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Abstract—Many data sets exhibit anearly plateauwhere the perfor- 100 F >%<7 X oAt v - A +_
mance of a learner peeks after seeing a few hundred (or less) instances. j@ A ¥§ % £x
When concepts drift is slower than the time to find that plateau, then 0 Y L L
a simple windowing policy and an incremental discretizer lets standard 200 400 600 800
learners like NaiveBayes classifiers to scale to very large data sets. Our dataset size

tookit is simple to implment; can scale to millions of instances; works as
many other data mining schemes; and, with trivial modifications, can be ) o . ) )
used to detect concept drift; to repair a theory after concept drift; can  Fig- 1. 10*10incremental cross validation experiments with J48 and Naive-

reuse old knowledge when old contexts re-occur and can detect novel Bayes (with kemel estimation) opA:heart-c, B:zoo; C:vote; D:heart-statlog;
inputs during unsupervised learning. E:lymph, F:autos. G:ionosphere, H:diabetes, I:balance-scale, J:sgytéan

and LSR on {K:bodyfat. L:cloud, M:fishcatch, N:sensory, O:pwLinear,

~ Index Terms—data mining, concept drift, scale up, NaveBayes classi- Q:strike, R:pbc, S:autoMpg, T:housihgAll data sets from the UCI reposi-
fiers, incremental, discretization, SAWTOOTH, SPADE, nOVelty detection tory [8] Data sets A..J have discrete classes and are scored \mahmcy

of the learned theory; i.e % successful classifications. Data sets K..T have
continuous classes and are scored byRRE&ED(30)of the learned theory; i.e.

what % of the estimated values are within 30% of the actual value.
I. INTRODUCTION

Holte argue forsimplicity-first approach to data mining; i.e. re-
searchers should try simpler methods before complicating existingThe experiment was quite successful. SAWTOOTH/SPADE can
algorithms [1]. In their review of methods for scaling up inductive alexecute via one scan of the data; can scale to millions of instances;
gorithms, Provost and Kolluri endorse this “simplicity-first” approachand works as well as many other schemes for scaling up data
However, they add that “it is not clear now mutgveragecan be mining. With trivial modifications, SAWTOOTH/SPADE can also
obtained through the use of simpler classifiers to guide subsequeetect concept drift; repair a theory after concept drift; reuse old
search to addresspecific deficienciei their performance” [2, p32]. knowledge when old contexts re-occur; and could detect novel inputs
This paper is a simplicity-first approach to scaling up data minerduring unsupervised learning.
Consider whatleveragea simple NaeBayes classifier offers for SAWTOOTH/SPADE can be used as a simpbeselinesystem to
scaling up induction. Such classifiers have two desirable featu@smparatively evaluate the merits of seemingly more sophisticated
for scalable induction: fast updates and small memory footprinisaplementations. This evaluation has lead to the abandonment of
NaiveBayes classifiers summarize the training data in one frequnasrtain lines of research. Elsewhere, we have explored novelty detec-
table per class. Hence, they consume very little memory and they ¢@m in unsupervised learning using a variety of complex methods:
quickly and incrementally modify their knowledge by incrementingissociation rules to learn expected patterns in attribute values [6];
the frequency count of attribute ranges seen in new training examples.SVDDs to recognize boundaries between expected and novel
However, simple N&veBayes classifiers hawpecific deficiencies inputs [7]. SAWTOOTH/SPADE has now replaced those prior im-
When learning from a large data set, it is common for the data ggrlementations, which we now view as needlessly complex.
erating phenomenon to change and standariVédayes classifiers The rest of this paper describes the early plateau effect, offers
have no mechanisms for adapting to swdmcept drift Also, when some background notes on MeBayes, SAWTOOTH/SPADE, then
processing very large datasets, it can be impossible to scan it multigescribed experiments with numerous UCI data sets, some KDD cup
times or store it all in in main memory. Unfortunately, like manydata, and an aircraft flight simulator.
classifiers, NaveBayes assumes that all the data is held in a single
memory-resident table [2, p32]. Also, NaBaugg handles numeric I
attributes via eithediscretizationor kernel estimatiormethods. Most o
known discretization and estimation methods foiéBayes require A data set exhibitsearly plateauswhen the peak performance
multiple passes through the data [3]-[5]. of_ a learner requirt_as just a few hundred instances. For datasets
This paper reports an experiment in applying Holte’s simplicity firg#/ith plateaus, learning could proceedwindowsof a few hundred
approach to resolving these specific deficiencies. Experiments wi§tances. After a small number of windows, performance would peak
incremental cross-validatiqmiiscussed below, showed that many datand learning could be disabled. If the leamer's performance falls off
sets have aarly plateaueffect where classification accuracy plateaud® Plateau (i.e. due to concept drift), the learner could start afresh.
after a relatively small number of examples (just a few hundreo§.‘nce Igarnlng only ever has to process a few hundred instances at a
This motivated scale-up experiments witvmdowingscheme called tme, this approach should scale to very large data sets.
SAl TH that enables classification only when performance isOne way to find plateaus is via incremental R*N-way cross-
#ﬁauing from a plateau. In accordance with the Holte doctrin¥@lidation. ForR = 10 repeats, the order of the data is randomly
SAWTOOTH was build by considering multiple implementatiorshuffled. For each random ordering, the data is then divided0
options, then always implementing the simplest one. For exampf2ys. Training is then conducted using the first i < N divisions
the windowing scheme was added to a simpléviiBayes classifier. and tested using remainirig-i divisions. As the size of the training
Also, our incremental discretization methpatalled SPADE, was S€tgrows, the accuracy of the learned theory improves. At the plateau

based on the simplest discretization method that we could find. POINt, this improvement flattens out. After all the repeats, this
plateau point can be identified when Iearmng{émh of the data does
Manuscript received XXX, 2004, revised August YYY, 2004. not result in significantly greater accuracies than usig* X<¥1
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using four different learners: J48; NBK: Na&Bayes with kernel (or at least difficult) to make it completely free of parameters”.
estimation; M5, and LSR In all the experiments, a plateau wasThis has not been our experience: SAWTOOTH uses the simple
reached well b all the training instances were used. Most of tstandardized test statistic of Equation 1 to determine window size. In
experiments X% hed plateau in 200 instances or less. Furthei] our experiments we have kept parameters of those tests constant.
only a handful (f—o) of experiments needed more than 300 instances s
o Sj - ( 1 El * E)
S

>

to find their plateau. i — >

This plateaus effect has been have been reported before (although_z(a =0.01) = ~2.326 < % - 250 (1.5
this may be first report of early plateaus in M5’ and LSR). Provost V *T*( 7T)
and Kolluri [2] make the general comment that the performance of vE
some learners levels off quite early, without specifying exactly howquation 1 needs some explanation. A SAWTOOTH window is some
early that might happen. They add that while some further accuraoyeger number okras of size /; i.e. W = nE (default: E=150
improvements are seen as data set size increases, those improveniggitnces). SAWTOOTH windows grow until performance has not
can be quite small. For example, Catlett reports differences of legganged significantly in &table (default: 2) number of eras. Each
than 1% (on average) between theories learned from 5000 or 2@@ is viewed as a binomial trial and each window is a record of
randomly selected instances in ten different data sets [12]. trail results in the erag, ...i, j where eraz is the current era and

In another study, Oates and Jensen found plateaus in 19 UCI data=1 is the first report of instability. Each étaholds Sy, successful
sets using five variants of C4.5 [13]. In their results, six of their rurglassifications and Equation 1 checks if the currentjeisdifferent
plateaued after seeing 85 to 100% of the data. This is much later tharthe proceedings erds.., .
Figure 1 where none of our data sets needed more than 70% of th®n stability, SAWTOOTH disables theory updates, but keeps
data. One possible reason for our earlier plateaus is the method usgltecting theS statistics (i.e. keeps classifying new examples using
to identify start-of-plateau. Figure 1 detected plateaus using t-tesite frozen theory). If stability changes to instability, SAWTOOTH
to compare performance scores seen in theories learnedffoan  shrinks W back to one era’s worth of data and learning is then re-
N examples }/ < N) and reported start-of-plateau if no significanenabled.
(«=0.05) difference was detected between Meand the last\/ with
a significant change. On the other hand, Oates and Jensen scanned the
accuracies learned frof 10, 15% etc. of the data looking for three
consecutive accuracy scores that are within 1% of the score gaine@ne problem with windowing systems is the computational cost of
from a theory using all the available data. That is, Figure 1 showgntinually re-learning. Hence SAWTOOTH uses a learner that can
the point where accuracies stimpprovingas training setgrowwhile ~ update its knowledge very quickly. Figure 2 shows thévdBayes
Oates and Jensen report when accuracies dégradingas training classifier used by SAWTOOTH. The functiopdate in that figure
setsshrink Given sufficiently large standard deviations, our methodfustrates the simplicity of re-learning for a Bayes classifier: just
will terminate on smaller training sets than Oates and Jensen. increment a frequency table holding counts of the attribute values

The results below show that learning using our start-of-plate&§€n in the new training examples.
detector can produce adequate classifiers that scale to very large dat@ terms of scaling up induction, the most important property of
sets. Hence, at this time, we are not motivated to explore differdrigure 2 is theF data structure that holds the frequency counts. A
methods for detecting start-of-plateau. In any case, regardlessBatyes classifier only needs the memory required forftieequency
where they found plateaus, Oates and Jensen’s results endorse our
general thesis that, often, learning need not process all the available
examples. Rather, learning can jump through the available data,ip, ogas: ¢ frequeny tables;  “I" : number of instances:

windows of a few hundred instances at a time. # “C": how many classes?; “N": instances per class
function update(class,train)
# OUTPUT: changes to the globals.
I1l. WINDOWING # INPUT: a “train”ing example containing attribute/value pairs
. i X . # plus that case’s “class”
In a windowing system like SAWTOOTH, newly arrived examples  |++  if (++N[class]==1) then C++ fi
are pushed into the start of sliding window of si#€ while the for <attrvalue> in- train

: . if (value 1= "?" then
same number of older examples are popped from the end. Windowing ' (,\:'[Cf;ess attr ra)nge]++ ¢ fi

systems need to select an appropriate window Bizdf 17 is small  function classify(test)

relative to the rate of concept drift, then windowing guarantees the” OUTPUT: “what" is the most likely hypothesis for the test case.
# INPUT: a “test” case containing attribute/value pairs.

1)

IV. NAIVEBAYES

maintenance of a theory relevant to the lEstexamples. However, k=1: m=2 # Control for Laplace and M-estimates.
if W is too small, learning may never have find an adequate like = -100000 # Initial, impossibly small likelihood.
characterization of the target concept. SimilarlyJif is too large, {f"LriZ'r n (N[H]+k)/(|+(kjé:)(§h90k allhypotheses. 4P ()
then this will slow the learner’s reaction to concept drift. temp = log(prior)

Many windowing systems like SAWTOOTH and FLORA [14] {foi; ;Vztltsgajge;") in tﬁggbutes
select the window size dynamicallj#” grows till stable performance inc= ,:[H,gm,(,mue]ﬂm*pnor))/(N[H]+m) #e=P(E; | H)

is reached; remains constant while performance is stable; then shrinks  temp += log(inc) fi
when concept drift occurs and performance drops. FLORA changes
W using heuristics based on accuracy and other parameters that take
into account the number of literals in the learnt theory. FLORAs return what
authors comment that their heuristics are “very sensitive to the

description language used”. Hence, they claim that “it seems hopeless
Fig. 2. A Bayes Classifier. “?” denotes “missing values”. Probabilities are
1All learners come from the WEKA [9]. LSR/M5’ assumes values can bultiplied together using logarithms to stop numeric errors when handling
fitted to one/many (respectively) n-dimensional linear models [10]. J48 isvary small numbers. The: and k variables handle low frequencies counts
JAVA implementation of Quinlan's C4.5 decision tree learner [11]. in the manner recommended by Yang and Webb FB5]].

if (temp >= like) then like = temp; what=class fi
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counts plus a buffer just large enough to hold test instance V. HANDLING NUMERIC ATTRIBUTES WITH SPADE

passed to Figure 2'slassify function. Discretization converts continuous ranges to a set of bins storing
NaiveBayes classifiers are based on Bayes’ Theorem. Informallife tally of numbers that fall into that bin. In order to process infinite
the theorem saysexzt = oldxnew i.e. what we'll believenextcomes  streams of data, we developed a one-pass discretization method called
from how new evidence effect®ld beliefs. More formally: SPADE (Sngle PAss Dynamic Ehumeration).
SPADE only scans the input data once and, at anytime during the
P(H) processing ofX instances, SPADE’s bins are available. Further, if it
P(H|E) = P(E) HP(Ei | H) ever adjusts bins (e.g. when merging bins with very small tallies), the
‘ information used for that merging comes from the bins themselves,

ie. given fragments of evidenc&: and a prior probability for and_not some second scan of the instances. Hence, it can be used for
the incremental processing of very large data sets.

a classP(H), the theorem lets us calcuate-a—pegteri probability . ’ -
P(H | E). Technically, a Bayes classifier should return the class Unllks stta?r:iard l(\jlweIB_ayes clas_smz_rst, iPtA_DE m;;(AezEO. as;ur_rllp-
with highest probability. However, Figure 2 actually, computes clafé)ns about the underlying nUmeric distributions. IS simrar

likelihoodsnot probabilities. Likelihoods become probabilities whe ollo-Jk\)[ms butt the MLN an(cjj Mﬁ;ﬁsn&i;ﬁ\r‘emﬁmaﬂyﬁ The flrft
they are normalized over the sum of all likelihoods. Since maximu ueXN creates one bin and sef o =N }. If a subsequen

probability comes from maximum likelihood, this code only needfrs]ew value arrives inside the currefiMIN,MAX } range, the bins

to return the class with maximum likelihood. Note that unlikelyrom MIN to MAX are searched for an appropriate bin. Otherwise, a

instances have lower frequency counts and hence lower Iikelihoogﬁ‘b&”s number of new bins are created (default: SubBins=5) and

In the sequel, we will use this property of likelihoods to recognizin inNS(MAX Is extended to the new value. For example, here are four

novel instances in unsupervised learning.

Bayes classifiers are calledaive since they assume that the bm_dej "ig" ‘ "Z‘(’)’“
frequencies of different attributes are independent. In practice [16],

the absolute values of the classification probabilities computed Byach bin is specified by its lowéordervalue. A variableN maps to
Bayes classifiers are often inaccurate. However, the relative rankth§ first/last bin if it is the currenfMIN,MAX } value (respectively).
of classification probabilities is adequate for the purposes of cldatherwise it maps to bin where border; < N < borderiyi.
sification. Many studies (e.g. [4], [17]) have reported that, in marfyssuming SubBins = 5, then if a new valueN = 50 arrives,
domains, this simple Bayes classification scheme exhibits excelléM¢ new bins added above the old MAX to a new MAX=50:
performance compared to other learners.

Other researchers have explored incremental Bayes classifiers using, .,
modifications to the standard Bayes classifier: e.g. Gama alters theh | q ber of bi 4MaxBi
frequency counts in the summary tables according the success rat e newly created number of bins exceedslaxBins parameter

of the lastNV classifications [18] while Chai et.al. updates the priorﬁ.efau'.t:the square root of gll the instances seen to date) .then adjacent
via feedback from the examples seen up till now [19]. In contra ins with a tally less thaMininst (default: same a#laxBing are

we use standard Bayes classifiarishout modification. merged if the_ tally in the merged bins is Ie_ss thaVlenstpara_mete_r
e . ) . (default: 2*Mininst). Preventing the creation of very few bins with
Bayes classifiers can be extended to numeric attributes ksmel ;. yjjies is essential for a practical incremental discretizer. Hence,

estimation methods. The standard estimator assumes the cen ADE checks for merges only occasionally (at the end of each era),

limit theorem and models each numeric a_ttrlbute using a s'nqll’?uss allowing for the generation of multiple bins before they are
gaussian. Other methods don’t assume a single gaussian; e.g. ‘JrﬂEFbed

and Langley’s gaussian kernel estimator models distributions of any, PADE runs as a pre-processoniadate to NaveBayes. Newly
shape as the sum of multiple gaussians [3]. Other, more sophistic ed numerics get placed into bins and it is this bin number that is
methods are well-established [20], but several studies report that eVe4 as thealue passed tapdate or Figure 2. Also, when SPADE
simple discretization methodsuffice for adapting Bayes classh‘iersmerges bins, this causes a similar merging in frequncy tables entries
to numeric variables [4], [5]. (the F' variable of Figure 2).

John and Langley comment that their method must access all therhe opposite of merging would be wplit bins with unusually
individual numeric values to build their kernel estimator and this igrge tallies. SPADE has no split operator since we did not know
impractical for large data sets. Many discretization methods violagyw to best divide up a biwithoutkeeping per-bin kernel estimation
the one scarrequirement of a data miner: i.e. execute using only ongata (which would be memory-expensive). Our early experiments
scan (or less) of the data since there many not be time or memonsi@ygested that addin§ubBins = 5 new bins between old ranges
go back and look at a store of past instances. For example, Doughgiifi newly arrived out-of-range values was enough to adequately
et.al.’s [4] straw mandiscretization method i4$0-binswhich divides divide the range. Our subsequent experiments (see below) were so
attributea; into bins of size AX @) MIN(:) 1f MAX and MIN  encouraging that we are not motivated to add a split operator.
are calculated incrementally along a stream of data, then instance datgigure 3 compares results from SPADE and John and Langley’s
may have to be cached and re-discretized if the bin sizes chang&ne| estimation method using the display format proposed by
An alternative is to calculate MAX and MIN after seeirj the pougherty, Kohavi and Sahami [4]. In that figure, a 10*10-way
data. Both cases require two scans through the data, with the secgifs validation used three learners: (a)ivéBayes with a single
scan doing the actual binning. Many other discretization methoggyssian for every numeric; (b) N@Bayes with John and Langley’s
(e.g. all the methods discussed by Dougherty et.al. [4] and Yang gagnel estimation method (c) the Figure 2ideBayes classifier using
Webb [5]) suffer from this two-scan problem. data pre-discretized by SPADE. Mean classification accuracies were

An incremental one scan (or less) discretization method is needzllected and shown in Figure 3, sorted by the mdansz) — (b—a);
for scaling up induction. SAWTOOTH uses the SPADE methothat is, by the difference in the improvement seen in SPADEernel
described below. estimationover and above simple single gaussian scheme. Hence,

1 2 3 4 5 6 7 8 9 min | max
10 | 20 | 30 | 40 | 42 | 44 | 46 | 48 | 50 10 50
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Fig. 3. Comparing SPADE and kernel estimation. Data sgfs:vowel,
B=iris, C=ionosphere, D=echo, E=horse-colic, F=anneal, G=hypothyroid,
H=hepatitis, I=heart-c, J=diabetes, K=auto-mpg, L=waveform-5000Fjg 4. SAWTOOTH and the KDD'99 data
M=vehicle, N=labor, O=segment

the left-hand-side data sets of Figure 3 show examples where kemetess to super-user as (e.g.) just a simple probe. Note\fhat”
estimation work comparatively better than SPADE while the rightre mis-classificatiorscores so dower score is better.
hand-side shows results where SPADE did Compara’[ively better. Figure 4 shows all the sorteadean M*C score$rom the KDD’99

Three features of Figure 3 are noteworthy. Firstly, in a findingntrants. Also shown in that figure is SAWTOOTH's me&hx C'
consistent with those of Dougherty et.al. [4], discretization ca@sult. SAWTOOTH's results were close to the winning score of
sometimes dramatically improve classification the accuracy of eqtrant #1; very similar to entrants 10,11,12,13,14,15,16; and much
NaiveBayes classifier (by up to 9% to 15% in data sets C,F,M,0). Segatter than entrants 18,19,20,21,22,23,24. These results are encour-
ondly, Dougherty et.al. found that even simple discretization schemg§ing since SAWTOOTH is a much simpler tool that many of the
(e.g. 10-bins) can be competitive with more sophisticated schemggner entries. For example, the winning entrant took several runs
We see the same result here where,3h of these experiments, 1o divide the data into smaller subsets and buid an ensemble of
SPADE’s mean improvement was within 3% of John and Langley’sox10 C5 decision trees using an intricate cost-sensitive bagged
kernel estimation method. Thirdly, in two cases, SPADE's one sc@Bosting technique. This took more than a day to terminate on a dual-
method lost information and performed worse than assuming a singi@cessor 2x300MHz Ultra-Sparc2 machine with 512MB of RAM
gaussian. In data set A, the loss was minimal (-1%) and in dajging the commercially available implementation of C5, written in
set B SPADE's results were still within 3% of kernel estimation:c |n contrast, our toolkit written in interpreted scripting langauges
In our view, the advantages of SPADE (incremental, one scggawk/bash), processed all 5,300,000 instances in one scan of the data
processing, distribution independent) compensates for its occasiofighg less than 3.5 Megabytes of memory. This took 11.5 hours on
performing worse than state-of-the-art alternatives which require farGHz Pentium 4, with 500MB of RAM, runing Windows/Cygwin
moré memory. and we conjecture that that this runtime could be greatly reduced by

porting our toolkit to “C".

VI. EXPERIMENTS Another encouraging result is theattributes with X bingplot of
In all the following experiments, SPADE was run continuously offigure 4. One concern with SPADE is that several of its internal
all incoming data while SAWTOOTH worked on windows containingparameters are linked to the number of processed instances; e.g.
a variable number of eras. Also, when SAWTOOTH accuracies awaxBinsis the square root of the number of instances. The 5,300,000
reported, they are the accuracies seen on new instémefesethose instances of KDD'99 could therefore generate an impractically large
instances update the frequency tables of thévéBayes classifier. number of bins for each numeric attribute. This worst-case scenario
That is, all the SAWTOOTH accuracies reported below come fromould occur if each consecutive group &fubBins number of

datanot (yet) used to train the classifier. numeric values has different values from the previously seen groups
andthey are sorted in ascending or descending order. If this unlikely
A. KDD'99 Data combination of events dog®ot occur then the resulting bins would

In order to stress test our system, we ran it on the 5,300,058"9 tallies thar/inInst, encouraging it to merge with the next bin.

instances used in the 1999 KDD GuKDD'99 dealt with network n all oqr experiments, we have never seen this worst-cage behavior.
intrusion detection and was divided into a training set of abOLIJn KDD'99, for example, SPADE only ever generated 2 bins for 20
of the 40 attributes. Also, for only two of the attributes, did SPADE

five million instances and st setof 311,029 instances. The data .
. - . ; . erate more than 50 bins. Further, SPADE never generated more
comprised 6 discrete attributes, 34 continuous attributes, and . .
than 100 bins for any attribute.

classes which fell into four main categoriesormal (no attack); )
probe (surveillance and other probingDOS (denial-of-service); ~ Attempts to test our system using other KDD cup data were not
U2R (unauthorized access to local super-user privileges); Reid  Successful, for a variety of reasdns
(unauthorized access from a remote machine).
The 24 KDD’99 cup entrants ran their learners to generated a3Th KDD'04 evaluat al ine during th od wh

7 s i H N ifiac e evaluation portal was ofi-line aurin € period wnen

S e e e SANTOOTH was being developed, The KDD'C3 problem requred feature
; I ) © extration from free text- something that is beyond the scope of this research.

where C[i, j] was the cost of mis-classifying (e.g.) unauthorizeghe data for KDD'02 is no longer on-line. The KDD'01 had data with 130,000

attributes and we don't yet know how to extend our techngie to such a large
2http://www.ai.univie.ac.at/"bernhard/kddcup99.html attribute space. We had trouble following the KDD’00 documentation.
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'eiger W'”l'oloss ek '2555 L C. Data with Concept Drift

SAVC'TBSOTH _% g 198 gg Figure 4 and Figure 5 showed SAWTOOTH processing static data.

NB -12 9 21 | 30 Figure 6 shows SAWTOOTH running on data with concept drift.
~ 20 , , , , , To generate that figure, a flight simulator was executed where a
£ 15} } airplane moved from a nominal mode to one of five error conditions
z or ] (labeled a,b,c,d,¢. Data was taken from the simulator in eras of
g ° o size 100 instances. Each error mode lasted two eras and each
% 2 [ #M##W#%W* 1 such mode was encountered twice. The top of Figure 6 shows the
% 1ok f** ] results of SAWTOOTH's stability tests as well as when SAWTOOTH
§ a5 b5 ] enabled or disabled learning. Each error mode introduced a period
8 20 L L L L L of instability which, in turn, enabled a new period of learning.

0 10 20 30 40 50 60
delta accuracies, sorted

The first time SAWTOOTH saw a new error mode (at eras
15,23,31,39,and 47), the accuracy drops sharply and after each mode,
Fig. 5. SAWTOOTH exeucting on UCI data. accuracy returns to a high level (usually, over 80%). $aeondime
SAWTOOTH returned to a prior error mode (at eras 63,71,79,87 and
95), the accuracies drop, but only very slightly.

Two features of Figure 6 are worthy of mention. Firstly, the large

leam=off | :,,,,_f' - ;—f' r ‘——f”p LA L drop in accuracy when entering a new context means SAWTOOTH
learn=on |- -- - oo RS es EEEEE R .
4] can be used to recognize new contexts (watch for the large drops).
% Sggt')elgzﬁg C T In terms of certifying an adaptive system, this is a very useful result:
learning systems can alert their uses when theyeaeng the region
100 = of their past competencgecondly, and most importantly, there is no
75 | such large drop when SAWTOOTH returns to old contexts. That is,
- SAWTOOTH canretain knowledge of old contex&nd reuse that
8 S0 F knowledgewhen contexts re-occur
g 25 -
> 0 D. Unsupervised Learning
| | | | A N | L un-u

Figure 4, Figure 5, and Figure 6 were all exampleswabervised
abcde a b cde . . . . . .
era=1 era=50 era=10C learning In supervised learning (when each instance is stamped with
a class symbol), handling concept drift meaesognizingwhen the
underlying data generating phenomenum has changedepaiting
the current classifier to cope with that change.
Figure 7 shows anun-
supervised learning experi-
B. UCI Data ment (where instances lack Average Max Likelihood
any class symbol). In unsu-

Figure 4 explored SAWTOOTH’s competencies on one Iarg%]emsed learning, it no longer 0,001
akes sense tepair the clas-

data set. Figure 5 explores SAWTOOTH’'s competency on many. .
fier since there are no classes
smaller data sets from the standard UCI databdsemeal, au- .

. . .. to classify. However, the prob-
diology, auto-mpg, diabetes, echo, heart-c, hepatitis, horse-col|C . .
L L : em of recognizingnovel situ-
hypothyroid, ionosphere, iris, labor, letter, primary-tumor, segment. . 1e-05
: ations remains.
soybean, vehicle, vote, vowel, waveform-B0those data sets ranged In the Fi 7 . ¢
in size from labor's 57 instances tdetters 20,000 instances. A n : e '?urﬁ_ fxperlmen,
standard 10*10 cross-validation expenment@ conducted usfig class of all instances were

SAWTOOTH/SPADE (using the Figure 2 codeyof the J48 decisidP'aced with a single label:
lass0. Eras one to eight of

at figure show SAWTOOTH

Fig. 6. SAWTOOTH and concept drift

tree learner; or two NaeBayes classifiers that used either a singl
gaussian to model continuous attributes (the “NB” learner) or a s
of gaussians (the “NBK” learner proposed by John and Langley [3

. . 1 5 9 15
rocessing eight eras (of 100 train monitor  error

istances) of nominal flight

Using t-tests, significant differencesy (= 0.05) between the ginulator data. U

mean performance of each learner on the 20 data sets COUIdfrlé‘ﬁuency tables was then dis-1 1o 8): monitoring five different flights

detected. Win/lossities statistics for each pair of learners on eaghleq and the system watcheda,b,..e (eras 9 to 16); injecting errors into
data set was then collected. The results, shown top of Figuresger five entirely different eras 15,16.

shows SAWTOOTH performing marginally better than NB classifiqqights' each ending with one
but worse that both J48 and NBK. This is not surprising: Provogt qr errorsa,b,c,d,e The classify routine of Figure 2 was
and Kolluri [2, p22] comment that sequential learning strategies likGqified to return the classification with the maximum likelihcasd
windowing usually performs worse than learning from the total sefye|| asthat maximum likelihood value. Figure 7 shows the average
However, what is encouraging is treze of the difference in maximum likelihood seen in each era. In all cases, the era 15,16 errors
mean accuracies SAWTOOTH and the other learners. The plot shodramatically changed the likelihoods: they droppedtiwp orders
bottom of Figure 5 sorts all those differences. In 80% of ouwf magnitudefrom the pre-error values and they droppselow the
experiments, SAWTOOQOTH performed within5% of other methods. liklihooods seen during training (eras 1 to 8).

pdating the Fig. 7. Learning normal flight (eras
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This sudden drop in average maximum likelihoods could be used
to recognize novel situations. Such a novelty detector could monitcm R.C. Holte
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