\begin{thebibliography}{10} \bibitem{holte93} R.C. Holte, \newblock ``Very simple classification rules perform well on most commonly used datasets,'' \newblock {\em Machine Learning}, vol. 11, pp. 63, 1993. \bibitem{provost99survey} Foster~J. Provost and Venkateswarlu Kolluri, \newblock ``A survey of methods for scaling up inductive algorithms,'' \newblock {\em Data Mining and Knowledge Discovery}, vol. 3, no. 2, pp. 131--169, 1999, \newblock Available from \url{http://citeseer.ist.psu.edu/provost99survey.html}. \bibitem{john95} G.H. John and P.~Langley, \newblock ``Estimating continuous distributions in bayesian classifiers,'' \newblock in {\em Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence Montreal, Quebec: Morgan Kaufmann}, 1995, pp. 338--345, \newblock Available from \url{http://citeseer.ist.psu.edu/john95estimating.html}. \bibitem{dou95} James Dougherty, Ron Kohavi, and Mehran Sahami, \newblock ``Supervised and unsupervised discretization of continuous features,'' \newblock in {\em International Conference on Machine Learning}, 1995, pp. 194--202. \bibitem{YanWeb02Comparative} Ying Yang and Geoffrey~I. Webb, \newblock ``A comparative study of discretization methods for naive-bayes classifiers,'' \newblock in {\em Proceedings of PKAW 2002: The 2002 Pacific Rim Knowledge Acquisition Workshop}, 2002, pp. 159--173. \bibitem{me03b} Y.~Liu, T.~Menzies, and B.~Cukic, \newblock ``Detecting novelties by mining association rules,'' \newblock 2003, \newblock Available from \url{http://menzies.us/pdf/03novelty.pdf}. \bibitem{me03p} Yan Liu, Srikanth Gururajan, Bojan Cukic, Tim Menzies, and Marcello Napolitano, \newblock ``Validating an online adaptive system using svdd,'' \newblock in {\em IEEE Tools with AI}, 2003, \newblock Available from \url{http://menzies.us/pdf/03svdd.pdf}. \bibitem{Blake+Merz:1998} C.L. Blake and C.J. Merz, \newblock ``{UCI} repository of machine learning databases,'' 1998, \newblock URL: \url{http://www.ics.uci.edu/~mlearn/MLRepository.html}. \bibitem{quinlan92} R.~Quinlan, \newblock {\em C4.5: Programs for Machine Learning}, \newblock Morgan Kaufman, 1992, \newblock ISBN: 1558602380. \bibitem{witten99} I.~H. Witten and E.~Frank, \newblock {\em Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations}, \newblock Morgan Kaufmann, 1999. \bibitem{quinlan92b} J.~R. Quinlan, \newblock ``Learning with {C}ontinuous {C}lasses,'' \newblock in {\em 5th Australian Joint Conference on Artificial Intelligence}, 1992, pp. 343--348, \newblock Available from \url{http://citeseer.nj.nec.com/quinlan92learning.html}. \bibitem{catlett91} J.~Catlett, \newblock ``Inductive learning from subsets or disposal of excess training data considered harmful.,'' \newblock in {\em Australian Workshop on Knowledge Acqusition for Knowledge-Based Systems, Pokolbin}, 1991, pp. 53--67. \bibitem{oates97} Tim Oates and David Jensen, \newblock ``The effects of training set size on decision tree complexity,'' \newblock in {\em Proc. 14th International Conference on Machine Learning}. 1997, pp. 254--262, Morgan Kaufmann. \bibitem{widmer96learning} Gerhard Widmer and Miroslav Kubat, \newblock ``Learning in the presence of concept drift and hidden contexts,'' \newblock {\em Machine Learning}, vol. 23, no. 1, pp. 69--101, 1996, \newblock Availabel from \url{http://citeseer.ist.psu.edu/widmer96learning.html}. \bibitem{yang02} Y.~Yang and G.~Webb, \newblock ``Weighted proportional k-interval discretization for naive-bayes classifiers,'' \newblock in {\em Proceedings of the 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2003)}, 2003, \newblock Available from \url{http://www.cs.uvm.edu/~yyang/wpkid.pdf}. \bibitem{webb00a} Z.~Z.~Zheng and G.~Webb, \newblock ``Lazy learning of bayesian rules,'' \newblock {\em Machine Learning}, vol. 41, no. 1, pp. 53--84, 2000, \newblock Available from \url{http://www.csse.monash.edu/~webb/Files/ZhengWebb00.pdf}. \bibitem{hall03} M.A. Hall and G.~Holmes, \newblock ``Benchmarking attribute selection techniques for discrete class data mining,'' \newblock {\em IEEE Transactions On Knowledge And Data Engineering}, vol. 15, no. 6, pp. 1437-- 1447, 2003. \bibitem{gama00} J.~Gama, \newblock ``Iterative bayes,'' \newblock {\em Intelligent Data Analysis}, pp. 475--488, 2000. \bibitem{chai02bayesian} K.~Chai, H.~Ng, and H.~Chieu, \newblock ``Bayesian online classifiers for text classification and filtering,'' \newblock in {\em Proceedings of SIGIR-02, 25th ACM International Conference on Research and Development in Information Retrieval}, M.~Beaulieu, R.~BaezaYates, S.H. Myaeng, and K.~Jarvelin, Eds., 2002, pp. 97--104, \newblock Available from \url{citeseer.ist.psu.edu/chai02bayesian.html}. \bibitem{FayIra93Multi} U~M Fayyad and I~H Irani, \newblock ``Multi-interval discretization of continuous-valued attributes for classification learning,'' \newblock in {\em Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence}, 1993, pp. 1022--1027. \end{thebibliography}