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Incremental Discretization and Bayes Classifiers
Handles Concept Drift and Scales Very Well

Tim Menzies,Member,IEEE, Andres Orrego

Abstract— Many data sets exhibit anearly plateauwhere the perfor-
mance of a learner peeks after seeing a few hundred (or less) instances.
When concepts drift is slower than the time to find that plateau, then
a simple windowing policy and an incremental discretizer lets standard
learners like NäıveBayes classifiers to scale to very large data sets. Our
tookit is simple to implment; can scale to millions of instances; works as
many other data mining schemes; and, with trivial modifications, can be
used to detect concept drift; to repair a theory after concept drift; can
reuse old knowledge when old contexts re-occur and can detect novel
inputs during unsupervised learning.

Index Terms— data mining, concept drift, scale up, NäıveBayes classi-
fiers, incremental, discretization, SAWTOOTH, SPADE, novelty detection

I. I NTRODUCTION

Holte argue forsimplicity-first approach to data mining; i.e. re-
searchers should try simpler methods before complicating existing
algorithms [1]. In their review of methods for scaling up inductive al-
gorithms, Provost and Kolluri endorse this “simplicity-first” approach.
However, they add that “it is not clear now muchleveragecan be
obtained through the use of simpler classifiers to guide subsequent
search to addressspecific deficienciesin their performance” [2, p32].

This paper is a simplicity-first approach to scaling up data miners.
Consider whatleveragea simple NäıveBayes classifier offers for
scaling up induction. Such classifiers have two desirable features
for scalable induction: fast updates and small memory footprints.
NäıveBayes classifiers summarize the training data in one frequncy
table per class. Hence, they consume very little memory and they can
quickly and incrementally modify their knowledge by incrementing
the frequency count of attribute ranges seen in new training examples.

However, simple NäıveBayes classifiers havespecific deficiencies.
When learning from a large data set, it is common for the data gen-
erating phenomenon to change and standard Naı̈veBayes classifiers
have no mechanisms for adapting to suchconcept drift. Also, when
processing very large datasets, it can be impossible to scan it multiple
times or store it all in in main memory. Unfortunately, like many
classifiers, NäıveBayes assumes that all the data is held in a single
memory-resident table [2, p32]. Also, Naı̈veBaues handles numeric
attributes via eitherdiscretizationor kernel estimationmethods. Most
known discretization and estimation methods for Naı̈veBayes require
multiple passes through the data [3]–[5].

This paper reports an experiment in applying Holte’s simplicity first
approach to resolving these specific deficiencies. Experiments with
incremental cross-validation, discussed below, showed that many data
sets have aearly plateaueffect where classification accuracy plateaus
after a relatively small number of examples (just a few hundred).
This motivated scale-up experiments with awindowingscheme called
SAWTOOTH that enables classification only when performance is
rising or falling from a plateau. In accordance with the Holte doctrine,
SAWTOOTH was build by considering multiple implementation
options, then always implementing the simplest one. For example,
the windowing scheme was added to a simple Naı̈veBayes classifier.
Also, our incremental discretization method, called SPADE, was
based on the simplest discretization method that we could find.
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Fig. 1. 10*10 incremental cross validation experiments with J48 and Naive-
Bayes (with kernel estimation) on{A:heart-c, B:zoo; C:vote; D:heart-statlog;
E:lymph, F:autos. G:ionosphere, H:diabetes, I:balance-scale, J:soybean}; M5
and LSR on {K:bodyfat. L:cloud, M:fishcatch, N:sensory, O:pwLinear,
Q:strike, R:pbc, S:autoMpg, T:housing}. All data sets from the UCI reposi-
tory [8]. Data sets A..J have discrete classes and are scored via theaccuracy
of the learned theory; i.e % successful classifications. Data sets K..T have
continuous classes and are scored by thePRED(30)of the learned theory; i.e.
what % of the estimated values are within 30% of the actual value.

The experiment was quite successful. SAWTOOTH/SPADE can
execute via one scan of the data; can scale to millions of instances;
and works as well as many other schemes for scaling up data
mining. With trivial modifications, SAWTOOTH/SPADE can also
detect concept drift; repair a theory after concept drift; reuse old
knowledge when old contexts re-occur; and could detect novel inputs
during unsupervised learning.

SAWTOOTH/SPADE can be used as a simplebaselinesystem to
comparatively evaluate the merits of seemingly more sophisticated
implementations. This evaluation has lead to the abandonment of
certain lines of research. Elsewhere, we have explored novelty detec-
tion in unsupervised learning using a variety of complex methods:
association rules to learn expected patterns in attribute values [6];
or SVDDs to recognize boundaries between expected and novel
inputs [7]. SAWTOOTH/SPADE has now replaced those prior im-
plementations, which we now view as needlessly complex.

The rest of this paper describes the early plateau effect, offers
some background notes on Naı̈veBayes, SAWTOOTH/SPADE, then
described experiments with numerous UCI data sets, some KDD cup
data, and an aircraft flight simulator.

II. EARLY PLATEAU

A data set exhibitsearly plateauswhen the peak performance
of a learner requires just a few hundred instances. For datasets
with plateaus, learning could proceed inwindowsof a few hundred
instances. After a small number of windows, performance would peak
and learning could be disabled. If the learner’s performance falls off
the plateau (i.e. due to concept drift), the learner could start afresh.
Since learning only ever has to process a few hundred instances at a
time, this approach should scale to very large data sets.

One way to find plateaus is via incremental R*N-way cross-
validation. ForR = 10 repeats, the order of the data is randomly
shuffled. For each random ordering, the data is then dividedN=10
ways. Training is then conducted using the first1 ≤ i < N divisions
and tested using remainingN-i divisions. As the size of the training
set grows, the accuracy of the learned theory improves. At the plateau
point, this improvement flattens out. After all theR repeats, this
plateau point can be identified when learning onY

10
th of the data does

not result in significantly greater accuracies than using{1..X|X<Y }
10

of the data (computed using t-tests withα = 0.05).
The y-axis of Figure 1 show the plateau points seen in R*N-way

cross validation experiments on 20 UCI data sets (R = N = 10)
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using four different learners: J48; NBK: Naı̈veBayes with kernel
estimation; M5, and LSR1. In all the experiments, a plateau was
reached well before all the training instances were used. Most of the
experiments (33

40
) reached plateau in 200 instances or less. Further,

only a handful (3
40

) of experiments needed more than 300 instances
to find their plateau.

This plateaus effect has been have been reported before (although
this may be first report of early plateaus in M5’ and LSR). Provost
and Kolluri [2] make the general comment that the performance of
some learners levels off quite early, without specifying exactly how
early that might happen. They add that while some further accuracy
improvements are seen as data set size increases, those improvements
can be quite small. For example, Catlett reports differences of less
than 1% (on average) between theories learned from 5000 or 2000
randomly selected instances in ten different data sets [12].

In another study, Oates and Jensen found plateaus in 19 UCI data
sets using five variants of C4.5 [13]. In their results, six of their runs
plateaued after seeing 85 to 100% of the data. This is much later than
Figure 1 where none of our data sets needed more than 70% of the
data. One possible reason for our earlier plateaus is the method used
to identify start-of-plateau. Figure 1 detected plateaus using t-tests
to compare performance scores seen in theories learned fromM or
N examples (M < N ) and reported start-of-plateau if no significant
(α=0.05) difference was detected between theN and the lastM with
a significant change. On the other hand, Oates and Jensen scanned the
accuracies learned from5, 10, 15% etc. of the data looking for three
consecutive accuracy scores that are within 1% of the score gained
from a theory using all the available data. That is, Figure 1 shows
the point where accuracies stopimprovingas training setsgrow while
Oates and Jensen report when accuracies startdegradingas training
setsshrink. Given sufficiently large standard deviations, our method
will terminate on smaller training sets than Oates and Jensen.

The results below show that learning using our start-of-plateau
detector can produce adequate classifiers that scale to very large data
sets. Hence, at this time, we are not motivated to explore different
methods for detecting start-of-plateau. In any case, regardless of
where they found plateaus, Oates and Jensen’s results endorse our
general thesis that, often, learning need not process all the available
examples. Rather, learning can jump through the available data in
windows of a few hundred instances at a time.

III. W INDOWING

In a windowing system like SAWTOOTH, newly arrived examples
are pushed into the start of sliding window of sizeW while the
same number of older examples are popped from the end. Windowing
systems need to select an appropriate window sizeW . If W is small
relative to the rate of concept drift, then windowing guarantees the
maintenance of a theory relevant to the lastW examples. However,
if W is too small, learning may never have find an adequate
characterization of the target concept. Similarly, ifW is too large,
then this will slow the learner’s reaction to concept drift.

Many windowing systems like SAWTOOTH and FLORA [14]
select the window size dynamically:W grows till stable performance
is reached; remains constant while performance is stable; then shrinks
when concept drift occurs and performance drops. FLORA changes
W using heuristics based on accuracy and other parameters that take
into account the number of literals in the learnt theory. FLORA’s
authors comment that their heuristics are “very sensitive to the
description language used”. Hence, they claim that “it seems hopeless

1All learners come from the WEKA [9]. LSR/M5’ assumes values can be
fitted to one/many (respectively) n-dimensional linear models [10]. J48 is a
JAVA implementation of Quinlan’s C4.5 decision tree learner [11].

(or at least difficult) to make it completely free of parameters”.
This has not been our experience: SAWTOOTH uses the simple
standardized test statistic of Equation 1 to determine window size. In
all our experiments we have kept parameters of those tests constant.
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Equation 1 needs some explanation. A SAWTOOTH window is some
integer number oferas of sizeE; i.e. W = nE (default: E=150
instances). SAWTOOTH windows grow until performance has not
changed significantly in aStable (default: 2) number of eras. Each
era is viewed as a binomial trial and each window is a record of
trail results in the eras1, ...i, j where era=j is the current era and
era=1 is the first report of instability. Each erak holdsSk successful
classifications and Equation 1 checks if the current eraj is different
to the proceedings eras1..., i.

On stability, SAWTOOTH disables theory updates, but keeps
collecting theS statistics (i.e. keeps classifying new examples using
the frozen theory). If stability changes to instability, SAWTOOTH
shrinksW back to one era’s worth of data and learning is then re-
enabled.

IV. NAÏVEBAYES

One problem with windowing systems is the computational cost of
continually re-learning. Hence SAWTOOTH uses a learner that can
update its knowledge very quickly. Figure 2 shows the Naı̈veBayes
classifier used by SAWTOOTH. The functionupdate in that figure
illustrates the simplicity of re-learning for a Bayes classifier: just
increment a frequency tableF holding counts of the attribute values
seen in the new training examples.

In terms of scaling up induction, the most important property of
Figure 2 is theF data structure that holds the frequency counts. A
Bayes classifier only needs the memory required for theF frequency

# GLOBALS: ‘‘F’’: frequeny tables; ‘‘I’’ : number of instances;
# ‘‘C’’: how many classes?; ‘‘N’’: instances per class
function update(class,train)

# OUTPUT: changes to the globals.
# INPUT: a ‘‘train’’ing example containing attribute/value pairs
# plus that case’s ‘‘class’’
I++; if (++N[class]==1) then C++ fi
for <attr,value> in train

if (value != "?") then
F[class,attr,range]++ fi

function classify(test)
# OUTPUT: ‘‘what’’ is the most likely hypothesis for the test case.

# INPUT: a ‘‘test’’ case containing attribute/value pairs.
k=1; m=2 # Control for Laplace and M-estimates.
like = -100000 # Initial, impossibly small likelihood.
for H in N # Check all hypotheses.
{ prior = (N[H]+k)/(I+(k*C)) #⇐P (H)

temp = log(prior)
for <attr,value> in attributes
{ if (value != "?") then

inc= F[H,attr,value]+(m*prior))/(N[H]+m) #⇐P (Ei |H)
temp += log(inc) fi

}
if (temp >= like) then like = temp; what=class fi

}
return what

Fig. 2. A Bayes Classifier. “?” denotes “missing values”. Probabilities are
multiplied together using logarithms to stop numeric errors when handling
very small numbers. Them and k variables handle low frequencies counts
in the manner recommended by Yang and Webb [15,§3.1].
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counts plus a buffer just large enough to hold thetest instance
passed to Figure 2’sclassify function.

NäıveBayes classifiers are based on Bayes’ Theorem. Informally,
the theorem saysnext = old∗new i.e. what we’ll believenextcomes
from how newevidence effectsold beliefs. More formally:

P (H |E) =
P (H)

P (E)

Y
i

P (Ei |H)

i.e. given fragments of evidenceEi and a prior probability for
a classP (H), the theorem lets us calcuate a posteri probability
P (H |E). Technically, a Bayes classifier should return the class
with highest probability. However, Figure 2 actually, computes class
likelihoodsnot probabilities. Likelihoods become probabilities when
they are normalized over the sum of all likelihoods. Since maximum
probability comes from maximum likelihood, this code only needs
to return the class with maximum likelihood. Note that unlikely
instances have lower frequency counts and hence lower likelihoods.
In the sequel, we will use this property of likelihoods to recognizing
novel instances in unsupervised learning.

Bayes classifiers are callednäıve since they assume that the
frequencies of different attributes are independent. In practice [16],
the absolute values of the classification probabilities computed by
Bayes classifiers are often inaccurate. However, the relative ranking
of classification probabilities is adequate for the purposes of clas-
sification. Many studies (e.g. [4], [17]) have reported that, in many
domains, this simple Bayes classification scheme exhibits excellent
performance compared to other learners.

Other researchers have explored incremental Bayes classifiers using
modifications to the standard Bayes classifier: e.g. Gama alters the
frequency counts in the summary tables according the success rate
of the lastN classifications [18] while Chai et.al. updates the priors
via feedback from the examples seen up till now [19]. In contrast,
we use standard Bayes classifierswithout modification.

Bayes classifiers can be extended to numeric attributes usingkernel
estimation methods. The standard estimator assumes the central
limit theorem and models each numeric attribute using a single
gaussian. Other methods don’t assume a single gaussian; e.g. John
and Langley’s gaussian kernel estimator models distributions of any
shape as the sum of multiple gaussians [3]. Other, more sophisticated
methods are well-established [20], but several studies report that even
simple discretization methodssuffice for adapting Bayes classifiers
to numeric variables [4], [5].

John and Langley comment that their method must access all the
individual numeric values to build their kernel estimator and this is
impractical for large data sets. Many discretization methods violate
theone scanrequirement of a data miner: i.e. execute using only one
scan (or less) of the data since there many not be time or memory to
go back and look at a store of past instances. For example, Dougherty
et.al.’s [4] straw mandiscretization method is10-binswhich divides
attributeai into bins of sizeMAX(ai)−MIN(ai)

10
. If MAX and MIN

are calculated incrementally along a stream of data, then instance data
may have to be cached and re-discretized if the bin sizes change.
An alternative is to calculate MAX and MIN after seeingall the
data. Both cases require two scans through the data, with the second
scan doing the actual binning. Many other discretization methods
(e.g. all the methods discussed by Dougherty et.al. [4] and Yang and
Webb [5]) suffer from this two-scan problem.

An incremental one scan (or less) discretization method is needed
for scaling up induction. SAWTOOTH uses the SPADE method
described below.

V. HANDLING NUMERIC ATTRIBUTES WITH SPADE

Discretization converts continuous ranges to a set of bins storing
the tally of numbers that fall into that bin. In order to process infinite
streams of data, we developed a one-pass discretization method called
SPADE (Single PAss Dynamic Enumeration).

SPADE only scans the input data once and, at anytime during the
processing ofX instances, SPADE’s bins are available. Further, if it
ever adjusts bins (e.g. when merging bins with very small tallies), the
information used for that merging comes from the bins themselves,
and not some second scan of the instances. Hence, it can be used for
the incremental processing of very large data sets.

Unlike standard NäıveBayes classifiers, SPADE makes no assump-
tions about the underlying numeric distributions. SPADE is similar
to 10-bins but the MIN and MAX change incrementally. The first
valueN creates one bin and sets{MIN=N,MAX=N }. If a subsequent
new value arrives inside the current{MIN,MAX } range, the bins
from MIN to MAX are searched for an appropriate bin. Otherwise, a
SubBins number of new bins are created (default: SubBins=5) and
MIN/MAX is extended to the new value. For example, here are four
bins:

i 1 2 3 4 min max
border 10 20 30 40 10 40

Each bin is specified by its lowerbordervalue. A variableN maps to
the first/last bin if it is the current{MIN,MAX } value (respectively).
Otherwise it maps to bini where borderi < N ≤ borderi+1.
Assuming SubBins = 5, then if a new valueN = 50 arrives,
five new bins added above the old MAX to a new MAX=50:

i 1 2 3 4 5 6 7 8 9 min max
border 10 20 30 40 42 44 46 48 50 10 50

If the newly created number of bins exceeds aMaxBinsparameter
(default=the square root of all the instances seen to date) then adjacent
bins with a tally less thanMinInst (default: same asMaxBins) are
merged if the tally in the merged bins is less than aMaxInstparameter
(default: 2*MinInst). Preventing the creation of very few bins with
big tallies is essential for a practical incremental discretizer. Hence,
SPADE checks for merges only occasionally (at the end of each era),
thuss allowing for the generation of multiple bins before they are
merged.

SPADE runs as a pre-processor toupdate to NäıveBayes. Newly
arrived numerics get placed into bins and it is this bin number that is
used as thevalue passed toupdate or Figure 2. Also, when SPADE
merges bins, this causes a similar merging in frequncy tables entries
(the F variable of Figure 2).

The opposite of merging would be tosplit bins with unusually
large tallies. SPADE has no split operator since we did not know
how to best divide up a binwithoutkeeping per-bin kernel estimation
data (which would be memory-expensive). Our early experiments
suggested that addingSubBins = 5 new bins between old ranges
and newly arrived out-of-range values was enough to adequately
divide the range. Our subsequent experiments (see below) were so
encouraging that we are not motivated to add a split operator.

Figure 3 compares results from SPADE and John and Langley’s
kernel estimation method using the display format proposed by
Dougherty, Kohavi and Sahami [4]. In that figure, a 10*10-way
cross validation used three learners: (a) Naı̈veBayes with a single
gaussian for every numeric; (b) Naı̈veBayes with John and Langley’s
kernel estimation method (c) the Figure 2 Naı̈veBayes classifier using
data pre-discretized by SPADE. Mean classification accuracies were
collected and shown in Figure 3, sorted by the means(c−a)−(b−a);
that is, by the difference in the improvement seen in SPADEor kernel
estimationover and abovea simple single gaussian scheme. Hence,
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Fig. 3. Comparing SPADE and kernel estimation. Data sets:{A=vowel,
B=iris, C=ionosphere, D=echo, E=horse-colic, F=anneal, G=hypothyroid,
H=hepatitis, I=heart-c, J=diabetes, K=auto-mpg, L=waveform-5000,
M=vehicle, N=labor, O=segment}.

the left-hand-side data sets of Figure 3 show examples where kernel
estimation work comparatively better than SPADE while the right-
hand-side shows results where SPADE did comparatively better.

Three features of Figure 3 are noteworthy. Firstly, in a finding
consistent with those of Dougherty et.al. [4], discretization can
sometimes dramatically improve classification the accuracy of a
NäıveBayes classifier (by up to 9% to 15% in data sets C,F,M,0). Sec-
ondly, Dougherty et.al. found that even simple discretization schemes
(e.g. 10-bins) can be competitive with more sophisticated schemes.
We see the same result here where, in13

15
of these experiments,

SPADE’s mean improvement was within 3% of John and Langley’s
kernel estimation method. Thirdly, in two cases, SPADE’s one scan
method lost information and performed worse than assuming a single
gaussian. In data set A, the loss was minimal (-1%) and in data
set B SPADE’s results were still within 3% of kernel estimation.
In our view, the advantages of SPADE (incremental, one scan
processing, distribution independent) compensates for its occasional
performing worse than state-of-the-art alternatives which require far
more memory.

VI. EXPERIMENTS

In all the following experiments, SPADE was run continuously on
all incoming data while SAWTOOTH worked on windows containing
a variable number of eras. Also, when SAWTOOTH accuracies are
reported, they are the accuracies seen on new instancesbeforethose
instances update the frequency tables of the Naı̈veBayes classifier.
That is, all the SAWTOOTH accuracies reported below come from
datanot (yet) used to train the classifier.

A. KDD’99 Data

In order to stress test our system, we ran it on the 5,300,000
instances used in the 1999 KDD cup2. KDD’99 dealt with network
intrusion detection and was divided into a training set of about
five million instances and atest setof 311,029 instances. The data
comprised 6 discrete attributes, 34 continuous attributes, and 38
classes which fell into four main categories:normal (no attack);
probe (surveillance and other probing);DOS (denial-of-service);
U2R (unauthorized access to local super-user privileges); andR2L
(unauthorized access from a remote machine).

The 24 KDD’99 cup entrants ran their learners to generated a
matrix M [i, j] showing the number of times classi was classifiedj.
Entries were scored by computing the meanM [i, j] ∗ C[i, j] value
where C[i, j] was the cost of mis-classifying (e.g.) unauthorized

2http://www.ai.univie.ac.at/˜bernhard/kddcup99.html

 1

 0.75

 0.5

 0.25

 24 18 10 1

m
ea

n 
M

*C
 s

co
re

s

entrants

sawtooth

 0

 5

 10

 15

 20

 75 50 25 0

# 
at

tr
ib

ut
es

 w
ith

 X
 b

in
s

bins

Fig. 4. SAWTOOTH and the KDD’99 data

access to super-user as (e.g.) just a simple probe. Note thatM ∗ C
aremis-classificationscores so alower score is better.

Figure 4 shows all the sortedmean M*C scoresfrom the KDD’99
entrants. Also shown in that figure is SAWTOOTH’s meanM ∗ C
result. SAWTOOTH’s results were close to the winning score of
entrant #1; very similar to entrants 10,11,12,13,14,15,16; and much
better than entrants 18,19,20,21,22,23,24. These results are encour-
aging since SAWTOOTH is a much simpler tool that many of the
other entries. For example, the winning entrant took several runs
to divide the data into smaller subsets and buid an ensemble of
50x10 C5 decision trees using an intricate cost-sensitive bagged
boosting technique. This took more than a day to terminate on a dual-
processor 2x300MHz Ultra-Sparc2 machine with 512MB of RAM
using the commercially available implementation of C5, written in
“C”. In contrast, our toolkit written in interpreted scripting langauges
(gawk/bash), processed all 5,300,000 instances in one scan of the data
using less than 3.5 Megabytes of memory. This took 11.5 hours on
a 2GHz Pentium 4, with 500MB of RAM, runing Windows/Cygwin
and we conjecture that that this runtime could be greatly reduced by
porting our toolkit to “C”.

Another encouraging result is the# attributes with X binsplot of
Figure 4. One concern with SPADE is that several of its internal
parameters are linked to the number of processed instances; e.g.
MaxBinsis the square root of the number of instances. The 5,300,000
instances of KDD’99 could therefore generate an impractically large
number of bins for each numeric attribute. This worst-case scenario
would occur if each consecutive group ofSubBins number of
numeric values has different values from the previously seen groups
and they are sorted in ascending or descending order. If this unlikely
combination of events doesnot occur then the resulting bins would
have tallies thanMinInst, encouraging it to merge with the next bin.
In all our experiments, we have never seen this worst-case behavior.
In KDD’99, for example, SPADE only ever generated 2 bins for 20
of the 40 attributes. Also, for only two of the attributes, did SPADE
generate more than 50 bins. Further, SPADE never generated more
than 100 bins for any attribute.

Attempts to test our system using other KDD cup data were not
successful, for a variety of reasons3.

3The KDD’04 evaluation portal was off-line during the period when
SAWTOOTH was being developed. The KDD’03 problem required feature
extration from free text- something that is beyond the scope of this research.
The data for KDD’02 is no longer on-line. The KDD’01 had data with 130,000
attributes and we don’t yet know how to extend our technqie to such a large
attribute space. We had trouble following the KDD’00 documentation.
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learner win - loss win loss ties
J48 10 25 15 20

NBK 8 17 9 34
SAWTOOTH -6 12 18 30

NB -12 9 21 30
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Fig. 5. SAWTOOTH exeucting on UCI data.
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B. UCI Data

Figure 4 explored SAWTOOTH’s competencies on one large
data set. Figure 5 explores SAWTOOTH’s competency on many
smaller data sets from the standard UCI database:{anneal, au-
diology, auto-mpg, diabetes, echo, heart-c, hepatitis, horse-colic,
hypothyroid, ionosphere, iris, labor, letter, primary-tumor, segment,
soybean, vehicle, vote, vowel, waveform-500}. Those data sets ranged
in size from labor’s 57 instances toletter’s 20,000 instances. A
standard 10*10 cross-validation experiment was conducted using
SAWTOOTH/SPADE (using the Figure 2 code); or the J48 decision
tree learner; or two Naı̈veBayes classifiers that used either a single
gaussian to model continuous attributes (the “NB” learner) or a sum
of gaussians (the “NBK” learner proposed by John and Langley [3]).

Using t-tests, significant differences (α = 0.05) between the
mean performance of each learner on the 20 data sets could be
detected. Win/loss/ties statistics for each pair of learners on each
data set was then collected. The results, shown top of Figure 5
shows SAWTOOTH performing marginally better than NB classifier
but worse that both J48 and NBK. This is not surprising: Provost
and Kolluri [2, p22] comment that sequential learning strategies like
windowing usually performs worse than learning from the total set.

However, what is encouraging is thesize of the difference in
mean accuracies SAWTOOTH and the other learners. The plot shown
bottom of Figure 5 sorts all those differences. In 80% of our
experiments, SAWTOOTH performed within±5% of other methods.

C. Data with Concept Drift

Figure 4 and Figure 5 showed SAWTOOTH processing static data.
Figure 6 shows SAWTOOTH running on data with concept drift.
To generate that figure, a flight simulator was executed where a
airplane moved from a nominal mode to one of five error conditions
(labeled a,b,c,d,e). Data was taken from the simulator in eras of
size 100 instances. Each error mode lasted two eras and each
such mode was encountered twice. The top of Figure 6 shows the
results of SAWTOOTH’s stability tests as well as when SAWTOOTH
enabled or disabled learning. Each error mode introduced a period
of instability which, in turn, enabled a new period of learning.

The first time SAWTOOTH saw a new error mode (at eras
15,23,31,39,and 47), the accuracy drops sharply and after each mode,
accuracy returns to a high level (usually, over 80%). Thesecondtime
SAWTOOTH returned to a prior error mode (at eras 63,71,79,87 and
95), the accuracies drop, but only very slightly.

Two features of Figure 6 are worthy of mention. Firstly, the large
drop in accuracy when entering a new context means SAWTOOTH
can be used to recognize new contexts (watch for the large drops).
In terms of certifying an adaptive system, this is a very useful result:
learning systems can alert their uses when they areleaving the region
of their past competency. Secondly, and most importantly, there is no
such large drop when SAWTOOTH returns to old contexts. That is,
SAWTOOTH canretain knowledge of old contextsand reuse that
knowledgewhen contexts re-occur.

D. Unsupervised Learning

Figure 4, Figure 5, and Figure 6 were all examples ofsupervised
learning. In supervised learning (when each instance is stamped with
a class symbol), handling concept drift meansrecognizingwhen the
underlying data generating phenomenum has changed; andrepairing
the current classifier to cope with that change.
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Fig. 7. Learning normal flight (eras
1 to 8); monitoring five different flights
a,b,..e (eras 9 to 16); injecting errors into
eras 15,16.

Figure 7 shows anun-
supervised learningexperi-
ment (where instances lack
any class symbol). In unsu-
pervised learning, it no longer
makes sense torepair the clas-
sifier since there are no classes
to classify. However, the prob-
lem of recognizingnovel situ-
ations remains.

In the Figure 7 experiment,
the class of all instances were
replaced with a single label:
class0. Eras one to eight of
that figure show SAWTOOTH
processing eight eras (of 100
instances) of nominal flight
simulator data. Updating the
frequency tables was then dis-
abled and the system watched
over five entirely different
flights, each ending with one
of our errorsa,b,c,d,e. The classify routine of Figure 2 was
modified to return the classification with the maximum likelihoodas
well as that maximum likelihood value. Figure 7 shows the average
maximum likelihood seen in each era. In all cases, the era 15,16 errors
dramatically changed the likelihoods: they dropped bytwo orders
of magnitudefrom the pre-error values and they droppedbelow the
liklihooods seen during training (eras 1 to 8).
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This sudden drop in average maximum likelihoods could be used
to recognize novel situations. Such a novelty detector could monitor
(e.g.) an adapative controller for a jet fighter and propose switching
to manual control (or bailing out) if the inputs are radically different
to what has been seen before.

VII. L IMITATIONS

The premise of our system is that the dataset being processed
comes from a data generating phenomena that with context drifts that
are slower than the time required to reach plateau. If a particular data
sets does not contain early plateaus then our simple toolkit should
be exchanged for a more sophisticated scheme. Also, our toolkit is
inappropriate if concept drift is occurringfasterthan the time required
to collect enough instances to find the plateau.

Another drawback with out toolkit is that we can’t guarantee that
our learner operates in small constant time per incoming instance.
Several of SPADE’s internal parameters are functions of the total
number of instances. In the worst case, this could lead to runaway
generation of bins. On a more optimistic note, we note that this worst
case behavior has yet to be observed in our experiments: usually, the
number number of generated bins is quite small (see Figure 4).

Note that our scheme is designed forlarge data sets and so does
not perform as well as other commonly used schemes when used
on smallerdata sets (but often achieves accuracy on small data sets
within ±5% of other learners schemes- see Figure 5).

VIII. C ONCLUSION

Before implementing seemingly more sophisticated schemes, it can
be valuable to first build the simplest possible initial implementation.
SAWTOOTH/SPACE were designed in accordance with Holte’s
simplicity-first methodology. SAWTOOTH/SPADE is much simpler
than other data miners such as FLORA, the winner of KDD’99,
or the SVDDs we used previously for detecting novel inputs [7].
Despite its simplicity, the system performs remarkably well. SPADE,
plus SAWTOOTH executes via one scan of the data. Figure 4 shows
one example where this method scales to millions of instances while
working as well as many other schemes for scaling up data mining.

The system has other advantages:

• In Figure 3, the SPADE discretizer was applied to standard small
UCI data sets. This discretizer performed nearly as well as other
discretization methodswithoutrequiring multiple passes through
the data.

• Figure 7 traced SAWTOOTH’s behavior when used for novelty
detection in unsupervised learning. Without even knowing the
target classes of a system, a V&V agent could monitor the
average maximum likelihood of the input examples. If that
likelihood suddenly drops by orders of magnitude, then the agent
could raise an alert that it is unlikely that the adaptative system
is seeing inputs similar to what is has handled previously.
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