Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Andrew Matheny

Masters Defense

Committee Tim Menzies, Ph.D (chair) Tim McGraw, Ph.D James Mooney, Ph.D

West Virginia University, LCSEE

July 21, 2010

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Abstract Motivations

Outline

- Background
- 3 Algorithm Review
- 4 Experiments
- 5 Conclusions

<ロ> <同> <同> < 同> < 同>

э

Abstract Motivations

Abstract

Abstract

Within the field of text mining, rigorous methods for dimensionality reduction and clustering don't scale.

We examine the trade-offs between standard rigorous approaches and a few heuristic alternatives.

The findings indicate that heuristic approximations aren't so bad.

(a)

Abstract Motivations

National Archival Needs

- Research arose out of NETL-funded look into archiving needs of NARA (National Archives and Records Administration)
- Vast amounts of textual documents with no infrastructure for exploring them

Abstract Motivations

Navigating the Technical Document Space

Specifically, NARA needs to explore thousands of projects worth of technical documents.

To name a few...

- STEP/EXPRESS documents
- Source code
- Engineering artifacts (requirements, use cases, etc.)

\$1M Question

What other designs are similar to this one?

Abstract Motivations

- Estimated that over 80% of potentially usable business information in an unstructured form [Grimes, 2008]
- Heaps' Law tells us that the growth rate of the term space, or vocabulary, is approximately equivalent to the square root of the total number of words in the document set [Grootjen et al., 2003].

Text Mining Preprocessing Dimensionality Reduction Clustering

Outline

2 Background

3 Algorithm Review

4 Experiments

5 Conclusions

<ロ> <同> <同> < 同> < 同>

Text Mining Preprocessing Dimensionality Reduction Clustering

What is Text Mining?

Definition

The exploration of large libraries of natural language with the goal extracting information not previously known.

イロト イポト イヨト イヨ

Text Mining Preprocessing Dimensionality Reduction Clustering

Example Applications

- Spam filtering
- Identifying similar news items
- Targeted advertising
- Program comprehension
- Search indexing
- etc...

Text Mining Preprocessing Dimensionality Reduction Clustering

Basic Process

The basic operation involved in text mining are:

- Defining the scope of a document
- Processing the documents into manageable data structures
- Computational analysis of document collection as a whole
- Output of new information

<ロ> <同> <同> < 同> < 同>

Text Mining Preprocessing Dimensionality Reduction Clustering

Explicit Process

A more descriptive explanation of these steps and how they are used in this study are as follows:

• Preprocess:

Translate documents into a vector space model [Salton, 1991]

• Reduce Dimensionality:

Remove non-descriptive terms and extract valuable terms

• Cluster:

Group similar documents

Text Mining Preprocessing Dimensionality Reduction Clustering

Preprocessing Techniques

A few of the preprocessing techniques used in this study are:

- Tokenization
- Stop Lists
- Stemming
- Conversion to TF*IDF Space

Text Mining Preprocessing Dimensionality Reduction Clustering

Tokenization

Definition

The processes of dividing written text into meaningful units, such as words, sentences, or topics

In addition to dividing the text into words, some house keeping is often done in this step such as removing punctuation and removing any variation in case (i.e. sending all upper case to lower)

Text Mining Preprocessing Dimensionality Reduction Clustering

Stop Lists

Definition

A collection of words that provide no lexical context and can be removed to aid in classification

a about across again against almost alone along already also although always am among amongst amongst amount an and another any anyhow anyone anything anyway anywhere are around as at

Figure: 24 of the 262 stop words used in this study.

イロト イポト イヨト イヨト

Text Mining Preprocessing Dimensionality Reduction Clustering

Stemming

Definition

The process for reducing inflected (or sometimes derived) words to their stem, base or root form. [Porter, 1980]

- CONNECT
- CONNECTED
- CONNECTING
- CONNECTION
- CONNECTIONS

Figure: Stemming example for the word connect

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

(a)

Text Mining Preprocessing Dimensionality Reduction Clustering

TF*IDF

A weight assigned to a given word in a given document [Jones, 1993]

Definition

Term frequency * inverse document frequency

イロン 不同 とくほう イロン

Text Mining Preprocessing Dimensionality Reduction Clustering

Term Frequency

Count of occurrence of term t_i in document d_j

- $n_{i,j}$ = number of occurrences of term t_i in document d_j
- $\sum_{k} n_{k,j} =$ sum of the number of occurrences of all terms in document d_j

Term Frequency Equation
$$\mathsf{TF}_{i,j} = \frac{n_{i,j}}{\sum_k n_{k,j}}$$

イロン 不同 とくほう イロン

Text Mining Preprocessing Dimensionality Reduction Clustering

Inverse Document Frequency

Normalized count of occurrence of term t_i in all documents

- D = set of all documents
- $\{d: t_i \in d\}$ = set of documents that contain term t_i

Inverse Document Frequency Equation

 $\mathsf{IDF}_i = \log \frac{|D|}{\{|d:t_i \in d\}|}$

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

イロト イポト イヨト イヨト

Text Mining Preprocessing Dimensionality Reduction Clustering

TF*IDF

Term-Frequency Inverse-Document-Frequency

• TF_{i,j} =
$$\frac{n_{i,j}}{\sum_k n_{k,j}}$$

• IDF_i = $log \frac{|D|}{\{|d:t_i \in d\}|}$

TF*IDF Equation

$$\mathsf{TF*IDF}_{t_i,d_j} = \mathsf{TF}_{i,j} \mathsf{xIDF}_i$$

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

・ロン ・部 と ・ ヨ と ・ ヨ と …

Text Mining Preprocessing Dimensionality Reduction Clustering

Preprocessing Example

An example of applying preprocessing to documents and achieving a vector space model of terms

Document _j	$TFIDF(t_i, d_j)$						
	t ₁ : woodchucks	t ₂ : chuck	t ₃ : lumberjacks	t ₄ : wood	t ₅ : chop	t ₆ : norris	
Woodchucks can chuck wood	1	0.6	0	0.3	0	0	
Lumberjacks can chop woodchucks	1	0	0.6	0	0.6	0	
Chuck Norris can chop lumberjacks and woodchucks	1	0.6	0.6	0	0.6	0.3	

Text Mining Preprocessing Dimensionality Reduction Clustering

What is Dimensionality Reduction?

Definition

The mapping of a feature space N, to a subspace N_{\prime} , with $|N_{\prime}| < |N|$

- The preprocessing steps mentioned above a preliminary form of dimensionality reduction
- Given the large amount of different terms in most document collections, almost any type of analysis is computationally impossible

Text Mining Preprocessing Dimensionality Reduction **Clustering**

What is Clustering?

Definition

Assignment of items in a set into subsets, where the items of each subset have similar attributes, based on a given criteria

Figure: Clustering of points based on two dimensional distance

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

< ロ > < 同 > < 回 > < 回 >

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

Outline

2 Background

3 Algorithm Review

4 Experiments

5 Conclusions

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

イロン イロン イヨン イヨン

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

Principal Components Analysis

Involves a mathematical procedure which includes computing the eigenvalue decomposition of the covariance matrix (SVD) [Jolliffe, 2002]. The new space ranks the variation of projections and places them in the new coordinates in decending order.

Figure: The two features in the left plot can be transferred to the right plot via one latent feature.

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

Principal Components Analysis

Assumptions

- The new coordinate system can be defined by a linear combination of existing features
- That mean and variance are stastically important
- That large variances have important dynamics
- Recently shown to provide the relaxed solution for K-means clustering [Ding and He, 2004]
- Run-time of $O(n^2)$ where *n* is the number of initial dimensions
- Does not scale

イロト イポト イヨト イヨト

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

Fastmap

Performs a linear transformation of points based on the euclidian geometry of the initial space. [Faloutsos and Lin, 1995]

Algorithm

- n = D, the number of dimenions in the original space
- While n > d (new dimensionality)
 - Uses heuristic to find an aproximation of the two points which lie the furthest from each other in constant time. These are the pivot elements
 - Uses the consine law to project all other points onto the plane that lies perpendicular to the line between the two pivot elements
 - Decrement *n*

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

Fastmap

Figure: Example of using the cosine law to find the position of Oi in the dimension k

Figure: Projects of points O_i and O_j onto the hyper-plane perpendicular to the line $O_a O_b$

・ロト ・回ト ・モト ・モト

э

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

TF*IDF Sort

A simple linear time method of determining the most useful terms in a document collection. First reported by [Ramos, 2003]

Algorithm

• for each term, t_i

• Compute tfidfSum =
$$\sum_{d \in D} TFIDF(t_i, d)$$

- sort terms by tfidfSum in decending order
- return top n terms

イロン 不同 とくほう イロン

-

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

TF*IDF Sort: Example

Document _j	$TFIDF(t_i, d_j)$						
	t ₁ : woodchucks	t ₂ : chuck	t ₃ : lumberjacks	t ₄ : wood	t ₅ : chop	t ₆ : norris	
Woodchucks can chuck wood	1	0.6	0	0.3	0	0	
Lumberjacks can chop woodchucks	1	0	0.6	0	0.6	0	
Chuck Norris can chop lumberjacks and woodchucks	1	0.6	0.6	0	0.6	0.3	

Top 4 terms as determined by TF*IDF Sort:

- woodchucks
- chuck
- Iumberjacks
- chop

・ロト ・回ト ・ヨト ・ヨト

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort **Clustering: K-means** Clustering: Canopy Clustering: Genic

K-means

Algorithm

initialize i to 0

randomly select k initial cluster centroids

- while (i ≤ maxIterations or no point changes set membership)
 - assignment: assign each point to the cluster with the nearest centroid
 - update: recompute centroids using the mean of all items in the cluster
 - increment i
- An iterative refinement clustering algorithm
- With each iteration of the algorithm, cluster centroids are updated according to the mean of the items in the cluster
- Iteration continues until certain criteria is reached
- Variation on expectation-maximimization algorithm
- Closely related to PCA as recently show by [Ding and He, 2004]

[Kanungo et al., 2000]

・ロト ・四ト ・モト・ モー

Background Algorithm Review Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

K-means: Illustrated

(a) Randomly select cluster centroids

(b) Assign each object to it's nearest centroid

(c) Compute new centroids by using the mean value from the centroids picked in ria has been reached step

(d) Repeat steps b and c until the convergence crite-

<ロ> (日) (日) (日) (日) (日)

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

Canopy

- Often used as a preprocessor for K-means [McCallum et al., 2000]
- Uses a cheap distance metric to build canopies
- Canopies are then used in clustering to reduce the number of times the expensive distance metric is used
- Cheap distance metric is highly dependant on the domain

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

Canopy

Canopy Clustering: The darker circle represents all points in a given canopy $(distance(p, p_i) < T1)$. Points in the smaller circles cannot be used as a new canopy center $(distance(p, p_i) < T2)$.

Canopy Creation Algorithm

while |P| > 0

- pick a point, p, at random and create a cluster here
- remove p from the set P
- foreach $p_1 \in P$
 - if distance $(p, p_{\prime}) < T1$
 - then; add p, to the cluster
 - if $distance(p, p_l) < T2$

イロト 不得 トイヨト イヨト 二日

then; remove p, from the set

Conclusions	Clustering: Genic
Conclusions	Clustering: Canopy
Experiments	Clustering: K-means
Algorithm Review	Reduction: TF*IDF Sort
Dverview	Reduction: Fastmap
Ourseniteur	Reduction: PCA

Genic

- Generalized incremental clustering algorithm developed by [Gupta and Grossman, 2004]
- Only requires single pass
- Highly scalable

Genic Parameters

- k: number of initial
- m: number of initial candidate centers
- n: size of a generation

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

< ロ > < 同 > < 回 > < 回 > < □ > <

Reduction: PCA Reduction: Fastmap Reduction: TF*IDF Sort Clustering: K-means Clustering: Canopy Clustering: Genic

Genic: Algorithm

Andrew Matheny

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Outline

Background

3 Algorithm Review

4 Experiments

5 Conclusions

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

<ロ> <同> <同> < 同> < 同>

э
Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Experimental Design

Factorial or fully-crossed design (a $8\times3\times3\times6\times6$ factorial design) with a total of 2,592 ($8\times3\times3\times6\times6$) different treatments

Experimental Factors				
Factor	Levels	Level count		
dataset	ap203, ap214, BBC, BBCSport, ngBias3, ngBias8, ngBal3, ngBal8	8		
clusterer	KMeans, Canopy, Genic	3		
reduction method	PCA, FastMap, TF-IDF Ranking	3		
k	3, 5, 8, 15, 40, 75	6		
d	3, 15, 25, 50, 100, 200	6		

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Classification of Algorithms

	Clustering	Dimensionality Reduction
Exhaustive	K-Means	PCA
Houristic	Canopy	FastMap
Heuristic	Genic	TF-IDF Ranking

・ロン ・部 と ・ ヨ と ・ ヨ と …

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Dataset Statistics

Documents	AP203	AP214	BBC	BBCSport	ngBias3	ngBias8	ngBal3	ngBal8
D documents	484	1373	2224	737	1500	2395	1499	3999
T terms	1103	3050	9635	4613	8631	9826	8158	14984
Mean document length	143	164	130	104	116	87	91	90
Natural Classes	N/A	N/A	5	5	3	8	3	8
Stemming used	-	-	x	×	×	×	x	×
Stop-words removed	-	-	×	×	x	х	x	х

Table: Statistics on our datasets.

(日)

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Natural Classes of Supervised Datasets

Dataset	Natural classes
BBC	business(509), entertainment(386), politics(417), sport(511), tech(302)
BBCSport	athletics(100), cricket(124), football(265), rugby(147), tennis(57)
ngBias3	graphics(136), hockey(591), windows(587)
ngBias8	atheism(704), autos(202), crypt(204), hockey(205), mac(202),
	mideast(202), space(204), xwindows(205)
ngBal3	graphics(463), hockey(459), mideast(453)
ngBal8	atheism(471), autos(463), crypt(467), hockey(461), mac(466),
	mideast(470), space(461), xwindows(469)

Table: Supervised datasets along with class values.

BBCSports & BBC datasets found at [at UCD, 2009] ngBias3, ngBias8, ngBal3, & ngBal8 datasets found at [Lang, 1995], [Bay et al., 2000]

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Assessment Criteria

MWU tests, AUC plots, and relative AUC sums of the following data items.

- Run-time
- Cluster Purity
- Internal Cluster Similarity
- External Cluster Similarity
- Similarity Loss

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Cluster Purity

- A method for ranking cluster heterogeneity
- Answers the question: How dominant is the the most frequently occurring class in a cluster?
- Can only be used on supervised datasets (No STEP/EXPRESS)

Purity Equations

$$purity(C_j) = \frac{1}{|C_j|} max_i(|C_j|_{class=i})$$

$$purity = \sum_{j=1}^k \frac{|C_j|}{|D|} purity(C_j)$$

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Internal Similarity

- Measure of how similar the things within the same class are in terms of geometric distance
- Can be used with supervised and unsupervised datasets
- Closely related to external similarity

(日) (同) (三) (三)

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

External Similarity

- Measure of how different the things within the same class are in terms of geometric distance
- Can be used with supervised and unsupervised datasets
- Closely related to internal similarity

External Similarity Equation

$$eSim_{ij} = \sum_{d \in C_i} \sum_{d' \in C_j} \frac{cos(d, d')}{n_i n_j}$$
$$eSim = \sum_i \frac{n_i}{N} eSim_{ij}$$

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Similarity Loss

Measure of difference between internal and external similarity

Similarity Loss Equation

SimilarityLoss = *eSim* - *iSim*

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

AUC Plots

- Area under the curve (AUC)
- Used to display the total scope of values received for a given treatment.
- Plotted by sorting all results for a treatment and plotting this as the y value while the x axis is incremented by one for each value
- Useful for helping to explain disparities between MWU and other results

Andrew Matheny

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Design Datasets Assessment Criteria **Results: Reduction** Results: Clustering Results: Combined

Runtimes

	Run-time MWU results			
Reduction Method	ties	wins	losses	wins-losses
tfidf	0	2	0	2
FastMap	0	1	1	0
PCA	0	0	2	-2

As expected, the quick linear time method *tfidf* performs better than both *PCA* and *FastMap* while *PCA* performs the worst.

Reduction Method	Run-time AUC Relative to PCA
tfidf	<1
FastMap	3
PCA	100

Notice the massive computational requirements of PCA compared to FastMap and tfidf. tfidf runs in less than 1% of the time of PCA.

Design Datasets Assessment Criteria **Results: Reduction** Results: Clustering Results: Combined

Runtime AUC Plot

Andrew Matheny

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

э

Design Datasets Assessment Criteria **Results: Reduction** Results: Clustering Results: Combined

Purity

	Purity MWU results			
Reduction Method	ties	wins	losses	wins-losses
PCA	0	2	0	2
Tfldf-Sort	0	1	1	0
Fastmap	0	0	2	-2

Reduction Method	Purity AUC Relative to PCA
рса	100
fastmap	83
tfidf	83

As expected, PCA wins with purity though FastMap and tfidf are not far behind.

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Design Datasets Assessment Criteria **Results: Reduction** Results: Clustering Results: Combined

External Similarity

	External Sim MWU results			
Reduction Method	ties	wins	losses	wins-losses
рса	0	2	0	2
tfidf-sort	1	0	1	-1
fastmap	1	0	1	-1

Reduction Method	External Sim AUC Relative to PCA
fastmap	102
pca	100
tfidf	81

For external similarity, lower is better. Surprisingly, tfidf is coming out on top of PCA.

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

<ロ> <部> < 部> < き> < き> < き</p>

Design Datasets Assessment Criteria **Results: Reduction** Results: Clustering Results: Combined

Internal Similarity

	Internal Sim MWU results			
Reduction Method	ties	wins	losses	wins-losses
рса	0	2	0	2
fastmap	0	1	1	0
tfidf-sort	0	0	2	-2

Reduction Method	Internal Sim AUC Relative to PCA
fastmap	118
pca	100
tfidf	88

Again with internal similarity, we have an example of a heuristic algorithm, *fastmap*, outperforming our rigorous baseline, *PCA*

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

イロト 不得 とうせい かほとう ほ

Design Datasets Assessment Criteria **Results: Reduction** Results: Clustering Results: Combined

Similarity Loss

Reduction Method	Similarity Loss
tfidf	6
fastmap	30

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

æ

Design Datasets Assessment Criteria **Results: Reduction** Results: Clustering Results: Combined

Visualizing the Reduction: PCA

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

<ロ> <同> <同> < 同> < 同>

Design Datasets Assessment Criteria **Results: Reduction** Results: Clustering Results: Combined

Visualizing the Reduction: Fastmap

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Design Datasets Assessment Criteria **Results: Reduction** Results: Clustering Results: Combined

Visualizing the Reduction: TF*IDF

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Design Datasets Assessment Criteria Results: Reduction **Results: Clustering** Results: Combined

Runtimes

	Run-time MWU results			
Clustering Method	ties	wins	losses	wins-losses
genic	0	2	0	2
kmeans	1	0	1	-1
canopy	1	0	1	-1

Clustering Method	Run-time AUC Relative to K-means
genic	6
canopy	52
kmeans	100

Not as drastic of increases as with reduction, though still much faster. Genic is only 6% of K-means

イロト 不得 トイヨト イヨト 二日

Design Datasets Assessment Criteria Results: Reduction **Results: Clustering** Results: Combined

Runtime AUC Plot

Andrew Matheny

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

э

Design Datasets Assessment Criteria Results: Reduction **Results: Clustering** Results: Combined

Purity

	Purity MWU results			
Clustering Method	ties	wins	losses	wins-losses
kmeans	0	2	0	2
genic	0	1	1	0
canopy	0	0	2	-2

Clustering Method	Purity AUC Relative to K-means
kmeans	100
canopy	72
genic	64

As expected, K - means wins with purity.

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Design Datasets Assessment Criteria Results: Reduction **Results: Clustering** Results: Combined

External Similarity

_

	External Sim MWU results			
Clustering Method	ties	wins	losses	wins-losses
genic	0	2	0	2
kmeans	0	1	1	0
canopy	0	0	2	-2

Clustering Method	External Sim AUC Relative to K-means
genic	91
kmeans	100
canopy	113

<ロ> <部> < 部> < き> < き> < き</p>

Design Datasets Assessment Criteria Results: Reduction **Results: Clustering** Results: Combined

Internal Similarity

	Internal Sim MWU results			
Clustering Method	ties	wins	losses	wins-losses
kmeans	0	2	0	2
genic	0	1	1	0
canopy	0	0	2	-2

Clustering Method	Internal Sim AUC Relative to K-means
canopy	83
genic	91
kmeans	100

<ロ> <部> < 部> < き> < き> < き</p>

Design Datasets Assessment Criteria Results: Reduction **Results: Clustering** Results: Combined

Similarity Loss

Clustering Method	Similarity Loss
canopy	26
genic	22

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Runtimes

	Run-time MWU results			
Reducer-Clusterer	ties	wins	losses	wins-losses
tfidf-genic	0	8	0	8
tfidf-kmeans	0	7	1	6
fastmap-genic	0	6	2	4
fastmap-kmeans	0	5	3	2
tfidf-canopy	0	4	4	0
fastmap-canopy	0	3	5	-2
pca-genic	0	2	6	-4
pca-canopy	0	1	7	-6
pca-kmeans	0	0	8	-8

Reducer-Clusterer	Run-time AUC Relative to PCA-Kmeans
tfidf-genic	1
fastmap-genic	3
tfidf-canopy	5
fastmap-canopy	7
tfidf-kmeans	12
fastmap-kmeans	20
pca-genic	71
pca-canopy	76
pca-kmeans	100

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Runtime AUC Plot

Andrew Matheny

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

э

Design Datasets Assessment Criteria Results: Reduction Results: Clustering **Results: Combined**

Purity

	Purity MWU results			
Reducer-Clusterer	ties	wins	losses	wins-losses
pca-kmeans	0	8	0	8
pca-genic	0	7	1	6
fastmap-genic	1	5	2	3
fastmap-canopy	1	5	2	3
tfidf-kmeans	1	3	4	-1
fastmap-kmeans	1	3	4	-1
tfidf-canopy	0	2	6	-4
tfidf-genic	0	1	7	-6
pca-canopy	0	0	8	-8

Reducer-Clusterer	Purity AUC Relative to PCA-Kmeans
pca-kmeans	100
pca-genic	95
tfidf-kmeans	73
fastmap-kmeans	73
tfidf-genic	67
fastmap-genic	68
tfidf-canopy	50
fastmap-canopy	50
pca-canopy	38

As expected, K - means wins with purity.

Design Datasets Assessment Criteria Results: Reduction Results: Clustering Results: Combined

Purity AUC Plot

Andrew Matheny

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Background Algorithm Review Experiments Design Assessment Criteria Results: Reduction Results: Clustering Results: Combined

External Similarity

	External Sim MWU results			
Reducer-Clusterer	ties	wins	losses	wins-losses
pca-kmeans	0	8	0	8
tfidf-genic	0	7	1	6
pca-genic	0	6	2	4
tfidf-kmeans	1	4	3	1
pca-canopy	0	4	4	0
tfidf-canopy	1	3	4	-1
fastmap-genic	0	2	6	-4
fastmap-kmeans	0	1	7	-6
fastmap-canopy	0	0	8	-8

Reducer-Clusterer	External Sim AUC Relative to PCA-Kmeans
tfidf-canopy	78
fastmap-canopy	79
tfidf-kmeans	80
pca-canopy	81
fastmap-kmeans	87
pca-kmeans	100
pca-genic	102
tfidf-genic	103
fastmap-genic	107

Lower means better performance and Genic, one of the heuristic approaches, is defnitelv lower that K-means Andrew Mathenv

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Design Datasets Assessment Criteria Results: Reduction Results: Clustering **Results: Combined**

External Similarity AUC Plot

Andrew Matheny

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

э

Design Datasets Assessment Criteria Results: Reduction Results: Clustering **Results: Combined**

Internal Similarity

	Internal Sim MWU results			
Reducer-Clusterer	ties	wins	losses	wins-losses
pca-kmeans	0	8	0	8
pca-genic	0	7	1	6
fastmap-genic	1	5	2	3
fastmap-canopy	1	5	2	3
tfidf-kmeans	1	3	4	-1
fastmap-kmeans	1	3	4	-1
tfidf-canopy	0	2	6	-4
tfidf-genic	0	1	7	-6
pca-canopy	0	0	8	-8

Reducer-Clusterer	Internal Sim AUC Relative to PCA-Kmeans
pca-kmeans	100
fastmap-kmeans	90
pca-genic	88
fastmap-genic	82
fastmap-canopy	81
tfidf-kmeans	79
tfidf-genic	75
tfidf-canopy	74
pca-canopy	71

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Design Datasets Assessment Criteria Results: Reduction Results: Clustering **Results: Combined**

Internal Similarity AUC Plot

Andrew Matheny

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

э

Design Datasets Assessment Criteria Results: Reduction Results: Clustering **Results: Combined**

Similarity Loss

Reducer-Clusterer	Similarity Loss Relative To pca-kmeans
fastmap-kmeans	-3
fastmap-canopy	-2
tfidf-kmeans	1
tfidf-canopy	4
pca-canopy	10
pca-genic	14
fastmap-genic	25
tfidf-genic	28

Reducer-Clusterer	ties	wins	losses	wins-losses
pca-kmeans	0	8	0	8
tfidf-kmeans	1	6	1	5
fastmap-kmeans	1	6	1	5
pca-genic	0	5	3	2
tfidf-canopy	2	2	4	-2
fastmap-genic	2	2	4	-2
fastmap-canopy	2	2	4	-2
tfidf-genic	0	1	7	-6
pca-canopy	0	0	8	-8

Reducer-Clusterer Similarity Difference MWU test results

Andrew Matheny

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Future Work

Outline

Background

3 Algorithm Review

4 Experiments

<ロ> <同> <同> < 同> < 同>

э

Future Work

Conclusions

• Dimensionality Reduction:

- PCA wins at all validity contents, but is also the largest potential performance bottleneck
- Fastmap can do the job if run-time contraints exist
- TFIDF-sort is your best bet if even larger run-time contraints exist

Clustering:

- As expected, K-means wins at most validity contests
- Genic outperforms Canopy in every validity and even beats K-means on external similarity
- Canopy performance leaves much to be desired

イロト イポト イヨト イヨト
Future Work

Conclusions

• Combined:

- Fastmap-Genic provide a highly scalable solution without sacraficing too much in the way of validity
- Simply replacing PCA can vastly reduce run-times and still maintain the validity of K-means
- Tfldf and KMeans combination shows astounding performance in validity at only 12% of the base line run-time

Future Work

Heuristic methods are worth it

Andrew Matheny Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

Future Work

Paths Going forward

- Closer examination of in-use applications
- More in-depth analysis on the effect of the various algorithms parameters
- Use more current algorithms (i.e. LSI)
- Find out what Genic is capable of
- Explore heuristic ways of finding the optimal/inherent dimensionality
- Explore heuristic ways of determining the number of clusters

イロト イポト イヨト イヨト

Questions?

Andrew Matheny

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

æ

at UCD, M. L. G. (2009).

Mlg datasets.

http://mlg.ucd.ie/datasets.

Bay, S. D., Kibler, D. F., Pazzani, M. J., and Smyth, P. (2000).

The UCI KDD archive of large data sets for data mining research and experimentation. SIGKDD Explorations, 2(2):81–85.

Ding, C. and He, X. (2004).

K-means clustering via principal component analysis.

In ICML '04: Proceedings of the twenty-first international conference on Machine learning, page 29, New York, NY, USA. ACM.

Faloutsos, C. and Lin, K.-I. (1995).

Fastmap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets.

In Carey, M. and Schneider, D., editors, Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pages 163–174. ACM Press.

Grimes, S. (2008).

Unstructured data and the 80 percent rule.

Experts Corner: Seth Grimes, Clarabridge Bridgepoints, Issue 3, 2008. White Paper.

Grootjen, F., van Leijenhorst, D., and van der Weide, T. P. (2003). A formal derivation of heaps' law.

Genic: A single pass generalized incremental algorithm for clustering.

Jolliffe, I. (2002).

Principal component analysis. 2nd edition. Springer.

In In SIAM Int. Conf. on Data Mining, SIAM,

Jones, K. S. (1993).

A statistical interpretation of term specificity and its application in retrieval. *Journal of Documentation*, 28:11–21.

Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., and Wu, A. (2000).

The analysis of a simple k-means clustering algorithm. In UMD.

Lang, K. (1995).

Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth International Conference on Machine Learning, pages 331–339.

McCallum, A., Nigam, K., and Ungar, L. H. (2000).

Efficient clustering of high-dimensional data sets with application to reference matching. In KDD '00: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 169–178, New York, NY, USA. ACM.

Porter, M. F. (1980).

An Algorithm for Suffix Stripping. Program, 14(3):130–137.

Ramos, J. (2003).

Using tf-idf to determine word relevance in document queries.

Salton, G. (1991).

The smart document retrieval project.

In SIGIR '91: Proceedings of the 14th annual international ACM SIGIR conference on Research and development in information retrieval, pages 356–358, New York, NY, USA. ACM.