-of-plateau detector can produce adequate classifiers that scale to very large data sets.

Nevertheless, one possible reason for our earlier plateaus is the method used to identify start-of-plateau. Figure 2

detected plateaus using t-tests to compare performance scores seen in theories learned fromM or N examples

(M < N ) and reported start-of-plateau if no significant (α=0.05) difference was detected between theN and

the lastM with a significant change. On the other hand, Oates and Jensen scanned the accuracies learned from

5, 10, 15% etc. of the data looking for three consecutive accuracy scores that are within 1% of the score gained

from a theory using all the available data. Note that regardless ofwhere they found plateaus, Oates and Jensen’s

results endorse our general thesis that, often, learning need not process all the available examples.

Assuming early plateaus, then very simple learners should scale to large data sets. Our reading of the literature

is that Bayes+SAWTOOTH+SPADE is much simpler than other methods for scaling up data mining. Provost and

Kolluri distinguish three general types of scale-up methods. Firstly, there arerelational representationmethods

that reject the assumption that we should learn from a single memory-resident table. Secondly, there arefaster

algorithms that (e.g.) exploitsparallelism. Thirdly there aredata partitioningmethods to learn from (e.g.) some

subset of the attributes. Two such strategies arewindowingand stratified sampling. In windowing, newly arrived

examples are pushed into the start of sliding window of sizeW while the same number of older examples are popped

from the end. Instraified sampling, instances are sampled according to the relative frequency of their classes; e.g.

instances from the minority classes are selected with a higher frequency that instances from the majority classes.

SAWTOOTH uses anexplicit windowing policy and, as discussed later, usesimplicit stratified sampler.

Windowing systems need to select an appropriate window sizeW . If W is small relative to the rate of concept

drift, then windowing guarantees the maintenance of a theory relevant to the lastW examples. However, ifW is

too small, learning may never have find an adequate characterization of the target concept. Similarly, ifW is too

large, then this will slow the learner’s reaction to concept drift.

Many windowing systems like SAWTOOTH and FLORA [9] select the window size dynamically:W grows

till stable performance is reached; remains constant while performance is stable; then shrinks when concept drift
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occurs and performance drops. FLORA changesW using heuristics based on accuracy and other parameters that

take into account the number of literals in the learnt theory. FLORA’s authors comment that their heuristics are “very

sensitive to the description language used”. Hence, they claim that “it seems hopeless (or at least difficult) to make

it completely free of parameters”. This has not been our experience: SAWTOOTH uses the simple standardized

test statistic of Equation 1 to determine window size. In all our experiments we have kept parameters of those tests

constant.

−z(α = 0.01) = −2.326 ≤ µj − µ
σ√
E

=
Sj − (

P
i SiP
i E ∗ E)r

E∗
Sj
E ∗

“
1−

Sj
E

”
√

E

(1)

Equation 1 needs some explanation. A SAWTOOTH window is some integer number oferas of sizeE; i.e.

W = nE (default:E=150 instances). SAWTOOTH windows grow until performance has not changed significantly

in a Stable (default: 2) number of eras. Each era is viewed as a binomial trial and each window is a record of

trail results in the eras1, ...i, j where era=j is the current era and era=1 is the first report of instability. Each era

k holdsSk successful classifications and Equation 1 checks if the current eraj is different to the proceedings eras

1..., i.

On stability, SAWTOOTH disables theory updates, but keeps collecting theS statistics (i.e. keeps classifying

new examples using the frozen theory). If stability changes to instability, SAWTOOTH shrinksW back to one era’s

worth of data and learning is then re-enabled.

One problem with windowing systems is the computational cost of continually re-learning. Hence SAWTOOTH

uses a learner that can update its knowledge very quickly. Figure 3 shows the Naı̈veBayes classifier used by

SAWTOOTH. The functionupdate in that figure illustrates the simplicity of re-learning for a Bayes classifier:

just increment a frequency tableF holding counts of the attribute values seen in the new training examples.

Apart from rapid updates, Naı̈veBayes classifiers have other advantages. Such classifiers use Bayes’ Theorem:

P (H |E) =
P (H)
P (E)

∏
i

P (Ei |H)

That is, given fragments of evidenceEi and a prior probability for a classP (H), a posterior probabilityP (H |E)

is calculated for the hypothesis given the evidence. The Bayes classifier returns the class with highest probability.

Such classifiers are callednäıve since they assume that the frequencies of different attributes are independent.

In practice [11], the absolute values of the classification probabilities computed by Bayes classifiers are often

inaccurate. However, the relative ranking of classification probabilities is adequate for the purposes of classification.

Many studies (e.g. [12], [13]) have reported that, in many domains, this simple Bayes classification scheme exhibits

excellent performance compared to other learners.

In the sequel, when we discussunsupervised learning, the following detail will become important. Figure 3

actually, computes classlikelihoodsnot probabilities. Likelihoods become probabilities when they are normalized

over the sum of all likelihoods. However, since maximum probability comes from maximum likelihood, this code

only needs to return the class with maximum likelihood.
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# GLOBALS: ‘‘F’’: frequeny tables; ‘‘I’’ : number of instances;

# ‘‘C’’: how many classes?; ‘‘N’’: instances per class

function update(class,train)

# OUTPUT: changes to the globals.

# INPUT: a ‘‘train’’ing example containing attribute/value pairs

# plus that case’s ‘‘class’’

I++; if (++N[class]==1) then C++ fi

for <attr,value> in train

if (value != "?") then

F[class,attr,range]++ fi

function classify(test)

# OUTPUT: ‘‘what’’ is the most likely hypothesis for the test case.

# INPUT: a ‘‘test’’ case containing attribute/value pairs.

k=1; m=2 # Control for Laplace and M-estimates.

like = -100000 # Initial, impossibly small likelihood.

for H in N # Check all hypotheses.

{ prior = (N[H]+k)/(I+(k*C)) #⇐=P (H).

temp = log(prior)

for <attr,value> in attributes

{ if (value != "?") then

inc = F[H,attr,value]+(m*prior))/(N[H]+m) #⇐=P (Ei |H).

temp += log(inc) fi

}

if (temp >= like) then like = temp; what=class fi

}

return what

Fig. 3. A Bayes Classifier. “?” denotes “missing values”. Probabilities are multiplied together using logarithms to stop numeric errors when

handling very small numbers. Them andk variables handle low frequencies counts in the manner recommended by Yang and Webb [10,§3.1].

In terms of scaling up induction, the most important property of a Bayes classifier is that they need very little

memory. These learners only need the memory required for the frequency counts plus a buffer just large enough

to hold a single instance. Other researchers have explored incremental Bayes classifiers using modifications to the

standard Bayes classifier: e.g. Gama alters the frequency counts in the summary tables according the success rate

of the lastN classifications [14] while Chai et.al. updates the priors via feedback from the examples seen up till

now [15]. In contrast, we use standard Bayes classifierswithout modification.

Bayes classifiers can be extended to numeric attributes usingkernel estimationmethods. The standard estimator

assumes the central limit theorem and models each numeric attribute using a single gaussian. Other methods don’t

assume a single gaussian; e.g. John and Langley’s gaussian kernel estimator models distributions of any shape as

the sum of multiple gaussians [5]. Other, more sophisticated methods are well-established [16], but several studies

report that even simplediscretization methodssuffice for adapting Bayes classifiers to numeric variables [13], [17].
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John and Langley comment that their method must access all the individual numeric values to build their kernel

estimator and this is impractical for large data sets. Many discretization methods violate theone scanrequirement

of a data miner: i.e. execute using only one scan (or less) of the data since there many not be time or memory

to go back and look at a store of past instances. For example, Dougherty et.al.’s [13]straw mandiscretization

method is10-binswhich divides attributeai into bins of sizeMAX(ai)−MIN(ai)
10 . If MAX and MIN are calculated

incrementally along a stream of data, then instance data may have to be cached and re-discretized if the bin sizes

change. An alternative is to calculate MAX and MIN after seeingall the data. Both cases require two scans through

the data, with the second scan doing the actual binning. Many other discretization methods (e.g. all the methods

discussed by Dougherty et.al. [13] and Yang and Webb [17]) suffer from this two-scan problem.

An incremental one scan (or less) discretization method is needed for scaling up induction. SAWTOOTH uses

the SPADE method described below.

III. H ANDLING NUMERIC ATTRIBUTES WITH SPADE

Discretization converts continuous ranges to a set of bins storing the tally of numbers that fall into that bin. In

order to process infinite streams of data, we developed a one-pass discretization method called SPADE (Single PAss

Dynamic Enumeration).

SPADE only scans the input data once and, at anytime during the processing ofX instances, SPADE’s bins are

available. Further, if it ever adjusts bins (e.g. when merging bins with very small tallies), the information used for

that merging comes from the bins themselves, and not some second scan of the instances. Hence, it can be used

for the incremental processing of very large data sets.

Unlike standard NäıveBayes classifiers, SPADE makes no assumptions about the underlying numeric distributions.

SPADE is similar to10-binsbut the MIN and MAX change incrementally. The first valueN creates one bin and

sets{MIN=N,MAX=N }. If a subsequent new value arrives inside the current{MIN,MAX } range, the bins from

MIN to MAX are searched for an appropriate bin. Otherwise, aSubBins number of new bins are created (default:

SubBins=5) and MIN/MAX is extended to the new value. For example, here are four bins:

i 1 2 3 4 min max

border 10 20 30 40 10 40

Each bin is specified by its lowerbordervalue. A variableN maps to the first/last bin if it is the current{MIN,MAX }

value (respectively). Otherwise it maps to bini whereborderi < N ≤ borderi+1. AssumingSubBins = 5, then

if a new valueN = 50 arrives, five new bins added above the old MAX to a new MAX=50:

i 1 2 3 4 5 6 7 8 9 min max

border 10 20 30 40 42 44 46 48 50 10 50

If the newly created number of bins exceeds aMaxBinsparameter (default=the square root of all the instances seen

to date) then adjacent bins with a tally less thanMinInst (default: same asMaxBins) are merged if the tally in the

merged bins is less than aMaxInst parameter (default: 2*MinInst). Preventing the creation of very few bins with

big tallies is essential for a practical incremental discretizer. Hence, SPADE checks for merges only occasionally

(at the end of each era), thuss allowing for the generation of multiple bins before they are merged.
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Fig. 4. Comparing SPADE and kernel estimation. Data sets:{A=vowel, B=iris, C=ionosphere, D=echo, E=horse-colic, F=anneal,

G=hypothyroid, H=hepatitis, I=heart-c, J=diabetes, K=auto-mpg, L=waveform-5000, M=vehicle, N=labor, O=segment}.

SPADE runs as a pre-processor toupdate to NäıveBayes. Newly arrived numerics get placed into bins and it

is this bin number that is used as thevalue passed toupdate or Figure 3. Also, when SPADE merges bins, this

causes a similar merging in frequncy tables entries (theF variable of Figure 3).

The opposite of merging would be tosplit bins with unusually large tallies. SPADE has no split operator since

we did not know how to best divide up a binwithout keeping per-bin kernel estimation data (which would be

memory-expensive). Our early experiments suggested that addingSubBins = 5 new bins between old ranges and

newly arrived out-of-range values was enough to adequately divide the range. Our subsequent experiments (see

below) were so encouraging that we are not motivated to add a split operator.

Figure 4 compares results from SPADE and John and Langley’s kernel estimation method using the display

format proposed by Dougherty, Kohavi and Sahami [13]. In that figure, a 10*10-way cross validation used three

learners: (a) NäıveBayes with a single gaussian for every numeric; (b) Naı̈veBayes with John and Langley’s kernel

estimation method (c) the Figure 3 Naı̈veBayes classifier using data pre-discretized by SPADE. Mean classification

accuracies were collected and shown in Figure 4, sorted by the means(c−a)− (b−a); that is, by the difference in

the improvement seen in SPADEor kernel estimationover or abovea simple single gaussian scheme. Hence, the

left-hand-side data sets of Figure 4 show examples where kernel estimation work comparatively better than SPADE

while the right-hand-side shows results where SPADE did comparatively better.

Three features of Figure 4 are noteworthy. Firstly, in a finding consistent with those of Dougherty et.al. [13],

discretization can sometimes dramatically improve classification the accuracy of a Naı̈veBayes classifier (by up to

9% to 15% in data sets C,F,M,0). Secondly, Dougherty et.al. found that even simple discretization schemes (e.g.

10-bins) can be competitive with more sophisticated schemes. We see the same result here where, in13
15 of these

experiments, SPADE’s mean improvement was within 3% of John and Langley’s kernel estimation method. Thirdly,

in two cases, SPADE’s one scan method lost information and performed worse than assuming a single gaussian. In

data set A, the loss was minimal (-1%) and in data set B SPADE’s results were still within 3% of kernel estimation.

In our view, the advantages of SPADE (incremental, one scan processing, distribution independent) compensates
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Fig. 5. SAWTOOTH and the KDD’99 data

for its occasional performing worse than state-of-the-art alternatives which require far more memory.

IV. EXPERIMENTS

In all the following experiments, SPADE was run continuously on all incoming data while SAWTOOTH worked

on windows containing a variable number of eras. Also, when SAWTOOTH accuracies are reported, they are the

accuracies seen on new instancesbefore those instances update the frequency tables of the Naı̈veBayes classifier.

That is, all the SAWTOOTH accuracies reported below come from datanot (yet) used to train the classifier.

A. KDD’99 Data

In order to stress test our system, we ran it on the 5,300,000 instances used in the 1999 KDD cup3. KDD’99

dealt with network intrusion detection and was divided into a training set of about five million instances and atest

set of 311,029 instances. The data comprised 6 discrete attributes, 34 continuous attributes, and 38 classes which

fell into four main categories:normal (no attack);probe (surveillance and other probing);DOS (denial-of-service);

U2R (unauthorized access to local super-user privileges); andR2L (unauthorized access from a remote machine).

The 24 KDD’99 cup entrants ran their learners to generated a matrixM [i, j] showing the number of times

classi was classifiedj. Entries were scored by computing the meanM [i, j] ∗ C[i, j] value whereC[i, j] was the

cost of mis-classifying (e.g.) unauthorized access to super-user as (e.g.) just a simple probe. Note thatM ∗ C are

mis-classificationscores so alower score is better.

Figure 5 shows all the sortedmean M*C scoresfrom the KDD’99 entrants. Also shown in that figure is

SAWTOOTH’s meanM ∗ C result. SAWTOOTH’s results were close to the winning score of entrant #1; very

similar to entrants 10,11,12,13,14,15,16; and much better than entrants 18,19,20,21,22,23,24. These results are

encouraging since SAWTOOTH is a much simpler tool that many of the other entries. For example, the winning

entrant took several runs to divide the data into smaller subsets and buid an ensemble of 50x10 C5 decision

3http://www.ai.univie.ac.at/˜bernhard/kddcup99.html
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trees using an intricate cost-sensitive bagged boosting technique. This took more than a day to terminate on a dual-

processor 2x300MHz Ultra-Sparc2 machine with 512MB of RAM using the commercially available implementation

of C5, written in “C”. In contrast, our toolkit written in interpreted scripting langauges (gawk/bash), processed all

5,300,000 instances in one scan of the data using less than 3.5 Megabytes of memory. This took 11.5 hours on a

2GHz Pentium 4, with 500MB of RAM, runing Windows/Cygwin and we conjecture that that this runtime could

be greatly reduced by porting our toolkit to “C”.

Another encouraging result is the# attributes with X binsplot of Figure 5. One concern with SPADE is that

several of its internal parameters are linked to the number of processed instances; e.g.MaxBins is the square root

of the number of instances. The 5,300,000 instances of KDD’99 could therefore generate an impractically large

number of bins for each numeric attribute. This worst-case scenario would occur if each consecutive group of

SubBins number of numeric values has different values from the previously seen groupsand they are sorted in

ascending or descending order. If this unlikely combination of events doesnot occur then the resulting bins would

have tallies thanMinInst, encouraging it to merge with the next bin. In all our experiments, we have never seen

this worst-case behavior. In KDD’99, for example, SPADE only ever generated 2 bins for 20 of the 40 attributes.

Also, for only two of the attributes, did SPADE generate more than 50 bins. Further, SPADE never generated more

than 100 bins for any attribute.

Attempts to test our system using other KDD cup data were not successful, for a variety of reasons4.

B. UCI Data

Figure 5 explored SAWTOOTH’s competencies on one large data set. Figure 6 explores SAWTOOTH’s com-

petency on many smaller data sets from the standard UCI database:{anneal, audiology, auto-mpg, diabetes,

echo, heart-c, hepatitis, horse-colic, hypothyroid, ionosphere, iris, labor, letter, primary-tumor, segment, soybean,

vehicle, vote, vowel, waveform-500}. Those data sets ranged in size fromlabor’s 57 instances toletter’s 20,000

instances. A standard 10*10 cross-validation experiment was conducted using SAWTOOTH+SPADE+Bayes (using

the Figure 3 code); or the J48 decision tree learner; or two Naı̈veBayes classifiers that used either a single gaussian

to model continuous attributes (the “NB” learner) or a sum of gaussians (the “NBK” learner proposed by John and

Langley [5]).

Using t-tests, significant differences (α = 0.05) between the mean performance of each learner on the 20 data

sets could be detected. Win/loss/ties statistics for each pair of learners on each data set was then collected. The

results, shown top of Figure 6 shows SAWTOOTH performing marginally better than NB classifier but worse that

both J48 and NBK. This is not surprising: Provost and Kolluri [1, p22] comment that sequential learning strategies

like windowing usually performs worse than learning from the total set.

4The KDD’04 evaluation portal was off-line during the period when SAWTOOTH was being developed. The KDD’03 problem required

feature extration from free text- something that is beyond the scope of this research. The data for KDD’02 is no longer on-line. The KDD’01

had data with 130,000 attributes and we don’t yet know how to extend our technqie to such a large attribute space. We had trouble following

the KDD’00 documentation.
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However, what is encouraging is thesizeof the difference in mean accuracies SAWTOOTH and the other learners.

The plot shown bottom of Figure 6 sorts all those differences. In 80% of our experiments, SAWTOOTH performed

within ±5% of other methods.

learner win - loss win loss ties

J48 10 25 15 20

NBK 8 17 9 34

SAWTOOTH -6 12 18 30

NB -12 9 21 30
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Fig. 6. SAWTOOTH exeucting on UCI data.

C. Data with Concept Drift

Figure 5 and Figure 6 showed SAWTOOTH processing static data. Figure 7 shows SAWTOOTH running on

data with concept drift. To generate that figure, a flight simulator was executed where a airplane moved from a

nominal mode to one of five error conditions (labeleda,b,c,d,e). Data was taken from the simulator in eras of size

100 instances. Each error mode lasted two eras and each such mode was encountered twice. The top of Figure 7
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Fig. 7. SAWTOOTH and concept drift
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shows the results of SAWTOOTH’s stability tests as well as when SAWTOOTH enabled or disabled learning. Each

error mode introduced a period of instability which, in turn, enabled a new period of learning.

The first time SAWTOOTH saw a new error mode (at eras 15,23,31,39,and 47), the accuracy drops sharply and

after each mode, accuracy returns to a high level (usually, over 80%). Thesecondtime SAWTOOTH returned to

a prior error mode (at eras 63,71,79,87 and 95), the accuracies drop, but only very slightly.

Three features of Figure 7 are worthy of mention. Firstly, between concept drifts, the accuracy stabilizes and

SAWTOOTH mostly disables the learner, thus implementing theimplicit stratified samplingpolicy mentioned above

in §II. Consider a run containing eras 1,2,. . . ,50 where all eras come from class1 except eras 10,11 which contain

class2. If plateau takes two eras, then, at most, SAWTOOTH would only use two eras of class2 data (since that is

all there is) and four eras of class1 data (the first two eras after the start and two more eras after the class2 eras).

This means that SAWTOOTH would under-sample the majority class and ignore 88% of the class1 data.

Secondly, the large drop in accuracy when entering a new context means SAWTOOTH can be used to recognize

new contexts (watch for the large drops). In terms of certifying an adaptive system, this is a very useful result:

learning systems can alert their uses when they areleaving the region of their past competency. Thirdly, and most

importantly, there is no such large drop when SAWTOOTH returns to old contexts. That is, SAWTOOTH canretain

knowledge of old contextsand reuse that knowledgewhen contexts re-occur.

D. Unsupervised Learning

Figure 5, Figure 6, and Figure 7 were all examples ofsupervised learning. In supervised learning (when each

instance is stamped with a class symbol), handling concept drift meansrecognizingwhen the underlying data

generating phenomenum has changed; andrepairing the current classifier to cope with that change.

 1e-06

 1e-05

 0.0001

 15
error

9
monitor

 5 1
train  

Average Max Likelihood

Fig. 8. Learning normal flight (eras

1 to 8); monitoring five different flights

a,b,..e (eras 9 to 16); injecting errors into

eras 15,16.

Figure 8 shows anunsupervised learningexperiment (where instances lack

any class symbol). In unsupervised learning, it no longer makes sense torepair

the classifier since there are no classes to classify. However, the problem of

recognizingnovel situations remains. Such novelty detectors could monitor (e.g.)

an adapative controller for a jet fighter and propose switching to manual control

(or bailing out) if the inputs are radically different to what has been seen before.

In the Figure 8 experiment, the class of all instances were replaced with a single

label:class0. Eras one to eight of that figure show SAWTOOTH processing eight

eras (of 100 instances) of nominal flight simulator data. Updating the frequency

tables was then disabled and the system watched over five entirely different

flights, each ending with one of our errorsa,b,c,d,e. The classify routine of

Figure 3 was modified to return the classification with the maximum likelihood

as well asthat maximum likelihood value. Figure 8 shows the average maximum

likelihood seen in each era. In all cases, when the errors were encountered in
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era 15, the likelihood’s in the monitor learned from the nominal flight dropped

by around two orders of magnitude.

Figure 8 suggets that SAWTOOTH could be used for novelty detection in unsupervised learning as follows.

Without even knowing the target classes of a system, a V&V agent could monitor the average maximum likelihood

of the input examples. If that likelihood suddenly drops by orders of magnitude, then the agent could raise an alert

that it is unlikely that the adaptative system is seeing inputs similar to what is has handled previously.

Elsewhere, we have explored novelty detection in unsupervised learning using a variety of complex methods:

association rules to learn expected patterns in attribute values [18]; or SVDDs to recognize boundaries between

expected and novel inputs [19]. Figure 8 suggests that SAWTOOTH could perform the same task, but in a much

simpler way.

V. D ISCUSSION

Holte argue forsimplicity-first approach to data mining; i.e. researchers should try simpler methods before

complicating existing algorithms [20]. While Provost and Kolluri endorse “simplicity-first”, they note in their review

of methods for scaling up inductive algorithms that “it is not clear now muchleveragecan be obtained through the

use of simpler classifiers to guide subsequent search to addressspecific deficienciesin their performance” [1, p32].

This paper has been a simplicity-first approach to scaling up data miners. We havelevered two features of

NäıveBayes classifiers that make them good candidates for handling large datasets: fast updates of the current theory

and small memory foot print. Severaldeficiencieswith NäıveBayes classifiers have been addressed: incremental

discretization and dynamic windowing means that Bayes classifiers need not hold all the data in RAM at one time.

Our Bayes+SAWTOOTH+SPADE toolkit works via one scan of the data and can scale to millions of instances

and works as many other data mining schemes (see Figure 5). The same toolkit with trivial modifications, can

be used to detect concept drift; to repair a theory after concept drift; can reuse old knowledge when old contexts

re-occur (see Figure 7); and can detect novel inputs during unsupervised learning (see Figure 8).

A drawback with out toolkit is that we can’t guarantee that our learner operates in small constant time per

incoming instance. Several of SPADE’s internal parameters are functions of the total number of instances. In the

worst case, this could lead to runaway generation of bins. On a more optimistic note, we note that this worst case

behavior has yet to be observed in our experiments: usually, the number number of generated bins is quite small

(see Figure 5).

Our toolkit much simpler than other data miners such as FLORA, the winner of KDD’99, or the SVDDs we

used previously for detecting novel inputs. Why can such a simple toolkit like Bayes+SAWTOOTH+SPADE be

so competent? Our answer is that many data sets (such as all those processed in our experiments) exhibit early

plateaus and such early plateaus can be exploited to build very simple learners. If a particular data sets does not

contain early plateaus then our simple toolkit should be exchanged for a more sophisticated scheme. Also, our

toolkit is inappropriate if concept drift is occurringfaster than the time required to collect enough instances to find

the plateau. Further, our scheme is designed forlarge data sets and so does not perform as well as other commonly
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used schemes when used onsmallerdata sets (but often achieves accuracy on small data sets within±5% of other

learners schemes- see Figure 6).

Finally, we recommend that other data mining researchers check for early plateaus in their data sets. If such

plateaus are a widespread phenmema, thenvery simple tools(like Bayes+SAWTOOTH+SPADE) should be adequate

for the purposes of scaling up induction.

ACKNOWLEDGMENT

This research was conducted at West Virginia University, Portland State University, partially sponsored by the

NASA Office of Safety and Mission Assurance under the Software Assurance Research Program led by the NASA

IV&V Facility. Reference herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government.

REFERENCES

[1] Foster J. Provost and Venkateswarlu Kolluri, “A survey of methods for scaling up inductive algorithms,”Data Mining and Knowledge

Discovery, vol. 3, no. 2, pp. 131–169, 1999, Available fromhttp://citeseer.ist.psu.edu/provost99survey.html .

[2] C.L. Blake and C.J. Merz, “UCI repository of machine learning databases,” 1998, URL:http://www.ics.uci.edu/˜mlearn/

MLRepository.html .

[3] I. H. Witten and E. Frank,Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann,

1999.

[4] R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufman, 1992, ISBN: 1558602380.

[5] G.H. John and P. Langley, “Estimating continuous distributions in bayesian classifiers,” inProceedings of the Eleventh Conference on

Uncertainty in Artificial Intelligence Montreal, Quebec: Morgan Kaufmann, 1995, pp. 338–345, Available fromhttp://citeseer.

ist.psu.edu/john95estimating.html .

[6] J. R. Quinlan, “Learning with Continuous Classes,” in5th Australian Joint Conference on Artificial Intelligence, 1992, pp. 343–348,

Available fromhttp://citeseer.nj.nec.com/quinlan92learning.html .

[7] J. Catlett, “Inductive learning from subsets or disposal of excess training data considered harmful.,” inAustralian Workshop on Knowledge

Acqusition for Knowledge-Based Systems, Pokolbin, 1991, pp. 53–67.

[8] Tim Oates and David Jensen, “The effects of training set size on decision tree complexity,” inProc. 14th International Conference on

Machine Learning. 1997, pp. 254–262, Morgan Kaufmann.

[9] Gerhard Widmer and Miroslav Kubat, “Learning in the presence of concept drift and hidden contexts,”Machine Learning, vol. 23, no.

1, pp. 69–101, 1996, Availabel fromhttp://citeseer.ist.psu.edu/widmer96learning.html .

[10] Y. Yang and G. Webb, “Weighted proportional k-interval discretization for naive-bayes classifiers,” inProceedings of the 7th Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD 2003), 2003, Available fromhttp://www.cs.uvm.edu/˜yyang/

wpkid.pdf .

[11] Z. Z. Zheng and G. Webb, “Lazy learning of bayesian rules,”Machine Learning, vol. 41, no. 1, pp. 53–84, 2000, Available from

http://www.csse.monash.edu/˜webb/Files/ZhengWebb00.pdf .

[12] M.A. Hall and G. Holmes, “Benchmarking attribute selection techniques for discrete class data mining,”IEEE Transactions On Knowledge

And Data Engineering, vol. 15, no. 6, pp. 1437– 1447, 2003.

[13] James Dougherty, Ron Kohavi, and Mehran Sahami, “Supervised and unsupervised discretization of continuous features,” inInternational

Conference on Machine Learning, 1995, pp. 194–202.

[14] J. Gama, “Iterative bayes,”Intelligent Data Analysis, pp. 475–488, 2000.

[15] K. Chai, H. Ng, and H. Chieu, “Bayesian online classifiers for text classification and filtering,” inProceedings of SIGIR-02, 25th

ACM International Conference on Research and Development in Information Retrieval, M. Beaulieu, R. BaezaYates, S.H. Myaeng, and

K. Jarvelin, Eds., 2002, pp. 97–104, Available fromciteseer.ist.psu.edu/chai02bayesian.html .

November 14, 2004 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. Y, AUGUST 2005 15

[16] U M Fayyad and I H Irani, “Multi-interval discretization of continuous-valued attributes for classification learning,” inProceedings of the

Thirteenth International Joint Conference on Artificial Intelligence, 1993, pp. 1022–1027.

[17] Ying Yang and Geoffrey I. Webb, “A comparative study of discretization methods for naive-bayes classifiers,” inProceedings of PKAW

2002: The 2002 Pacific Rim Knowledge Acquisition Workshop, 2002, pp. 159–173.

[18] Y. Liu, T. Menzies, and B. Cukic, “Detecting novelties by mining association rules,” 2003, Available fromhttp://menzies.us/

pdf/03novelty.pdf .

[19] Yan Liu, Srikanth Gururajan, Bojan Cukic, Tim Menzies, and Marcello Napolitano, “Validating an online adaptive system using svdd,”

in IEEE Tools with AI, 2003, Available fromhttp://menzies.us/pdf/03svdd.pdf .

[20] R.C. Holte, “Very simple classification rules perform well on most commonly used datasets,”Machine Learning, vol. 11, pp. 63, 1993.

November 14, 2004 DRAFT


