
Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Andrew Matheny
LCSEE, West Virginia University

andrew.j.matheny@gmail.com

Abstract

This paper assesses the cost of using heuristic methods in
the field of text mining. Previous research has shown many
of the formal non-heuristic algorithms to be NP-hard which
positive results only in small domains. Given the massive
scale when dealing with unstructured textual data, these al-
gorithms prove to be impossible with large datasets with
many dimensions. Many heuristic approximations have
been proposed that drastically improve run-times, but give
a result of less accuracy than the rigorous methods.

In this paper, we evaluate the trade-offs of heuristic
methods to their more computationally complex alterna-
tives. We focus on algorithms for document clustering
and dimensionality reduction, and provide results detail-
ing the run-times and cluster validity of each method on
its own along with combinations from each type (Rigorous
and heuristic). Our findings indicate that the cost of these
approximations vary when dealing with supervised vs un-
supervised datasets, and provide recommended parameters
and combinations for optimization.

1. Introduction

In the vast tombs of the National Archives and Records
Administration, there lies a significant amount of informa-
tion. Among all of the different categories of information
from neatly organized databases, to cluttered hard drives, to
post-it notes stuck to monitors; the most common type of in-
formation is unstructured text. Merrill Lynch estimates that
this represents around 85 percent of all business informa-
tion is stored in this manner [8]. This can be anything from
e-mails, chat logs, web sites, white papers and proposals...
the list goes on and on. Given such a large amount of scat-
tered, seemingly useless data, is it possible to make sense
of it all? Is it possible to make sense of it all in a reasonable
amount of time?

This has been a significant question posed by scientists
from computer science, statistics, linguistics, and mathe-

matics since the mid 1980s and within the last 10 years has
seen tremendous growth. Within the realm of making sense
of unstructured text (text mining) there have been numerous
methods proposed to help classify unknown documents and
learn patterns from collections of many documents. These
algorithms typically fall into two rough categories, heuris-
tics and rigorous (NP-Hard in come cases). The rigorous
approach is usually thought of as the most complete solu-
tion, but taking the longest time (by leaps and bounds). On
the other hand the heuristic approach will typically com-
plete in a much smaller amount of time, but can only do so
by cutting corners and taking advantage of easy to compute
approximations.

Given the massive scale of unstructured information, it
is nearly always impractical to use the Rigorous approach.
This has resulted in a wide spread adoption of heuris-
tic approximations, simply out of necessity. Interestingly
enough, these approaches have been shown to prove quite
useful and any loss in quality of the result has come to be
acceptable. The question we propose is; How much is lost
by taking heuristic short cuts and what can be done to min-
imize this loss. In this paper we will focus on the tasks of
dimensionality reduction and document clustering, with 3
algorithms for each task, with one from each category be-
ing rigorous and the other 2 heuristic. We hope to find an
acceptable trade-off between run-time and quality of results
and to offer ways to achieve the quality of the rigorous al-
gorithms with the run-times of the heuristics.

2. Domain Specifics

2.1. Term and Document Matrix

The standard unit of classification within text mining is
a document. A document can represent a number of things
but most specifically, it is a collection of terms pertaining
to some entity. When analyzing a collection of documents,
this information is stored as a term document matrix. In this
matrix, documents are rows and the terms that contain are
the columns. Any place in the matrix where document d

contains term t some value is stored which can either be bi-
nary (in this case, we only need to know if it was in the doc-
ument) or real-valued (when we care about the frequency
of occurrence of term t in document d). For example, the
phrase:

The quick brown dog was very
quick, very brown, and very dog like.

(1)

Will be turned into a vector which looks something like this:

Phrase = [1 2 2 2 1 3 1 1] (2)

with each index of the above vector corresponding the a
dimension which comes from the term list (in this case, the
dimensions are the, quick, brown, dog, was, very, like).

Tf*Idf
Tf*Idf is shorthand for “term frequency times inverse

document frequency.” This calculation models the intuition
that jargon usually contains technical words that appear a
lot, but only in a small number of paragraphs. For exam-
ple, in a document describing a space craft, the terminology
relating to the power supply may appear frequently in the
sections relating to power, but nowhere else in the docu-
ment.

Calculating Tf*Idf is a relatively simple matter:

• Consider the frequency of occurrence of term i within
document j, tfi,j

tfi,j =
ni,j∑

t∈Tj
nt,j

(3)

Where ni,j is the number of times term i occurs in
document j, and Tj the set of terms in document j.

• Now consider the frequency of occurrence of term i
within the entire collection of documents.

idfi = log
|D|

|{d : ti ∈ d}|
(4)

Where D is the set of all documents and {d: ti ∈ d} is
the set of all all documents that term i appears in.

• If we simply multiple eq. 3 by eq. 4 we have the the
TfIdf value of term i in document j.

2.2. Dimensionality Reduction

Standard AI and machine learning methods work well
for problems that are fully described using dozens (or
fewer) attributes [?]. But a corpus of text documents must
process thou- sands of unique words, and any particular
document may only mention a few of them [?, ?]. Because
of this high natural dimensionality, run-times suffer vastly

when working with the entire set of terms. Additionally,
the curse of dimensionality tells us that as the number of
dimensions are increased, the volume of all possible val-
ues increases exponentially. Therefore, before we can apply
learning to textual documents, we must intelligently reduce
the number of dimensions to a manageable level, while still
best preserving the information in the original space.

In addition to the dimension reduction algorithms ana-
lyzed in this paper, there are a number of other linear time
methods pertaining solely to sparse textual datasets such
as Porters’ stemming algorithm, stoplists, tokenization, etc.
While these methods have been shown to be useful in the
past, this paper is focused solely on the tasks of clustering
and dimesion reduction and they will not be examined.

2.3. Document Clustering

One of the primary goals in document classification, is
to index large amounts of unstructured information and ask
the question, ”What documents are similar to this design?”
In order be able to answer this question we must first find
an appropriate way of locating the ”structure” in these col-
lections; including (a) the structure that exists within each
document as part of the collection, and (b) the compara-
tive structure of all the documents and how they relate to
one other. Considering that each document type has a for-
mat that can vary from highly syntactic source code, to
badly formed HTML, to unstructured text, there is not much
common ground between the various document types. One
common theme in all of these documents is exactly what
you are looking at right now, natural language. The chal-
lenge of document is solving (b), or how to define the com-
parative structure of the documents and how they relate to
each other.

2.4. Why Heuristics?

In the field of text mining, the sheer scope is one of the
largest challenges. The table above (fig. 1) above shows the
size of each dataset in our study by the number of terms and
number of documents. Working with datasets of this mag-
nitude at their originally dimensionality is certainly out of
the question leaving dimensionality reduction as an abso-
lute requirement. Using the traditional SVD-based methods

¡¡need to add chart here showing sizes of term
document matrices ¿¿

Figure 1. Sizes of datasets used in this study.
Notice the massive inherent dimensionality
(large term counts).

require the T X T covariance matrix which takes an ex-
ponentially larger amount of time as the number of terms
is increased. The same arguments can be used for argu-
ing against clustering with K-Means. At each iteration, K-
Means has a complexity of O(k ∗ n ∗ t) where k is the
number of clusters requested, n is the total number of docu-
ments, and t is the total number of terms. While these algo-
rithms may be appropriate in toy domains, they are simply
impossible in real-world applications such as program com-
prehension, news story aggregation, analysis of medical re-
ports, fraud detection, etc. where new information is in con-
stant flow and the existing data is already large enough.

Given the scale and scope of the data that is being used
industry, heuristic methods are a necessity and as a result
have been in use for some time. The algorithms being an-
alyzed here are nothing that has not seen before. However,
what has not been seen before is the analysis of what (if any)
is lost when going to heuristic methods. Furthermore, what
optimizations can be done to these algorithms to provide the
most bang for the buck.

2.5. Rigorous Algorithms

2.5.1 Dimensionality Reduction

.
PCA
Numerous data mining methods check if the available

features can be combined in useful ways. These methods
offer two useful services:

1. Latent important structures within a data set can be dis-
covered.

2. A large set of features can be mapped to a smaller set,
then it becomes possible for users to manually browse
complex data.

For example, principal components analysis (PCA) [3] has
been widely applied to resolve problems with structural
code measurements; e.g. [7]. PCA identifies the distinct
orthogonal sources of variation in a data sets, while map-
ping the raw features onto a set of uncorrelated features that
represent essentially the same information contained in the
original data. For example, the data shown in two dimen-
sions of fig. 2 (left-hand-side) could be approximated in a
single latent feature (right-hand-side).

Since PCA combines many features into fewer latent fea-
tures, the structure of PCA-based models may be very sim-
ple while still providing information pertinent to the origi-
nal vector space.

PCA is one of the traditional methods of performing di-
mensionality reduction. It suffers from scale-up problems
(for large data sets with many terms, the calculation of the
correlation matrix between all terms is prohibitively com-
putationally expensive).

2.5.2 Clustering

.
K-Means
K-Means is a clustering algorithm that, when given a

dataset of unidentified objects, it will group those items into
k groups based on some given similarity measure (cosine in
our case). The algorithm is described in fig. 3. For an ex-
ample of the algorithm in operation, see fig. 4.

2.6. Heuristic Algorithms

2.6.1 Dimensionality Reduction

.
FastMap

FastMap, proposed by Faloutsos circa 1995 [4], is sim-
ilar in nature to PCA in that it synthesizes new features by
combining all of the original features. Where FastMap dif-
ferent from PCA is in run-times (as the name may imply).
The general goal of FastMap is to project items in a n di-
mensional to a d dimensional space, with n > d. FastMap
works by recursively a new dimension, d times.

The basis of each reduction is using the cosine law on the
triangle formed by an object in the feature space and the two
objects that are furthest apart in the current (pre-reduction)
space. These two objects are referred to as the pivot objects
of that step in the reduction phase (n - d total pivot object
sets). Finding the optimal solution of the problem of finding
the two furthest apart points is a N2 problem (where N is
the total number of objects), but this is where the heuristic
nature of FastMap comes into play.

Instead of finding the absolute furthest apart points,
FastMap takes a shortcut by first randomly selecting an ob-
ject from the set, and then finding the object that is furthest
from it and setting this object as the first pivot point. After
the first pivot point is selected, FastMap finds the points far-
thest from this and uses it as the second pivot point. The line
formed by these two points becomes the line that all of the
other points will be mapped to in the new n - 1 dimension

��
��
��
��
��
��

��
��

��
��
��

��
��

��
��

��
��
��
��
��
��
��

��
��

��
��
��

��
��

��
��

��

Figure 2. The two features in the left plot can
be transferred to the right plot via one latent
feature.

• i=0

• Partitioning the input points into k initial sets, either at
random or using some heuristic data.

• Repeat unitl (i ≤ maxIterations or no point changes
set membership)

– Calculates the mean point, or centroid, of each
set or cluster.

– Constructs a new partition, by associating each
point with the closest centroid.

– Recalculate the centroids for the newly parti-
tioned cluster

– i = i + 1

Figure 3. K-Means algorithm. See fig. 4 for an
example of this algorithm running in practice.

space.
FastMap uses fig. 5 to calculate xi, or the position of

object Oi in the reduced space. This technique can be vi-
sualized by imagining the hyperplane perpendicular to the
line formed by pivot points, Oa and Ob, and projecting the
new point onto this plane (fig. 6).

TfIdf Sorting

2.6.2 Clustering

.
Canopy Clustering

A naive clustering algorithm runs in O(N2) where N is
the number of terms being clustered and all terms are as-
sessed with respect to all other terms. For large archival
collections, this is too slow. Various improvements over
this naive strategy include ball trees, KD-trees and cover
trees [1]. While all these methods are useful, their ability to
scale to very large examples is an open question.

An alternative to traditional clustering methods is canopy
clustering [2, 6]. It is intended to speed up clustering oper-
ations on large data sets, where using another algorithm di-
rectly may be impractical because of the size of the data set.
In a standard clustering algorithms, two items are compared
to determine some measure of how similar or different they
are. There are several distance measures used for differ-
ent domains (euclidean, cosine, manhattan, etc.), the draw
back to all of these is that they are all relatively computa-
tionally expensive. The secret to canopy clustering’s greater
performance over conventional clustering techniques is it’s

Step1: Here, we show some initial data points and the centroids
generated based on random assignment

Step2: Points are associated with the nearest centroid:

Step3: Next, we recompute centroid using new associations and
update the stored centroid:

Steps 2 & 3 are repeated until one of the two convergences criteria
are reached.

Figure 4. Example of K-means

Figure 5. Example of using the cosine law to
find the position of Oi in the dimension k

xi =
d2

a,i + d2
a,b − d2

b,i

2da,b
(5)

Figure 6. Projects of pointsOi andOj onto the
hyperplane perpendicular to the line OaOb

use of two distance measures, one being approximately ac-
curate but computationally cheap and the other being more
accurate, however more expensive. To take advantage of
the cheap distance metric, two passes are taken over the
dataset. In the first pass, the cheap distance measure is used
to determine canopies, which are groups of approximately
close things. In the second pass, the more expensive dis-
tance measure is used. If any two items being compared
do not share a canopy, then their distance is assumed to be
infinite and no further comparison is done. By doing this,
canopy clustering prevents having to perform n2 compar-
isons at each step through the clustering algorithm.

The algorithm proceeds as follows:

• Cheaply partition the data into overlapping subsets,
called ’canopies’ (see fig. 7);

• Perform more expensive clustering, but only between
these canopies.

Figure 7. The darker circle represents all
points in a given canopy, points in the smaller
circles cannot be used as a new canopy cen-
ter.

In the case of text mining applications like HAMLET,
the initial cheap clustering method can be performed us-
ing an inverted index; i.e. a sparse matrix representation
in which, for each word, we can directly access the list of
documents containing that word. The great majority of the
documents, which have no words in common with the par-
tial design constructed by the engineering, need never be
considered. Thus we can use an inverted index to efficiently
calculate a distance metric that is based on (say) the number
of words two documents have in common.

GenIc

GENIC is a generalized incremental clustering algorithm
developed by Gupta and Grossman [5] that provides poten-
tials for large improvements in scalability over K-Means.
Since GENIC was designed with streaming data in mind, it
only has a single pass through the data to work with. Be-
cause of this, it scales linearly, which is a requirement when
dealing with large corpora. By using stochastic methods,
GENIC can be given an initial k equal to the number of
items (each item is its own clusters) and prune away un-
likely clusters with each generation, giving a realistically
estimated value for k after the last generation. Here is how
GENIC works:

1. Select parameters

• Fix the number of centers k.

• Fix the number of initial points m.

• Fix the size of a generation n.

2. Initialize

• Select m points, c1, ..., cm to be the initial candi-
date centers.

• Assign a weight of wi = 1 to each of these candi-
date centers.

3. Incremental Clustering For each subsequent data
point p in the stream: do

• Count = Count + 1

• Find the nearest candidate center ci to the point p

• Move the nearest candidate center using the
formula

ci =
(wi ∗ ci + p

wi + 1
(6)

• Increment the corresponding weight

wi = wi + 1 (7)

• When Count mod n = 0, goto Step 4

4. Generational Update of Candidate Centers
When Count equals n, 2n, 3n, ..., for every
center ci in the list L of centers, do:

• Calculate its probability of survival using the
formula

pi =
wi∑n
i=1 wi

(8)

• Select a random number δ uniformly from [0,1].
If pi ¿ δ, retain the center ci in the list L of centers
and use it in the next generation to replace it as a
center in the list L of centers.

• Set the weight wi = 1 back to one. Although
some of the points in the stream will be implicitly
assigned to other centers now, we do not use this
information to update any of the other existing
weights.

• Goto step 3 and continue processing the input
stream

5. Calculate Final Clusters The list L contains the m
centers. These m centers can be grouped into the final
k centers based on their Euclidean distances.

GENIC is of specific interest to HAMLET for two pri-
mary reasons, low expected run-times on large corpora and
a potential ability at estimating the number of natural clus-
ters in the collection.

• Scalability: Since GENIC was designed with stream-
ing data in mind, it only has a single pass through the
data to work with. Because of this, it scales linearly,
which is a requirement if HAMLET is to scale to large
corpora.

• An likely estimate for k: Because of GENIC’s stochas-
tic based method of removing unwanted or non-useful
clusters, it has potential for use in correctly estimating
a good value for k. By eliminating ”bad stuff”, GENIC
can ideally identify the correct number of types of
”good stuff”.

2.7. Current Benchmarks

3. Analysis

3.0.1 Experiment Design

3.0.2 Datasets

3.0.3 Clustering Results

3.0.4 Dimension Reduction Results

3.0.5 Combinations

4. Conclusion

References

[1] A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor. In ICML’06, 2006. Avail-
able from http://hunch.net/˜jl/projects/
cover_tree/cover_tree.html.

[2] W. W. Cohen and J. Richman. Learning to match and
cluster large high-dimensional data sets for data inte-
gration. In KDD ’02: Proceedings of the eighth ACM

SIGKDD international conference on Knowledge dis-
covery and data mining, pages 475–480, New York,
NY, USA, 2002. ACM.

[3] W. Dillon and M. Goldstein. Multivariate Analysis:
Methods and Applications. Wiley-Interscience, 1984.

[4] C. Faloutsos and K.-I. Lin. FastMap: A fast algo-
rithm for indexing, data-mining and visualization of
traditional and multimedia datasets. In M. J. Carey
and D. A. Schneider, editors, Proceedings of the 1995
ACM SIGMOD International Conference on Manage-
ment of Data, pages 163–174, San Jose, California, 22–
25 1995.

[5] C. Gupta and R. Grossman. Genic: A single pass gener-
alized incremental algorithm for clustering. In In SIAM
Int. Conf. on Data Mining, pages 22–24. SIAM, 2004.

[6] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with applica-
tion to reference matching. In KDD ’00: Proceedings
of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 169–178,
New York, NY, USA, 2000. ACM.

[7] J. C. Munson and T. M. Khoshgoftaar. The use of soft-
ware complexity metrics in software reliability model-
ing. In Proceedings of the International Symposium
on Software Reliability Engineering, Austin, TX, May
1991.

[8] C. C. Shilakes and J. Tylman. Enterprise information
portals, 1998.

