

Test-driven development of a performance-critical database record-tree balancing

application

Jonathan Mack

Problem Report
submitted to the

College of Engineering and Mineral Resources
at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science

Graduate Committee:
James D. Mooney, Ph.D. (Chair)

Bojan Cukic, Ph.D.
Timothy J. Menzies, Ph.D.

Lane Department of Computer Science and Electrical Engineering
Morgantown, WV

 2008

Keywords: database, Java, performance, test-driven development, load balancing,
record tree

Abstract
Test-driven development of a performance-critical database record-tree balancing

application

Jonathan Mack

This Problem Report details the design, implementation, and testing of a multi-table
database record tree balancing application created by the author during summer 2008.

The application is designed to move trees of database records between user objects
known as Managers. Records are associated with Managers by their value in a certain
field of that record. Along with a unique identifier and version ID number, these three
fields form a composite key across all records in the database. The purpose of the
application is to move all appropriate record trees in a user-specified database from
existing Managers to desired ones, balancing them among the desired Managers, and
maintaining composite key uniqueness. Additionally, since a database may contain
millions of records, and since the database must be taken offline for this process, it is
desired that this process complete as quickly as possible.

In this Report, application requirements are detailed, followed by application design
decisions, ranging from high-level user configuration issues to details of specific
fundamental methods used in the application. Performance and testing considerations
are then detailed, followed by a final look at the state of the application and possible
future work along its same lines.

iii

Acknowledgments
I would like to thank my family and all of my instructors and teachers, who pointed me in
a direction such that academic achievement of any type was possible. I would like to
thank Strictly Business Computer Systems, Inc., for giving me the project on which this
Report is based, and its employees (especially Jason Stadler) for their support and
suggestions in its design and development. Also for his support and suggestions, I
would like to thank my principal advisor, Dr. James Mooney.

iv

Table of Contents
Abstract ... iii
Acknowledgments ... iii
List of Tables ... v
List of Figures ..vi
List of Abbreviations ... vii
1. Introduction .. 1
2. Application requirements .. 2

Introduction .. 2
Database/Table Configuration/Fields ... 2
Trees ... 2
Tree Movement Requirements .. 3
User Configurability/Interface Requirements ... 3
Software and Performance Requirements ... 4

3. Application Design ... 5
Development Language/Environment Selection .. 5
High-Level Application Design Detail ... 6
Low-Level Application Design Detail .. 6

4. Performance .. 14
5. Testing .. 17

Introduction .. 17
Premade Records .. 18
Randomly Generated Records .. 21
Unit Testing .. 22

6. Conclusions ... 25
7. Bibliography ... 26
Appendix ... 27

Sample configuration File .. 27
Sample Output ... 28
LoadBalancer.java ... 29
TableGroup.java .. 33
Manager.java ... 61
Table.java .. 64

v

List of Tables
Table 1: Application execution time for various numbers of Record Tree creations. 15
Table 2: Table name abbreviations for each table. .. 19

vi

List of Figures
Figure 1: Sample Record Tree. ... 3
Figure 2: Execution Time for Various Numbers of Record Trees. 16
Figure 3: Premade Records. ... 20

vii

List of Abbreviations
DDL: Database Definition Language
DML: Database Manipulation Language
JDBC: Java Database Connectivity
URL: Uniform Resource Locator
XML: extensible Markup Language

1

1. Introduction

This Problem Report details the design, implementation, and testing of a multi-table
record tree balancing application.

In May 2008, the author began a summer software engineering internship with Strictly
Business Computer Systems, Inc., of Huntington, WV. Strictly Business was working on
a suite of applications for a client, but did not have any software engineers to spare for
the balancing project. Additionally, since it was thought that the project was small
enough in scope to be finished by one person in a summer, and independent enough
that one person could work on it, the project was given to the author at the start of the
internship.

The author worked independently on this project throughout the summer, interacting
with other company software engineers for suggestions and advice. In addition, a code
review of the application was conducted that included all pertinent software engineers in
early July 2008. By the end of the internship in August 2008, the application had passed
all required correctness and performance tests, and was delivered to the lead software
engineer of the company for final approval and delivery to the customer.

This Report details the design, implementation, and testing of the balancing application.
Application requirements are detailed, followed by application design decisions, ranging
from high-level user configuration issues to details of specific fundamental methods
used in the application. Performance and testing considerations are then detailed,
followed by an investigation of the final state of the application and possible future work
along its same lines.

2

2. Application requirements
Introduction
Application requirements were delivered to the author in late May 2008. Requirements
for this project are discussed below; unless otherwise noted, all requirements were
either designated so by the user, or were indirectly needed due to existing user
database, hardware, or software installations.

Database/Table Configuration/Fields
At its most basic level, the application requires the user to be able to “balance” trees of
records in multiple database tables. Before detailing exactly what balancing means, it is
important to note the fields in the database tables related to balancing.

Tables may have multiple fields, but seven are of interest in terms of this application
(data types are in parentheses after each field name):

 tree_id (varchar2): the ID of the tree with which the record is associated. All
records within the same tree have the same tree_id, and each tree has a unique
tree_id.

 manager_id (varchar2): the unique ID of the Manager with which the record is
associated. With the unique_identifier and version_id, forms a composite key
across all database tables being considered. All records within a tree have the
same value of manager_id.

 unique_identifier (number(10)): along with the version_id and manager_id,
forms a composite key across all database tables being considered.

 version_id (number(10)): along with the unique_identifier and manager_id,
forms a composite key across all database tables being considered.

 parent_id (number(10)): the unique_identifier of this record's parent in the tree.
Tree root records have a value of either 0 or null for this field. Some tables may
not contain this field.

 parent_version_id (number(10)): the version_id of this record's parent in the
tree. Tree root records have a value of either 0 or null for this field. Some tables
may not contain this field.

 live (char(1 byte)): value indicating whether this record can be processed (i.e., is
“balanceable”), either 'T' or 'F'. All records within the same tree have the same
value of live.

Trees
Each record is a member of exactly one Record Tree (RT). Each parent in an RT may
have any number of children. Each RT may have records from one or more tables. An
example RT, using records from example tables table1, table2, and table3, might be:

3

Figure 1: Sample Record Tree.

Tree Movement Requirements
The goal of the application is to balance the number of trees among a list of desired
Managers, by "moving" them from one Manager to another. This is accomplished by
changing the manager_id of the records in the tree from the one associated with the
current Manager to the one associated with the desired Manager. It is possible,
however, that the value of the unique_identifier and version_id of the record being
moved may be the same as that of a record that already has the new manager_id. As
manager_id, unique_identifier, and version_id are all parts of the database-wide
composite key, the unique_identifier or version_id of a record being moved may need
to be changed as well. In addition, since the combination of
unique_identifier/parent_id and version_id/parent_version_id establishes
parent/child relationships within a tree, this may necessitate an update of the parent_id
or parent_version_id of records being moved as well.

User Configurability/Interface Requirements
The user's main goal is to move all live Record Trees associated with existing Managers
to those associated with a user-specified list of desired Managers. The following
additional requirements, however, were specified by the user:

1. The user may wish for some tables or Managers not to be balanced, and may
desire to balance different databases. Database connection information, as well
as the list of tables and Managers to be considered when balancing, will
therefore be supplied by the user.

2. Each Manager has a current load and desired load. The current load is the
number of live trees (trees whose records have value of live = 'T' associated with
them) associated with that Manager, in the specified tables. The desired load is
the number of trees in user-specified tables that should be associated with that
Manager after balancing. For current but not desired Managers, the desired load
is zero. The desired load should be roughly equal for all desired Managers. After
balancing, current load should equal desired load for each Manager.

3. The list of desired Manager IDs may contain some, all, or none of the current
Manager IDs, and may include IDs that aren't in the list of current IDs.

4. Some tables may consist of only root records, and do not have parent_id or
parent_version_id fields. The application needs to check for this and respond
accordingly.

5. No assumptions can be made regarding the locations of child and root records.
Child and root records may exist in the same table.

table1

table2 table3

table3

table2

table3table3

4

Software and Performance Requirements
The following software and performance requirements were also specified:

1. The application must interface with an Oracle database, as this is how the user's
data is stored.

2. There is no specific programming language in which the application must be
implemented.

3. No assumptions can be made about the graphics capability of the user console;
a text interface is therefore preferred.

4. The tables used for balancing may have millions of records, so performance (in
terms of the total time needed for the application to execute) is critical. No
specific performance requirements were given, but experience with the customer
databases indicated that the application needed to be able to completely process
databases with numbers of records in the low millions within no more than
approximately five hours.

5

3. Application Design
Language design decisions are first discussed, followed by high- and low-level detailed
application design. Performance design decisions involve many different aspects of the
application, so design performance considerations are detailed in the Performance
Section of this Report.

Development Language/Environment Selection
The project was implemented using the Java programming language. No user
requirement specified this, but it was the language most used by both the client and
Strictly Business, and it was also the language with which the author was most familiar.
In addition, three extensions to Java were used in the creation of this application:
dom4j, log4j, and JUnit.

dom4j is an open-source extension designed to, among other things, allow Java to
interact with XML. The extension contains methods to allow the creation, editing,
search, and retrieval of XML data. In this application, dom4j is used to retrieve
information from the user configuration file, as well as the files used to create test
database tables and records.

log4j is a highly-configurable open-source logging extension. It allows logging of
constant and variable text strings to various locations, including the console and
multiple text files. Since test-driven development was an integral part of the design, it
was deemed important to be able to switch quickly between user-appropriate output (a
small number of console-only messages) and test-appropriate output (a larger amount
of console output, as well as database and record output to log files). To this end, log4j
methods were used for all console output, including that to users. A logging
configuration file (log4jconfig.txt) was used to switch between the two types of logging.

In general, a logging level of DEBUG was used for testing logging; this was primarily
used to gather data sent to the logging file (log4jLogFile.txt). A logging level of INFO
was used for all output sent to the console, and was the primary vehicle for user
interaction. At the start of application execution, the logging level was determined and
saved by Java; this allowed the application to skip entirely expensive data logging loops
when performance was being tested. Performance testing of console output using
log4j’s INFO logging level versus Java-based output (using System.out), showed a
negligible performance difference, justifying the use of log4j for all console output.

JUnit is a unit-testing extension for Java. It allows for creation of multiple user-defined
testing routines that can be run on the same application. JUnit was used for testing the
application’s data-gathering methods, multiple current/desired Manager configurations
on both random and premade databases, and the test database creation process itself.

Though not a Java extension, Javadoc should also be mentioned here. Javadoc-
compliant commenting was used throughout the application and its test suite, and
Javadoc html pages detailing application classes, methods, and attributes were
generated for all classes.

6

The application was coded using the Eclipse IDE, and tested using Eclipse’s JUnit
Eclipse extension.

High-Level Application Design Detail
The application first retrieves and checks database and user configuration file
information. Especially important is the number of live trees associated with each
current Manager, as the total from all Managers is divided by the number of desired
Managers to get the desired load of each desired manager. (Any remainder is
distributed among the desired Managers).

The application then displays the database location URL, the list of manager_ids along
with their current and desired loads, and asks the user if they wish to proceed. If that is
the case, the application then balances RTs, moving all live record trees in specified
tables from the current Managers to the desired ones, such that post-balance current
loads equal desired loads.

unique_identifier/version_id/manager_id uniqueness and parent/child relationships
are preserved by searching all records associated with the destination manager_id,
and retrieving the maximum unique_identifier for each tree move. This value is then
added to the unique_identifier and parent_id of each record being moved. (See
updateRecordTree under TableGroup.java later in this section for more information.)

During balancing, progress updates are displayed to the user at regular intervals. After
balancing, the user is shown the current and desired loads of each Manager, and the
application ends.

Low-Level Application Design Detail
As much as possible, the principles of object-oriented design were adhered to for this
application. Application functionality was therefore split into Java Classes that
maximized cohesion. Application files are as follows:

• LoadBalancer.java: executor class, designed to interface with the user, catch
exceptions, and execute methods in other classes in order to provide required
functionality.

• Manager.java. This class models a Manager. It contains Manager-related
attributes and getter/setter methods used by the TableGroup class.

• Table.java. This class models a database Table, and contains Table-related
attributes and Methods.

• TableGroup.java. This class contains the most important methods in the
application. Methods in this class interface with the Manager and Table classes,
and are the methods used by the LoadBalancer class to execute the application.

• A user configuration file. This is not a java class, but an XML file where user
configuration is set.

The structure of each file is next detailed.

7
Configuration File
In order to facilitate execution, the user supplies a file that contains database
connection information, the list of tables and manager_ids to be considered when
balancing (the current Managers), and the list of desired manager_ids. To ensure
maximum compatibility and portability, it was formatted as an XML (eXtensible Markup
Language) file. Its design is as follows:

<config>
 <currentManagers>
 <ID>Current Manager ID 1</ID>
 <ID>Current Manager ID 2</ID>
 …
 </currentManagers>
 <desiredManagers>
 <ID>Desired Manager ID 1</ID>
 <ID>Desired Manager ID 2</ID>
 …
 </desiredManagers>
 <tables>
 <name>Table Name 1</name>
 <name>Table Name 2</name>
 …
 </tables>
 <databaseInfo>
 <driver>Java database driver name</driver>
 <url>database URL</url>
 <id>user ID</id>
 <password>password</password>
 </databaseInfo>
</config>

LoadBalancer.java
This class contains only one method; the main method of the class, which also serves
as the entry point of the application. When the application is begun, this method is
supplied at least one user argument. The first contains the path to the location of the
user's configuration file. The second argument is optional; if it is given, it contains the
name of the configuration file. If it is not supplied, the default file name
(defaultConfig.xml) is used.

The LoadBalancer class begins by creating a new TableGroup object. Methods within
TableGroup then open and parse the XML configuration file, and retrieve associated
database information. If there are database tables that contain all the fields needed for
balancing, but aren't specified by the user, the user is notified of this, and asked if they
wish to continue. If so, the user is shown the database URL and names of tables and
Managers to be balanced, along with the Manager RT loads, both before and after
balancing. If the user decides to do so, RT loads are then balanced among specified
Managers, per the following:

8
• Unmovable RTs (either due to not being live, or not being in user-specified tables

or Managers) are not moved
• All movable RTs are moved from specified current to specified desired Managers
• The current and desired load for each non-desired Manager is zero.

In addition to the aforementioned, LoadBalancer is the final destination for exceptions
thrown by other classes in the application. If an exception was thrown, LoadBalancer
displays its stack trace, and aborts the application.

TableGroup.java
This class forms the backbone of the application. It provides methods that gathers user
and database information, and balances database loads. Due to its importance, all of its
significant methods are detailed, in the order in which they’re used in the application.
The order presented here, unless otherwise noted, mirrors the order in which the
methods are called by LoadBalancer.java.

parseConfig: This method opens the user's XML configuration file, and parses the
information inside.

openConnection establishes the connection between Java and the appropriate
database tables using the driver, URL, and user ID/password information found in the
user's configuration file. If the file contains bad/missing data, this method prints an
appropriate message, and throws an appropriate exception. Exceptions with explicitly
defined user messages include missing data, an incorrect driver name, and incorrect
URL, ID, or password.

setTables: This method sets the user-specified names of tables that have RTs that could
be balanced. This method first retrieves all table names from the database specified in
openConnection. It then retrieves all table names (to be considered when balancing)
from the user’s configuration file. It checks for the following conditions, with the
associated action:

• <tables><name> XML tag with no data in configuration file: warn user with
console message, but continue.

• Table name in configuration file, but not in database: display error message, and
throw exception which aborts application.

• Duplicate table name in configuration file: warn user with console message, but
continue.

If no fatal exceptions were thrown, Table objects (see Tables.java) are created for all
tables in both the configuration file and database, and added to the mapping of all table
names to table objects (tables) kept by each instantiation of TableGroup.

checkTables determines whether any balanceable tables (i.e., those with the requisite
fields) exist in the database that weren’t specified by the user. If any of these exist, they
are returned to LoadBalancer.java. LoadBalancer then queries the user, to see if they

9
wish to continue, knowing that some balanceable tables won’t be considered when
balancing.

setParentID: Some balanceable tables contain records that are not part of a multi-
record tree, but may still be associated with balanceable tables, and current/desired
Managers. The application treats these records as trees with one node. Tables for which
this is true, however, do not have parent_id and parent_version_id fields. Since these
fields are used in the actual method that balances loads (balance), and that method
must be as fast as possible, it was deemed appropriate to determine table configuration
beforehand. setParentID does this, setting the parentID attribute of each table’s Table
object to true if it does contain the parent_id field.

createPreparedStatements: This method uses JDBC (Java Database Connectivity), the
Java standard for connecting to databases. One of its features is the
PreparedStatement class, which allows developers to create general database
statements (e.g., “SELECT first_name FROM Employees WHERE years_employed >
?”) which are saved at the database level, and can be reused with various values in
place of the ‘?’. In order to increase performance, PreparedStatements were heavily
used in this application. The purpose of this method is to create the
PreparedStatements used by balance and the methods that it calls. The following
PreparedStatements are created and stored as variables accessible by all methods in
the class:

• retrieveRTs: This PreparedStatement retrieves the tree_id of all live trees in
user-desired tables associated with a given manager_id.

• retrieveMaxUniqueID: This PreparedStatement retrieves the maximum
unique_identifier of a given manager across all live RTs and user-desired
tables.

In addition, a PreparedStatement is created and set as an attribute for each Table
object. This PreparedStatement updates all records with a given tree_id. The update
increases the unique_identifier and parent_id (if it exists for the table in question) to
their current values plus a given offset, and manager_id to a given value. (See the
balance method for more information on how these PreparedStatement are used.)

setCurrentManagers sets the user-specified Managers that have RTs that could be
balanced. This method first retrieves all manager_ids in user-specified tables, then
retrieves all manager_ids given in the user configuration file. For each user-specified
manager_id, the following exceptional conditions are checked, with the appropriate
application response:

• Blank or duplicate manager_id: warn user with console message, but continue

execution. Blank or duplicate values are ignored.
• User-specified manager_id not in list of manager_ids found in the specified

tables: display error message and throw exception which aborts application.

10
If no exceptional conditions were found, the manager_id is added to the ArrayList of
manager_ids (currentManagerIDs) available to all methods in the class. In addition, a
new Manager object is created, and the value of its ManagerID field is set to the value
of the current manager_id. This Manager object is also added to the ArrayList of
current and desired Managers (Managers) available to all methods in the class. If no
valid manager_ids were found, an exception is thrown and the application aborts.

setDesiredManagers: This method sets the Manager to which the user would like the
RTs in the specified tables and current Managers to be moved. This method checks for
the blank or duplicate manager_id, and warns the user if one is found. The application
otherwise continues, however, and blank or duplicate values are ignored. If the
manager_id was not blank or a duplicate, it is added to the desiredManagerIDs
ArrayList, which is available to all methods in the class. If in addition the manager_id
was not in the list of current Managers, a new Manager object is created, and added to
the Managers ArrayList.

setCurrentLoads sets the number of movable record trees and records associated with
each Manager. To determine this, all specified tables are queried, and the total number
of movable RT IDs and records is retrieved and stored in the appropriate Manager
object.

setNumMovableRecordTrees and setNumMovableRecords: These methods set the total
number of movable Record Trees and records, by adding the RT/records associated
with each manager to a running total. The resulting values are stored in the variables
totalNumMovableRTs and totalNumMovableRecords, such that they're available to all
methods in the class. totalNumMovableRecords is displayed by balance at the start of
balancing. totalNumMovableRTs is used by logStatus to determine when to display a
status message, and in calculation of the values used in the message string.

setDesiredLoads sets the desired RT load for each Manager object. Since the final load
should be distributed evenly among all desired Managers, the final load for each
Manager is determined by dividing the number of movable Record Trees by the number
of desired Managers. The desired load for each desired Manager is then set to this
value. Managers not desired remain at their initialization value of zero. If the number of
Managers does not divide evenly into the number of movable record trees, 1 is added to
the desired load of each Manager (starting with the first) until there is no remainder.

setMaxUniqueIDs and setMaxUniqueID: These methods set the maximum Unique ID for
all Managers. setMaxUniqueIDs simply calls setMaxUniqueID for each Manager.
setMaxUniqueID sets the maximum unique identifier for a Manager. Unlike other
methods in this class, setMaxUniqueID does consider nonmovable records. This is
done in order to preserve the uniqueness of the unique_identifier, version_id, and
manager_id fields between all table records in the database. setMaxUniqueID obtains
the maximum unique_identifier by sending the retrieveMaxUniqueID
PreparedStatement to the database for execution.

11
These methods were split in order to provide a performance increase, as
updateManagerInfo must set a maximum unique_identifier after RTs have been moved
from one Manager to another, but only needs to do so for the destination Manager
(setMaxUniqueID) and not all Managers (setMaxUniqueIDs).

logURL, logTableNames, and logManagerInfo: These three methods are called after all
data has been gathered, but just before balancing. They allow the user to verify all
specified databases, tables, and Managers are correct before balancing begins. logURL
displays the database URL, logTableNames displays the table names on which
balancing will be performed (so the user-specified tables), and logManagerInfo displays
all current and desired Managers. After the LoadBalancer class has called these
methods, the user is given the option to verify all values and continue. If the user elects
to continue, records are balanced per the displayed data.

balance: By the time this method has been called, all appropriate information has been
gathered from the user and database. Most important is the name and makeup (i.e.,
having a parent_id or not) of each table to be considered, and the current and desired
load of each Manager to be considered. Armed with this information, balance actually
balances the load, moving RTs from undesired current Managers to desired Managers
as appropriate.

The algorithm executes inside a while loop, and is as follows: if the current and desired
loads of any Manager are not equal to each other (as determined by isBalanced), this
method searches through the list of Managers for one with too many RTs (current load
greater than desired load). When one is found, balance then searches for a Manager
with too few RTs (desired load greater than current load). It then takes the minimum of
these differences. balance then uses the retrieveRTs PreparedStatement created by
createPreparedStatements to retrieve the (minimum) number of RT IDs as calculated
previously, as well as all tables containing records associated with that RT. For each RT
ID and table combination, balance then calls updateRecordTree, which updates each
record in the tree.

updateRecordTree's specific mechanism is explored fully in its entry, but for now it
should be noted that it works by batching and periodically committing the appropriate
database update statements. As update statements are committed only when the
variable MAX_BATCH_SIZE (set to 100) is reached, it is possible that some update
statements created by updateRecordTree are batched but not executed. To obviate this,
balance executes and commits all leftover update statements after updateRecordTree
has been called all RTs to be moved.

Finally, starting and ending Manager current load and maximum unique id information is
updated (updateManagerInfo), as well as the number of RTs moved (as saved in the
class-global variable treesMoved) and the process repeats until current and desired
loads are equal for all Managers.

updateRecordTree changes the records associated with a given RT in a given table

12
from its old Manager to its new one. The updateRT PreparedStatement associated with
the table in question is first retrieved, then populated with the ending manager_id and
its maximum unique_identifier, and the ID of the RT to be moved. If the table in
question contains the parent_id field, the maximum unique_identifier is again added.
The resulting update statement is as follows (values inserted by updateRecordTree are
in italics):

UPDATE tableName
SET unique_identifier = unique_identifier + 1 + maxUniqueIdentifier,
manager_id = endManagerID,
parent_id = DECODE(parent_id, 0, 0, NULL, 0, parent_id + 1 + maxUniqueIdentifier)
WHERE tree_id = treeID

If the table does not contain the parent_id field, line four does not exist in the query.
The arguments of the SQL DECODE statement are DECODE(field, criteria1, result1,
criteria2, result2, …). This statement is required since an RT root record may have a
value of either 0 or NULL for its parent_id, and this value should not be changed even if
moved to a new Manager. If the manager_id of the record is 0 or NULL, then, its
manager_id is updated to 0.

If the parent_id is not zero, both it and the unique_identifier are updated to their
current values plus one plus the maximum unique_identifier for the new manager. As
a constant value is added to both the unique_identifier and parent_id (and this value
isn’t updated until all RTs to be moved between one manager and another are moved),
tree parent-child relationships are preserved. Since the unique_identifier and
parent_id of any records moved to the new Manager are always greater than the
maximum unique_identifier currently associated with that manager,
manager_id/unique_identifier/version_id uniqueness is not violated.

Each update statement is added to a table-specific batch. When the batch size reaches
MAX_BATCH_SIZE (set to 100), all update statements in that batch are executed and
committed.

updateManagerInfo: This method updates information in the starting and ending
Managers involved in a move. This method adds the number of record trees moved to
the current load of the ending Manager, and subtracts that number from the starting
Manager. With a call to setMaxUniqueID, it also updates the maximum
unique_identifier of the ending Manager.

isBalanced determines whether all user-specified tables have been balanced. This
method iterates through all Manager objects. If current RT load equals desired RT load
for each Manager, isBalanced returns true, and false otherwise.

logStatus: This method is used to periodically display execution status. At the start of
each iteration of balance’s while loop, logStatus is called. If the number of RTs moved
has been changed since the last time logStatus was called, the percentage of total RTs

13
moved is recalculated. That percentage, along with the starting and ending
manager_ids and number of RTs being moved is displayed.

14

4. Performance
The database on which the application is to run handles many thousands of updates
and queries per hour. In addition, in order to preserve tree relationships and verify non-
desired Managers truly have no RTs associated with them when the application has
finished, the database must be taken offline for this application to run. As the database
is likely only to be taken offline in order that the application may execute, application
performance is critical. It was determined early on that each query and update
statement were the main performance bottleneck, especially those in balance,
updateRecordTree, and updateManagerInfo. Various efforts were made to both reduce
the number of queries made by these methods, and reduce the cost of each.

One of the primary methods used in increasing performance was the use of
PreparedStatements, which allowed most of a query to be stored in the database. When
Java required the query, it sent only values specific to that particular instantiation
(unique_identifier, tree_id, etc) to the database, reducing query time. In any case
where a query or update statement was repeated more than a few times,
PreparedStatements were used to store the query.

Along the same lines, database indexes were also used to increase performance. As
they were primary keys for their tables, manager_id, unique_identifier, and
version_id were already indexed. It was found, however, that creating an index on
(manager_id, live) increased performance when searching for all live RTs
corresponding to a certain manager_id at the start of balance. In addition, an index on
tree_id was also helpful in retrieving all records corresponding to a specific RT in
updateRecordTree. These indexes are created when test tables are used (see the
Testing section), but it was desired that the customer version of the application not
change database structure. It was therefore recommended that the customer create
these indexes for all balanceable tables upon customer delivery and installation.

Batch execution of database UPDATE statements were also used to increase
performance. For each table, UPDATE statements were inserted into a batch using the
PreparedStatement class’ addBatch method. When the batch limit was reached, all
UPDATE statements for that table were executed and committed at once. Various
values of the batch limit were tried; 100 yielded the highest performance and so was the
value used.

One solution that was attempted multiple times, in various forms, was concurrent
execution. Both manually creating threads and specific Java classes and packages
(ThreadPool, ThreadFactory) were tried. PreparedStatements, however, can only be
assigned to one thread at a time. After various threading attempts, it was determined
that no threading approach was faster than the single-threaded version finally decided
upon.

It was determined early on that in order to preserve uniqueness within a Manager, only
one of the two remaining required uniqueness fields (unique_identifier, version_id)
had to be checked when moving records to the Manager. The decision was therefore

15
made to determine the maximum unique_identifier of any Manager to which records
were about to be added, and require that the unique_identifier of the new records be
greater than that of the existing ones. The version_id field therefore did not need to be
checked, and indeed the application does not update version_id (or
parent_version_id) of any records.

One potential issue with the final configuration of the application is its treatment of
unique_identifiers (and hence parent_ids). As the current maximum
unique_identifier is added to each new set of records moved to the Manager, it is
conceivable that the Manager might eventually reach the upper limit of its data type.
(This is made more likely due to the fact that only the maximum unique_identifier of
ending Managers are updated after a move.) In the target database, that data type is
number(10), for a maximum value of 9,999,999,999. In Java, the long data type was
used to store maximum unique_identifiers; that maximum is
9,223,372,036,854,775,807. unique_identifiers of new records in the target database
begin 0, however, and are always positive. In addition, customer experience with the
database showed that it would not hold more than a few million records. The
assumption was therefore made that reaching a maximum value was unlikely enough
that the current configuration would be acceptable. If unique_identifiers ever did get
close to a maximum, it was further noted that it would be possible to take the database
offline, and write and execute an application that would move RTs to values of
unique_identifier closer to 0.

The performance of the final version of the application was deemed sufficient for
customer delivery. Performance values for various numbers of record tree creations are
as follows:

Record Tree
Creations Time (s) Time (hr)

5,000 4 0
10,000 6 0
50,000 35 0.01

100,000 77 0.02
300,000 308 0.09
500,000 745 0.21

1,000,000 4270 1.19

Table 1: Application execution time for various numbers of Record Tree creations.
Each RT corresponds to approximately 2.7 movable records. The Testing section of this
Report can be referenced for detailed information on RT testing configuration.
Information in the previous table is presented graphically below:

16

Figure 2: Execution Time for Various Numbers of Record Trees.

Polynomial regression produced the highest trendline R2 values. Of the various orders,
2 gave a value of R2 = .9981. All orders higher than 3 (up to 6, the maximum in the
regression application used) gave values of 1. It is therefore assumed that the
application runs in polynomial time in the number of records, with an estimated order of
at least 3 (O(n3)).

y = 1E‐19x3 ‐ 3E‐13x2 + 2E‐07x
R² = 1

0
0.2
0.4
0.6
0.8
1

1.2
1.4

0 200000 400000 600000 800000 1000000 1200000

Ti
m
e
(h
ou

rs
)

Number of Record Trees

Execution time for Various Numbers of
Record Trees

17

5. Testing
Introduction
As the application was designed using test-driven agile methods, and since application
time performance was critical, testing was an integral part of the development process.
In order to test the application, however, test database tables and records were
required. Two types of records were created: premade, and randomly generated.

The following tables and record types are created, for both premade and randomly
generated records:

• root1 and root2: These tables contain only RT root records, though the trees
with which they are associated may have only one record (the root record), and
may or may not be live. The root2 table was created to verify that the application
can successfully handle situations where root records were in more than one
table.

• child1: This table contains children of records in the root1 and root2 tables.
• child2: This table contains records that may be children of records in child1,

root1, and root2 tables.
• not_in_tablenames: This table resembles the previous ones, but is not included

with the other tables in the user configuration file. not_in_tablenames, and the
records within it, is included to verify that the application will not change records
in tables not specified by the user.

• no_child: Unlike the previous, this table does not contain parent_id or
parent_version_id fields. It is included to verify the application can successfully
process RTs containing only one record.

This table parent/child configuration gives a maximum tree height of three. Although the
application can accept database table names of any value, association of certain types
of records with certain tables for testing purposes was deemed acceptable for the
following reasons:

• Table generation and testing could be greatly simplified if the names of tables
were set, and were associated with specific types of records.

• Record/table association mimicked customer database design.

Both premade and randomly-generated records are created using the TablesCreator
class. This class’ purpose is to instantiate an object of the Tables class, and call its
createTables method. The constructor for a Tables object contains the following
attributes (an alternate constructor for premade records only contains only the first two):

• isPremade: true for premade records, and false for randomly generated ones. If
this value is true, all values for subsequent attributes after test are ignored.

• test: if true, an extra test_id field is created in each table. Each new record is
assigned a unique test_id, which begins at 1 and is incremented for each record.
This field is designed to allow comparison of individual records before and after

18
application execution. It is set to false when performance is tested.

• numRoots: the total number of RT roots (and therefore Record Trees) to be
created.

• numRootCreates: Java ArrayLists are used in the creation of new RTs, and
ArrayLists do not have infinite size. With standard values of the other variables
(discussed below), setting numRoots to 100,000 was found to be a good ceiling
on the number of roots that can be created at one time. When a greater number
of RTs are desired (as used in performance testing, for example), numRoots is
set to one divisor of the number of RTs desired, and numRootCreates is set to
the other. To create 500,000 RTs, then, numRoots is set to 100,000, and
numRootCreates is set to 5.

• numManagers: the total number of Managers that the created records may be
associated with.

• maxNumChild1: The maximum number of child1 records that can be associated
with its parent record (so one in root1 or root2).

• maxNumChild2: The maximum number of child2 records that can be associated
with its parent record (so one in root1, root2, or child1).

• livePerDead: The ratio of roots with values of ‘T’ for their live fields to those with
values of ‘F’. This, then, is also the value of live (considered during execution)
versus not-live (not considered) RTs across all tables.

Once a Tables object has been constructed, TablesCreator calls Tables’ createTables
method, which actually constructs the tables. createTables first drops all existing tables
with the same names as those created, then creates new versions of those tables. As
with all other file-contained information, table DDL statements are stored as XML, in the
defineTables.xml file.

Premade Records
A set of premade records were used during initial testing of the application, or after any
significant changes. If the value of isPremade was true when the Tables object was
constructed, premade records are created. This set of records is small (63 records), and
is designed to populate all tables, with various configurations of Managers and Record
Trees. Identifiers for each relevant field were chosen to be as similar as possible without
violating uniqueness, to test whether the application could successfully handle those
types of values. In addition, values of records in not_in_tablenames were deliberately
chosen to match those in the other tables (and hence violate uniqueness), in order to
verify the application would not consider these records. Each record, organized in tree
form, is given below. Inside of each node is the node’s table location abbreviation, as
defined below:

19

Table name Abbreviation
root1 R1
root2 R2
child1 C1
child2 C2

not_in_tablenames NIT
no_child NC

Table 2: Table name abbreviations for each table.
This is followed in the node by the record’s unique_identifier and version_id. The
tree_id of each tree appears above each tree, and its manager_id below. Also below
each tree is its live designation: ‘T’ for live trees and ‘F’ for trees that aren’t live.

20

Figure 3: Premade Records.

Manager ID:
Live:

m1
T

m1
T

m2
T

m3
T

m5
T

Tree ID: t1 t12 t13 t14 t15

Manager ID:
Live:

m1
T

m2
T

m3
T

m1
T

Tree ID: t4 t5 t6 t7

Manager ID:
Live:

m1
T

m2
T

m3
T

Tree ID: t1 t2 t3

R1
1, 1

C1
2, 1

C2
8, 1

C2
7, 1

C1
6, 1

C2
42, 1

C2
12, 1

R1
2, 2

C1
3, 1

C2
7, 2

C2
42, 2

C1
4, 1

C2
7, 3

C1
3, 2

R1
3, 42

C1
6, 1

C2
19, 1

R2
4, 19

C1
15, 1

C1
9, 1

C2
11, 1

C2
14, 1

R2
99, 1

C1
11, 2

C2
7, 4

C2
12, 3

C1
2, 3

C2
19, 2

C1
2, 4

R2
99, 2

C1
2, 1

R1
1, 2

C1
4, 5

C2
7, 5

Tree ID:

Manager ID:
Live:

m3
T

m5
F

m5
F

t10

m1
F

t11 t8 t9

m1
T

t1

NIT
1, 1

NIT
2, 1

NIT
8, 1

NIT
7, 1

NIT
6, 1

NIT
42, 1

NIT
12, 1

NC
2, 3

NC
1, 1

NC
1, 1

NC
1, 1

R2
5, 2

C1
5, 19

C1
7, 2

C2
11, 67

R1
5, 1

C2
43, 1

C1
5, 20

R2
100, 2

C1
5, 22

R1
1, 3

C1
2, 2

C2
7, 2

C2
10, 4

C2
8, 3 C2

43, 3

NIT
5, 1

NIT
5, 20

NIT
43, 1

21

Randomly Generated Records
If isPremade is false, (pseudo)randomly generated records are created. Records are
created in terms of their Record Trees, with numRoots * numRootCreates new root
records being first created. Each record is first randomly assigned to a certain table
(root1, root2, no_child, or not_in_tablenames), with equal probability. Its
manager_id (and therefore the manager_id of the rest of the RT) is then set, as one of
the possible values "mN", where N: 1 ... numManagers.

The unique_identifier and version_id is next assigned. For the first record created,
unique_identifier and version_id are assigned a value of 1. After this record, and for
each subsequent record, either unique_identifier or version_id (the choice is
randomly determined, with equal probability) is incremented, and the resulting two
values are assigned to the next record created. (If the root is assigned to the
not_in_tablenames table, the unique_identifier and version_id are deliberately not
incremented, to verify that the application does not read those records.) To facilitate this
process, the manager_id and current maximum values of unique_identifier and
version_id are stored in an instance of the TablesManager class, one per Manager.

The tree_id for the root record is then set, as "tN", where N is 1 … numRoots *
numRootCreates (so “t1”, “t2” …). For root records, 0 is used for both the parent_id and
parent_version_id. The root is assigned a value of live = 'F' (default value 'T'), at a
1/(livePerDead + 1) probability. Finally, if test is true, a unique-across-all-tables Test_ID
is assigned (starting at 1, and going to numRoots * numRootCreates).

Child records are then created, for all roots except for those in no_child. child1-type
records are created first. The number of amendments created for each root is random,
between 0 and maxNumChild1. For each amendment record, its manager_id, tree_id,
and live values are taken from its parent (root) record. The latest value of
unique_identifier and version_id are then assigned, as for root records. The
parent_id and parent_version_id for the new record is set to that of the
unique_identifier and parent_version_id, respectively, of its root record. If test is true,
a test_id is added as before. Records created here are placed in the child1 table,
except for those whose parents are in not_in_tablenames, which are also placed in
not_in_tablenames. Additionally, records created here that will go into
not_in_tablenames do not have their UID and VID incremented, again to verify that the
application does not read those records. Root records in no_child are not given child1
children.

child2-type records are then created, in much the same way as child1 records. child2-
type records may be children of either a root or child1 record, and there may be from 0
to maxNumChild2 records (again randomly selected) for each parent. For each error
record, its manager_id, tree_id, and live values are taken from its parent record. As
before, the latest values of unique_identifier and version_id are used and randomly
incremented for creation of the next record. (Also as before, not_in_tablenames
records are not incremented.) parent_id and parent_version_id, and test_id are set
as with child1-type records..

22

Once created, each record is stored in an instance of TablesRecord. When all records
have been created, or the number of TablesRecord instances equals numRoots, all
records are inserted. Similar to updateRecordTree, record INSERT statements are
stored as PreparedStatements, and inserted as a batch of MAX_BATCH_SIZE
statements (also currently set to 100).

Though various values of numManagers, maxNumChild1, maxNumChild2s, and
livePerDead were used during testing, values used for most testing of LoadBalancer
and TablesGroup coalesced at (3, 3, 3, 4). This translates to three Managers, 0 to 3
amendment-type records per root record, 0 to 3 error-type records per root or
amendment record, and 80% of records having values of “T” for live. As noted, this
translates to a number of balanceable records equal to approximately 2.7 times the
number of numRoots.

Once all records have been created and inserted, indexes on tree_id and
(manager_id, live) are created, per the Performance section of this Report.

Unit Testing
Testing is performed using a JUnit testing suite class (AllTests.java). Related test cases
were separated into appropriate classes: TableTest.java, LoadBalancerTest.java, and
TableGroupTest.java. Two helper classes, ManagerTest.java, and RecordTest.java, are
also used. As database records are read into a Java ArrayList for testing, the value of
numRoots is not set higher than 100,000 during unit testing.

TableTest.java
The TableTest class tests the database tables created by the Tables class. It does this
by reading field values from each record in all created tables into an ArrayList, then
analyzing those records. Specifically, records are tested against the following
requirements:

• All unique_identifier and version_id > 0 (not a requirement for an actual table,
but useful as a first test to verify no negative values were assigned).

• All records in root tables (root1 and root2 here) have parent_id =
parent_version_id = 0.

• All records in non-root tables (child1 and child2 here) have nonzero
parent_ids and parent_version_ids.

• For each Manager, no unique_identifier/version_id combinations are repeated.
• All records in an RT have a unique tree_id, and either are root records, (with

parent_id = parent_version_id = 0), or are related to the root record or its
children through parent/child relationships. (The parent_id and
parent_version_id of the record in question equal the unique_identifier and
version_id of exactly one other record in the RT.)

• User-specified table names are correct (root1, root2, child1, and child2).
• The number of created tree_ids equal the number specified.
• For each tree_id, the manager_id and live value for all records with that tree_id

23
is the same.

• The number of records from all tables equal the number created (as determined
by the final value of test_id).

• The number of distinct tree_ids equals the number created (per numRoots).
• The number of distinct manager_ids equals numManagers.
• Both live = true- and false-valued records should exist.

The TableTest class contains two testing methods: testPremadeTable and
testRandomTable. testPremadeTable creates tables with premade tables, and tests
them against the above criteria. testRandomTable does the same with randomly-
generated records. Since randomly-generated records may not create problems
detectable by testing suites, the table- and record-creation and testing process is done
ten times for each run of TableTest.java.

TableGroupTest.java
The TableGroupTest class tests the (pre-balance) information-gathering methods of the
TableGroup class. For each test, it implements a manually-created database, and uses
a standard configuration file containing correct database connection information, the
required tables, three existing manager_ids, and three desired manager_ids different
than the current ones. The following is tested using the methods of this class:

• All records are associated with the specified table names.
• Tables that should contain the parent_id and parent_version_id fields, do.
• The number and names of Managers is correct, for both current and desired

Managers.
• The current load of each Manager is correct.
• The number of live RTs is correct.
• The total number of records is correct.
• The desired load of each Manager is correct.
• The maximum unique_identifier associated with each Manager is correct.

LoadBalancerTest.java
This class tests the LoadBalancer application as a whole. This class contains various
methods to set up the appropriate tables and records, retrieve data, balance loads, and
tear down tables. Most importantly, however, this class contains two methods,
testRecords and testManagers. testRecords tests each record in the database against
record-level requirements for load balancing. Specifically, the following requirements
are tested:

• Pre- and post-balance table name, tree_id, version_id, parent_version_id, and
live values are the same.

• If record was not live, or was not specified as a table to balance, all other new
values equal old ones.

• The pre- and post-balance values of the parent_id for each root record are the
same.

24
• Parent-child relationships (through the unique_identifier/parent_id and

version_id/parent_version_id fields) should be preserved.
• If table has no parent_id, the value of old and new parent_id and

parent_version_id for any record in it equal the RecordTest object initialization
values of -1.

• The combination of the manager_id, unique_identifier, and version_id fields
are unique throughout all records in user-specified tables.

• The number of records retrieved is greater than zero.

testManagers tests each Manager in the database against Manager-level requirements
for load balancing. Specifically, the following are tested:

• Pre- and post-balance desired loads are equal.
• Undesired Managers have zero post-balance current loads.
• The current and desired loads of desired Managers are equal.

In addition, this class contains methods to conduct tests using individual user
configuration files, at one file per method. For each test method, both premade and
randomly-generated records are created. 48 different files are tested, evaluating
application execution for cases ranging from incorrect configuration file names to all
existent tables and current Managers specified, with different desired Managers.

RecordTest.java
The RecordTest class stores pre- and post-balance values for each record. This class is
used by LoadBalancerTest.java to test that loads have been correctly balanced, and
that the appropriate record, record tree, Manager, and parent/child relationships have
been preserved.

ManagerTest.java
This class stores information used by LoadBalancerTest.java in testing of the
LoadBalancer class. It consists of pre- and post-balance versions of current and desired
loads for each Manager.

25

6. Conclusions
Initial design of the application commenced in May 2008. By early June, the application
appeared to satisfy all but performance requirements. The author at this point began to
work with other software engineers in the company and conduct research in an effort to
determine how performance might be improved. This process culminated in a code
review with all pertinent software engineers in the company in early July.

Once the program appeared to satisfy correctness requirements, the author also began
creating a testing environment for the application. The eventual result of this process
was a full test suite that was able to evaluate program correctness and performance for
both premade and randomly-generated table records, of arbitrary number.

By August 2008, testing had shown that the application satisfied all performance and
correctness requirements. It was then delivered to the chief software engineer of the
company for final approval and delivery to the customer. As far as the author is aware,
that is still the current status of the application.

Final value achieved was significant. The author certainly gained valuable
understanding of and experience in “real-world” software development. Perhaps most
importantly, however, the customer received what it asked for: a database record-tree
load balancing application that satisfied all correctness and performance requirements.

There are two possible directions for future work. The first would reduce the likelihood of
a possible integer overflow error in the application. As noted in the Performance section
of this Report, RTs moved to a desired Manager have their unique_identifiers updated
to their current values plus the maximum unique_identifier currently in the desired
Manager. This guarantees manager_id, unique_identifier, and version_id uniqueness
at best performance, but at the possible cost of the unique_identifier more quickly
nearing the maximum value of unique_identifier as specified by the database or Java.
A future add-on to the application, would, for each record in a Manager, change its
unique_identifier to the smallest positively-valued unused one in that manager, and
appropriately update its relationship to its parent and child(ren) in the tree.

Another possible direction for future work would be to deal with unmoved RTs in non-
desired Managers. Other customer applications work with Managers, and it is desired
that Managers themselves be “deactivated” once all records are moved from it. The
application, however, only moves all live records in user-specified tables associated with
a Manager. This is per user requirements, but it would be useful to move all non-live
RTs, and perhaps those in non-specified tables, to another Manager such that a non-
desired Manager can be completely deactivated.

26

7. Bibliography
1. Atkins, John. An Oracle 10g Release 2 Tutorial and Reference. Fairmont, WV :
ManTech International Incorporated: Enterprise Integration Center (e-IC), 2007.
2. dom4j - Introduction. dom4j. [Online] October 6, 2007. http://www.dom4j.org/.
3. Eclipse. Eclipse.org home. [Online] February 14, 2008. http://www.eclipse.org/.
4. Gűlcű, Ceki. log4j: The complete manual. Lausanne : QoS.ch, 2004.
5. Horstmann, Cay. Java Concepts, Fourth Edition. Hoboken : John Wiley and Sons,
Inc., 2005.
6. JUnit. JUnit.org. [Online] February 12, 2008. http://www.junit.org.
7. Log4j. Apache Log4j 1.2. [Online] September 7, 2007.
http://logging.apache.org/log4j/1.2/index.html.
8. Sanjay Mishra, Alan Beaulieu. Mastering Oracle SQL. Sebastopol, CA : O'Reilly,
2004.
9. Sun Microsystems, Inc. API Specification. Java 2 Platform, Standard Edition, v
1.4.2. [Online] Febuary 11, 2008. http://java.sun.com/j2se/1.4.2/docs/api/.
10. Sun Microsystems, Inc. Class Thread. Java 2 Platform SE v1.3.1. [Online] 2001.
[Cited: November 26, 2001.]
http://java.sun.com/j2se/1.3/docs/api/java/lang/Thread.html.
11. Sun Microsystems, Inc. Executors. Java 2 Platform SE 5.0. [Online] 2004. [Cited:
November 26, 2008.]
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/Executors.html.
12. Sun Microsytems, Inc. Interface PreparedStatement. Java 2 Platform, Std. Ed.
v1.4.2. [Online] July 1, 2008. [Cited: July 1, 2008.]
13. Vajhøj, Arne. Re: JDBC PreparedStatement in a multi-threaded environment. Der
Keiler Coding. [Online] November 16, 2008. [Cited: November 26, 2008.]
http://coding.derkeiler.com/Archive/Java/comp.lang.java.programmer/2008-
11/msg01541.html.

27

Appendix
Sample configuration File
<config>
 <currentManagers>
 <ID>d1</ID>
 <ID>d2</ID>
 <ID>d3</ID>
 </currentManagers>
 <desiredManagers>
 <ID>d4</ID>
 <ID>d5</ID>
 <ID>d6</ID>
 </desiredManagers>
 <tables>
 <name>Amendments</name>
 <name>Errors</name>
 <name>Others</name>
 <name>Transactions</name>
 <name>no_child</name>
 </tables>
 <databaseInfo>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
 <url>jdbc:oracle:thin:@localhost:1521:xe</url>
 <id>jmack</id>
 <password>vgh4vb4</password>
 </databaseInfo>
</config>

28

Sample Output
Load balancer starting: using configuration file defaultConfig.xml
The following tables contain the requisite fields for balancing, but are not
included in the list of tables to balance:
not_in_tablenames
Do you wish to continue? (Enter ‘y’ to do so.) y
Database URL: jdbc:oracle:thin@localhost:1521:xe
Database tables on which balancing will be performed:
root1
root2
child1
child2
no_child
ManagerID: m1, current load: 4, desired load 0
ManagerID: m2, current load: 3, desired load 0
ManagerID: m3, current load: 3, desired load 0
ManagerID: m4, current load: 0, desired load 4
ManagerID: m5, current load: 0, desired load 3
ManagerID: m6, current load: 0, desired load 3
Do you wish to perform this operation? (Enter ‘y’ for yes.) y
Load balance 0% complete: currently moving 4 records from Manager m1 to
Manager m4
Load balance 36% complete: currently moving 3 records from Manager m2 to
Manager m5
Load balance 64% complete: currently moving 3 records from Manager m3 to
Manager m6
ManagerID: m1, current load: 0, desired load 0
ManagerID: m2, current load: 0, desired load 0
ManagerID: m3, current load: 0, desired load 0
ManagerID: m4, current load: 4, desired load 4
ManagerID: m5, current load: 3, desired load 3
ManagerID: m6, current load: 3, desired load 3
Load balancer ended
Load balancer run time 1 second(s)

29

LoadBalancer.java
package com.LoadBalancer;

import java.sql.SQLException;
import java.util.ArrayList;
import java.util.Scanner;

import org.apache.log4j.Logger;
import org.apache.log4j.PropertyConfigurator;
import org.dom4j.DocumentException;

/**
 * The LoadBalancer class balances the database RT (record tree) load between
 * user-specified Managers in a Table Group (TG), using the methods of the
 * TableGroup class.
 *
 * @author Jonathan Mack
 */

public class LoadBalancer
{
 /** Instantiation of log4j logging object. */
 static Logger logger = Logger.getLogger(LoadBalancer.class);

 /**
 * Balances the loads between user-specified Managers. To accomplish this,
a
 * new TableGroup object is first created. Methods within TableGroup then
 * open and parse an XML configuration file, and retrieve associated
 * database information. If there are database tables that contain all the
 * fields needed for balancing, but aren't specified by the user, the user
 * is notified of this, and asked if they want to continue. If so, the
user
 * is shown the database URL and names of tables and Managers to be
 * balanced, along with the Manager RT loads, both before and after
 * balancing. If the user decides to do so, RT loads are then balanced
among
 * specified Managers, such that unmovable RTs are not moved, all movable
 * RTs are moved from specified current to specified desired Managers, and
 * the ending number of desired records minus number of current RTs for
each
 * Manager is zero.
 *
 * @param args
 * Array of user arguments. args[0] contains the path to the
 * location of the user's config file. args[1] is optional; if
it
 * exists, it contains the name of the user's config file. If
it
 * is null, the default file (defaultConfig.xml) is used.
 */
 public static void main(String[] args)
 {
 // get start time for program execution
 long startTime = System.currentTimeMillis();

30
 // if no path specified, abort execution
 if (args.length == 0)
 {
 throw new IllegalArgumentException(
 "Must specify directory location of config files");
 }

 // get path and config file name (if it exists); configure logger
 String path = "";
 String fileName = "defaultConfig.xml";
 path = args[0];
 if (args.length == 2)
 {
 fileName = args[1];
 }
 PropertyConfigurator.configure(path + "log4jConfig.txt");

 logger.info("Load balancer starting: using configuration file "
 + fileName);

 TableGroup tg = new TableGroup();
 try
 {
 // get database table information
 tg.parseConfig(path + fileName);
 tg.openConnection();
 tg.setTables();

 // check for balanceable tables in database that aren't in
 // user-specified list
 ArrayList<String> notInTableNames = new ArrayList<String>();
 notInTableNames = tg.checkTables();
 Scanner in = new Scanner(System.in);

 // non-specified balanceable tables found; determine if user wants
 // to continue
 if (notInTableNames.size() > 0)
 {
 logger
 .info("The following tables contain the requisite fields for "
 + "balancing, but are not included in the list of tables to
"
 + "balance: ");

 // display non-specified balanceable tables
 for (String s : notInTableNames)
 {
 logger.info(s);
 }
 logger.info("Do you wish to continue? (Enter 'y' to do so.) ");

 // exit if user wishes to abort
 if (!in.next().toLowerCase().equals("y"))
 {
 logger.info("Load balancer aborting per user request: "
 + " no records will be changed");
 return;

31
 }
 }

 // get remainder of load balance information
 tg.setParentID();
 tg.createPreparedStatements();
 tg.setCurrentManagers();
 tg.setDesiredManagers();
 tg.setCurrentLoads();
 tg.setNumMovableRecordTrees();
 tg.setNumMovableRecords();
 tg.setDesiredLoads();
 tg.setMaxUniqueIDs();

 // log pre-balance database info to console
 tg.logURL();
 tg.logTableNames();
 tg.logManagerInfo();

 // verify user wants to continue
 logger.info("Do you wish to perform this operation? "
 + "(Enter 'y' for yes.) ");
 if (!in.next().toLowerCase().equals("y"))
 {
 logger.info("Load balancer aborting per user request: "
 + " no records will be changed");
 return;
 }

 tg.balance();
 tg.logManagerInfo();
 tg.closePreparedStatements();
 tg.closeConnection();
 logger.info("Load balancer ended");
 logger.info("Load balancer run time: "
 + (System.currentTimeMillis() - startTime) / 1000
 + " second(s)");

 }
 // catch errors
 catch (ClassNotFoundException e)
 {
 e.printStackTrace();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 catch (DocumentException e)
 {
 e.printStackTrace();
 }
 catch (IllegalArgumentException e)
 {
 e.printStackTrace();
 }
 // close database connection objects

32
 finally
 {
 try
 {
 tg.closePreparedStatements();
 }
 catch (Exception e)
 {
 }
 try
 {
 tg.closeConnection();
 }
 catch (Exception e)
 {
 }
 }
 }
}

33

TableGroup.java
package com.LoadBalancer;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Vector;

import org.apache.log4j.Logger;
import org.dom4j.Document;
import org.dom4j.DocumentException;
import org.dom4j.Node;
import org.dom4j.io.SAXReader;

/**
 * The TableGroup class allows the balancing of record trees (RTs) attached
to
 * various Managers (Managers) within a database of tables. This group of
tables
 * is known as a Table Group. Each RT consists of a tree of records uniquely
 * identified by their Manager ID, Unique Identifier, and Version ID. Each RT
is
 * also associated with exactly one RT ID. Parent/child relationships (if
they
 * exist; some trees contain no children) are determined by the use of a
Parent
 * ID and Parent Version ID, which correspond to the Unique ID and Version ID
of
 * the parent record. Records in each RT are associated with exactly one
 * Manager. Finally, all records have a boolean value in a field known as
 * live ('live', for the purposes of this documentation). All records
 * associated with a certain record tree have the same value of live.
 * <p>
 * The user supplies an XML configuration file which contains information on
the
 * connection to the database where the RT records are stored, the tables
that
 * contain records that may be moved, the ManagerIDs from which records may
be
 * moved (current Managers), and the ManagerIDs in which the user desires the
 * records to be placed (desired Managers). Desired ManagerIDs may include
some,
 * all or none of ManagerIDs currently used, and may include ManagerIDs that
are
 * not associated with any record.
 * <p>
 * NOTE: As load balancing involves moving records from one Manager to
another,
 * and this only entails (for the purposes of this package) changing the

34
 * Manager_id, unique_id, and (if it exists) parent_id values in a record,
 * "balance", "change" and "move" are used interchangeably throughout this
 * documentation. Also, 'movable', for the purposes of this documentation,
means
 * any record or RT that is live and is associated with user-specified tables
 * and current ManagerIDs.
 * <p>
 * Methods in this class obtain the configuration information, and "move" RTs
by
 * changing the Manager_IDs of their records, pursuant to the following
 * requirements:
 *
 * Parent-child relationships are preserved.
 * The composite of Manager_ID, Version_ID, and Unique_Identifier remains
 * unique throughout all tables.
 * All records in a particular RT have the same Manager.
 * All records in a Manager that isn't desired by the user are moved to
 * one(s) that is/are, except for those RTs which aren't live or are in
tables
 * or current Managers not specified by the user.
 * After balancing, the RTs are balanced such that the desired number of
 * RTs associated with a desired Manager (its 'load') is equal to its current
 * load.
 *
 * Manager and Table are helper classes used by TableGroup methods to store
 * appropriate information.
 *
 * @author Jonathan Mack
 */

class TableGroup
{
 /** log4j Logger object used to log information. */
 static Logger logger = Logger.getLogger(TableGroup.class);
 /** Maximum size of updateRTs PreparedStatement batches. */
 private static final int MAX_BATCH_SIZE = 100;
 /**
 * List of user-specified database table names containing the records the
 * user wants to balance.
 */
 private ArrayList<String> tableNames;
 /**
 * List of Managers to be considered when balancing, drawn from both the
 * list of current and desired Managers in the user's config file.
 */
 private ArrayList<Manager> Managers;
 /**
 * User-specified list indicating Managers that may be considered when
 * balancing loads.
 */
 private ArrayList<String> currentManagerIDs;
 /**
 * User-specified list indicating the Managers in which the user wants the
 * RTs in the list of current Managers and table names to reside after
 * balancing.
 */
 private ArrayList<String> desiredManagerIDs;

35
 /**
 * XML Document object containing user-specified database connection,
table,
 * current Manager, and desired Manager information.
 */
 private Document config;
 /**
 * Connection object used to connect to the database, used by multiple
 * methods in the class.
 */
 private Connection conn;
 /** Number of record trees that have been moved. */
 private long treesMoved = 0;
 /**
 * Total number of record trees that can be moved. Includes only live RTs
 * found in user-specified tables and current Managers.
 */
 private long totalNumMovableRTs = 0;
 /**
 * Total number of records that can be moved. Includes only live records
 * found in user-specified tables and current Managers.
 */
 private long totalNumMovableRecords = 0;
 /** Displayed percent of total record trees moved. */
 private int percentMoved = 0;
 /** Displayed ID of Manager from which RTs are being moved. */
 private String startManager;
 /** Displayed ID of Manager to which RTs are being moved. */
 private String endManager;
 /**
 * Variable used to improve performance when the effective level of the
 * logger is not DEBUG. Used especially to guarantee that logging loops
will
 * not be traversed.
 */
 private final boolean debug = logger.isDebugEnabled();
 /**
 * PreparedStatement to retrieve all record trees corresponding to a
certain
 * Manager.
 */
 private PreparedStatement retrieveRTs;
 /**
 * PreparedStatement to retrieve the maximum unique_identifier associated
 * with a certain Manager.
 */
 private PreparedStatement retrieveMaxUID;
 /** Map from table name to Table object. */
 private Map<String, Table> tables = new HashMap<String, Table>();

 /** Constructs a new TableGroup object. */
 public TableGroup()
 {
 tableNames = new ArrayList<String>();
 Managers = new ArrayList<Manager>();
 currentManagerIDs = new ArrayList<String>();
 desiredManagerIDs = new ArrayList<String>();

36
 totalNumMovableRTs = 0;
 }

 /**
 * Opens the user's XML configuration file, and parses the information
 * inside.
 *
 * @param fileName
 * the name of the configuration file
 * @throws DocumentException
 */
 public void parseConfig(String fileName) throws DocumentException
 {
 if (debug) logger.debug("Parsing configuration file");

 SAXReader reader = new SAXReader();
 config = reader.read(fileName);
 }

 /**
 * Opens the connection between Java and the appropriate database tables
 * using information found in the user's config file. If the file contains
 * bad/missing data, this method prints an appropriate message, and throws
 * an appropriate exception.
 *
 * @throws ClassNotFoundException
 * @throws SQLException
 * @throws NullPointerException
 */
 public void openConnection() throws ClassNotFoundException, SQLException
 {
 logger.info("Opening database connection");

 try
 {
 // read database connection info
 String driverName = config.selectSingleNode(
 "/config/databaseInfo/driver").getStringValue();
 String url = config.selectSingleNode("/config/databaseInfo/url")
 .getStringValue();
 String id = config.selectSingleNode("/config/databaseInfo/id")
 .getStringValue();
 String password = config.selectSingleNode(
 "/config/databaseInfo/password").getStringValue();

 // get driver connection
 Class.forName(driverName);
 conn = DriverManager.getConnection(url, id, password);
 conn.setAutoCommit(false);
 }
 // catch errors, append appropriate description, and throw
 catch (NullPointerException e)
 {
 throw new NullPointerException(
 "Could not find all database connection information in
configuration file");
 }

37
 catch (ClassNotFoundException e)
 {
 throw new ClassNotFoundException(
 "Database driver name incorrect in configuration file");
 }
 catch (SQLException e)
 {
 throw new SQLException(
 "Database connection information (url, id, or password) incorrect
in configuration file");
 }
 }

 /**
 * Returns the database connection.
 *
 * @return the database connection object
 * @throws SQLException
 */
 public Connection getConnection() throws SQLException
 {
 return conn;
 }

 /**
 * Closes the database connection.
 *
 * @throws SQLException
 */
 public void closeConnection() throws SQLException
 {
 if (conn != null) conn.close();
 }

 /**
 * Sets the user-specified names of tables that have RTs that could be
 * balanced. This method checks for table names not in the specified
 * database URL, and blank and duplicate table names. If the table names
 * aren't in the database, or if no valid table names were found, an
 * exception is thrown. If the table name was valid, a new Table object is
 * also created, and added to the <tableName, Table> 'tables' Map.
 *
 * @throws SQLException
 * @throws IllegalArgumentException
 */
 @SuppressWarnings("unchecked")
 public void setTables() throws SQLException
 {
 logger.info("Setting table names");

 // get list of tables in database
 Statement stmt = null;
 ResultSet rs = null;
 ArrayList<String> dbTableNames = new ArrayList<String>();
 try
 {
 stmt = conn.createStatement();

38
 rs = stmt.executeQuery("SELECT table_name FROM user_tables");
 String dbName = "";
 while (rs.next())
 {
 dbName = rs.getString(1).toLowerCase();
 dbTableNames.add(dbName);
 }
 }
 // catch database errors
 catch (SQLException e)
 {
 e.printStackTrace();
 throw new SQLException();
 }
 // close ResultSet and Statement objects
 finally
 {
 try
 {
 if (rs != null) rs.close();
 }
 catch (Exception e)
 {
 }
 try
 {
 if (stmt != null) stmt.close();
 }
 catch (Exception e)
 {
 }
 }

 // read table names in from user's XML file
 List<Node> namesList = new Vector<Node>();
 namesList = config.selectNodes("/config/tables/name");
 String fileName = "";
 // check each table name: if not blank, a duplicate, or not in
database,
 // add it to the list
 for (Node n : namesList)
 {
 fileName = n.getStringValue().toLowerCase();
 // check for blank table names, warn but continue if found
 if (fileName.length() == 0)
 {
 logger.info("Blank table name element in config file: "
 + "element ignored");
 }
 // check for table names in config file, but not in database
 else if (!dbTableNames.contains(fileName))
 {
 throw new IllegalArgumentException("Table name '" + fileName
 + "' specified as existing in config file not found in "
 + "database");
 }
 // check for duplicate table names

39
 else if (tableNames.contains(fileName))
 {
 logger.info("Duplicate table name '" + fileName
 + "' in config file; duplicate will not be added");
 }
 // all requirements met: add table name
 else
 {
 tableNames.add(fileName);
 Table aTable = new Table(fileName);
 tables.put(fileName, aTable);
 }
 }

 // log table names
 if (debug)
 {
 for (String s : tableNames)
 {
 logger.debug("Table name: " + s);
 }
 }

 // check for no valid table names specified; throw exception if so
 if (tableNames.size() == 0)
 {
 throw new IllegalArgumentException(
 "Must specify at least one database table");
 }
 }

 /**
 * Returns the list of database tables that have the requisite fields for
 * load balancing, but aren't included in the user's config file. If the
 * size of this list is greater than zero, LoadBalancer.class warns the
 * user, and asks if they want to continue.
 *
 * @throws SQLException
 */
 public ArrayList<String> checkTables() throws SQLException
 {
 Statement stmt = null;
 ResultSet rs = null;
 ResultSet fieldRS = null;
 Statement fieldStmt = null;
 ArrayList<String> notInTableNames = new ArrayList<String>();

 try
 {
 // get all table names
 stmt = conn.createStatement();
 rs = stmt.executeQuery("SELECT table_name FROM user_tables");
 while (rs.next())
 {
 // get fields in each table
 fieldStmt = conn.createStatement();
 fieldRS = fieldStmt

40
 .executeQuery("SELECT column_name FROM user_tab_columns "
 + "WHERE table_name NOT LIKE 'BIN$%' AND "
 + "lower(table_name) = '"
 + rs.getString(1).toLowerCase() + "'");

 // add fields to tableFields ArrayList
 ArrayList<String> tableFields = new ArrayList<String>();
 while (fieldRS.next())
 {
 tableFields.add(fieldRS.getString(1).toLowerCase());
 }

 // if table contains all fields needed for balancing, and is not
 // in the list of user-specified tables, add it to the list of
 // tables to return
 if (!tableNames.contains(rs.getString(1).toLowerCase())
 && tableFields.contains("unique_identifier")
 && tableFields.contains("version_id")
 && tableFields.contains("Manager_id")
 && tableFields.contains("root_object_id")
 && tableFields.contains("live"))
 {
 notInTableNames.add(rs.getString(1));
 }
 }
 }
 // catch SQL exception
 catch (SQLException e)
 {
 e.printStackTrace();
 throw new SQLException();
 }
 // close ResultSet and Statement objects
 finally
 {
 try
 {
 if (rs != null) rs.close();
 }
 catch (Exception e)
 {
 }
 try
 {
 if (stmt != null) stmt.close();
 }
 catch (Exception e)
 {
 }
 try
 {
 if (fieldRS != null) fieldRS.close();
 }
 catch (Exception e)
 {
 }
 try

41
 {
 if (fieldStmt != null) fieldStmt.close();
 }
 catch (Exception e)
 {
 }
 }
 return notInTableNames;
 }

 /**
 * Gets names of tables that have records that could be balanced.
 *
 * @return the ArrayList of table names
 */
 public ArrayList<String> getTableNames()
 {
 return tableNames;
 }

 /**
 * Gets the Map of table names to Table objects.
 *
 * @return the Map of table names to Table objects
 */
 public Map<String, Table> getTables()
 {
 return tables;
 }

 /**
 * Sets the parentID field in each Table object in the 'tables' Map.
 *
 * @throws SQLException
 */
 public void setParentID() throws SQLException
 {
 Statement stmt = null;
 ResultSet rs = null;

 // get the field names for each specified database table, and set
 // the parentID attribute of the associated Table object to true
 // if it contains the 'parent_id' field.
 try
 {
 stmt = conn.createStatement();
 for (String s : tableNames)
 {
 rs = stmt
 .executeQuery("SELECT column_name FROM user_tab_columns "
 + "WHERE lower(table_name) = '" + s + "'");
 while (rs.next())
 {
 if (rs.getString(1).toLowerCase().equals("parent_id"))
 {
 tables.get(s).setParentID(true);
 }

42
 }
 }
 }
 // catch SQL exception
 catch (SQLException e)
 {
 e.printStackTrace();
 throw new SQLException();
 }
 // close ResultSet and Statement objects
 finally
 {
 try
 {
 if (rs != null) rs.close();
 }
 catch (Exception e)
 {
 }
 try
 {
 if (stmt != null) stmt.close();
 }
 catch (Exception e)
 {
 }
 }
 if (debug) logHasParentID();
 }

 /**
 * Creates the PreparedStatements used to speed execution of the methods
in
 * the TableGroup class. Three PreparedStatements are created: one each to
 * find the maximum Unique ID (including nonlive records) and all live
RTIDs
 * associated with a specified Manager, and one to update each RT to its
new
 * values.
 *
 * @throws SQLException
 */
 public void createPreparedStatements() throws SQLException
 {
 // create subquery to retrieve record trees to move
 StringBuffer treeSubBuffer = new StringBuffer();
 treeSubBuffer.append("SELECT tree_id FROM (");
 for (String s : tableNames)
 {
 treeSubBuffer.append("SELECT tree_id FROM " + s
 + " WHERE live = 'T' AND manager_id = ? UNION ");
 }
 treeSubBuffer.delete(treeSubBuffer.length()
 - " UNION ".length(), treeSubBuffer.length());
 treeSubBuffer.append(") WHERE rownum <= ?");

 // create query to retrieve record trees to move

43
 StringBuffer treeBuffer = new StringBuffer();
 for (String s : tableNames)
 {
 treeBuffer.append("SELECT DISTINCT tree_id, '" + s
 + "' AS table_name FROM " + s + " WHERE tree_id IN (");
 treeBuffer.append(treeSubBuffer.toString());
 treeBuffer.append(") UNION ALL ");
 }
 treeBuffer.delete(treeBuffer.length()
 - " UNION ALL ".length(), treeBuffer.length());

 // create PreparedStatement to retrieve RTs
 retrieveRTs = conn.prepareStatement(treeBuffer.toString());

 // create query to get maximum unique_id
 StringBuffer maxBuffer = new StringBuffer();
 maxBuffer.append("SELECT MAX(unique_identifier) FROM (");
 for (String s : tableNames)
 {
 maxBuffer.append("SELECT unique_identifier FROM " + s
 + " WHERE Manager_id = ? UNION ALL ");
 }
 maxBuffer.delete(maxBuffer.length() - " UNION ALL ".length(), maxBuffer
 .length());
 maxBuffer.append(")");

 // create PreparedStatement to get the maximum Unique ID associated
with
 // a Manager
 retrieveMaxUID = conn.prepareStatement(maxBuffer.toString());

 // create PreparedStatement to update RTs
 for (String s : tableNames)
 {
 // PreparedStatement for tables with the parent_id field
 if (tables.get(s).isParentID())
 {
 PreparedStatement ps = conn
 .prepareStatement("UPDATE "
 + s
 + " SET unique_identifier = unique_identifier + 1 + ?,"
 + " manager_id = ?, parent_id = DECODE(parent_id, 0, 0,
NULL,"
 + " 0, parent_id + 1 + ?) WHERE root_object_id = ?");
 tables.get(s).setPs(ps);
 }
 // PreparedStatement for tables without the parent_id field
 else
 {
 PreparedStatement ps = conn.prepareStatement("UPDATE " + s
 + " SET unique_identifier = unique_identifier + 1 + ?,"
 + " manager_id = ? WHERE root_object_id = ?");
 tables.get(s).setPs(ps);
 }
 }

 }

44

 /**
 * Closes the PreparedStatements used in this class.
 *
 * @throws SQLException
 */
 public void closePreparedStatements() throws SQLException
 {
 try
 {
 if (retrieveRTs != null) retrieveRTs.close();
 }
 catch (Exception e)
 {
 }

 for (String s : tableNames)
 {
 try
 {
 if (tables.get(s).getPs() != null)
 tables.get(s).getPs().close();
 }
 catch (Exception e)
 {
 }
 }
 try
 {
 if (retrieveMaxUID != null) retrieveMaxUID.close();
 }
 catch (Exception e)
 {
 }
 }

 /**
 * Sets the user-specified Managers that have RTs that could be balanced.
 * This method checks for manager_ids not in the specified database URL,
and
 * blank and duplicate manager_ids. If the manager_ids aren't in the
 * database, or if no valid manager_ids were found, an exception is
thrown.
 * If the manager_id was valid, the manager_id is added to the
 * currentManagerIDs ArrayList, and a new Manager object is created and
 * added to the Managers ArrayList.
 *
 * @throws SQLException
 * @throws IllegalArgumentException
 */
 @SuppressWarnings("unchecked")
 public void setCurrentManagers() throws SQLException,
 IllegalArgumentException
 {
 logger.info("Setting IDs of current Managers");

 // create query StringBuffer to get list of ManagerIDs in database

45
 // tables
 StringBuffer queryBuffer = new StringBuffer();
 String subquery = "";
 for (String s : tableNames)
 {
 subquery = "SELECT DISTINCT Manager_id FROM " + s
 + " WHERE live = 'T' UNION ";
 queryBuffer.append(subquery);
 }
 queryBuffer.delete(queryBuffer.length() - " UNION ".length(),
 queryBuffer.length());

 // execute query and retrieve ManagerIDs in database tables
 ArrayList<String> ManagerIDsInTables = new ArrayList<String>();
 Statement stmt = null;
 ResultSet rs = null;
 try
 {
 stmt = conn.createStatement();
 rs = stmt.executeQuery(queryBuffer.toString());
 while (rs.next())
 {
 ManagerIDsInTables.add(rs.getString(1));
 }
 }
 // catch database exceptions
 catch (SQLException e)
 {
 e.printStackTrace();
 throw new SQLException();
 }
 // close ResultSet and Statement objects
 finally
 {
 try
 {
 if (rs != null) rs.close();
 }
 catch (Exception e)
 {
 }
 try
 {
 if (stmt != null) stmt.close();
 }
 catch (Exception e)
 {
 }
 }

 // add ManagerIDs in config file to lists of all and current ManagerIDs
 List<Node> idList = new Vector<Node>();
 idList = config.selectNodes("/config/currentManagers/ID");

 // add Manager IDs from config file
 for (Node n : idList)
 {

46
 // check for blank ManagerIDs, warn but continue if found
 if (n.getStringValue().length() == 0)
 {
 logger.info("Blank current Manager ID element found in config "
 + "file: element ignored");
 }
 // Specified Manager not in specified tables: abort program
 else if (!ManagerIDsInTables.contains(n.getStringValue()))
 {
 throw new IllegalArgumentException("Manager ID '"
 + n.getStringValue() + "' specified as existing "
 + "in config file not found in specified tables");
 }
 // check to see if Manager ID is a duplicate; discard if so
 else if (currentManagerIDs.contains(n.getStringValue()))
 {
 logger.info("Duplicate current Manager ID '"
 + n.getStringValue()
 + "' in config file; duplicate will not be added");
 }
 // add new Manager ID to list of current Managers
 else
 {
 currentManagerIDs.add(n.getStringValue());
 Managers.add(new Manager(n.getStringValue()));
 }
 }

 // throw exception if no Managers were found
 if (currentManagerIDs.size() == 0)
 {
 throw new IllegalArgumentException(
 "No Managers were specified from which to move records");
 }
 }

 /**
 * Sets the Manager to which the user would like the RTs in the specified
 * tables and current Managers to be moved. This method checks for blank
and
 * duplicate manager_ids. If no valid manager_ids were found, an exception
 * is thrown. If the manager_id was valid, the manager_id is added to the
 * desiredManagerIDs ArrayList. If in addition the manager_id was not in
the
 * list of current manager_ids, a new Manager object is created, and added
 * to the Managers ArrayList.
 *
 * @throws SQLException
 */
 @SuppressWarnings("unchecked")
 public void setDesiredManagers() throws SQLException
 {
 logger.info("Setting desired Managers");

 // get list of desired ManagerIDs from user config file
 List<Node> idList = new Vector<Node>();
 idList = config.selectNodes("/config/desiredManagers/ID");

47

 // check each ID for null, duplicate
 for (Node n : idList)
 {
 // check for blank ManagerIDs, warn but continue if found
 if (n.getStringValue().length() == 0)
 {
 logger.info("Blank desired Manager ID element found in config "
 + "file: element ignored");
 }
 // check to see if Manager ID is a duplicate; discard if so
 else if (desiredManagerIDs.contains(n.getStringValue()))
 {
 logger.info("Duplicate desired Manager ID '"
 + n.getStringValue()
 + "' in config file; duplicate will not be added");
 }
 // add new Manager ID to list of desired Managers
 else
 {
 desiredManagerIDs.add(n.getStringValue());

 // if not in list of Managers, add to list
 if (!currentManagerIDs.contains(n.getStringValue()))
 {
 Managers.add(new Manager(n.getStringValue()));
 }
 }
 }

 // throw exception if no Managers were found
 if (desiredManagerIDs.size() == 0)
 {
 throw new IllegalArgumentException(
 "No Managers were specified to which to move records");
 }
 }

 /**
 * Gets the list of Manager objects.
 *
 * @return the ArrayList of Manager objects
 */
 public ArrayList<Manager> getManagers()
 {
 return Managers;
 }

 /**
 * Gets the list of current Manager_IDs.
 *
 * @return the list of current Manager_IDs
 */
 public ArrayList<String> getCurrentManagerIDs()
 {
 return currentManagerIDs;
 }

48

 /**
 * Gets the list of desired Manager_IDs.
 *
 * @return the ArrayList of desired Manager_IDs
 */
 public ArrayList<String> getDesiredManagerIDs()
 {
 return desiredManagerIDs;
 }

 /**
 * Sets the number of movable record trees and records associated with
each
 * Manager. For each Manager, all specified tables are queried, and the
 * total number of movable RTIDs and records is retrieved and stored in
the
 * appropriate Manager object.
 *
 * @throws SQLException
 */
 public void setCurrentLoads() throws SQLException
 {
 logger.info("Setting current loads for each Manager");

 // get ManagerIDs and the number of live record trees in each from
 // tables
 StringBuffer queryBuffer = new StringBuffer();
 queryBuffer
 .append("SELECT Manager_id, COUNT(DISTINCT root_object_id), "
 + "COUNT(root_object_id) from (");
 for (String s : tableNames)
 {
 queryBuffer.append("SELECT Manager_id, root_object_id FROM " + s
 + " WHERE live = 'T' UNION ALL ");
 }
 queryBuffer.delete(queryBuffer.length() - " UNION ALL ".length(),
 queryBuffer.length());
 queryBuffer.append(") GRTUP BY Manager_id");

 // execute query and insert results into Managers
 Statement stmt = null;
 ResultSet rs = null;
 try
 {
 stmt = conn.createStatement();
 rs = stmt.executeQuery(queryBuffer.toString());

 // set each current load
 while (rs.next())
 {
 for (Manager d : Managers)
 {
 if (rs.getString(1).equals(d.getManagerID()))
 {
 d.setCurrentRTload(rs.getLong(2));
 d.setCurrentRecordLoad(rs.getLong(3));

49
 }
 }
 }
 }
 // catch database errors
 catch (SQLException e)
 {
 e.printStackTrace();
 throw new SQLException();
 }
 // close ResultSet and Statement objects
 finally
 {
 try
 {
 if (rs != null) rs.close();
 }
 catch (Exception e)
 {
 }
 try
 {
 if (stmt != null) stmt.close();
 }
 catch (Exception e)
 {
 }
 }
 }

 /**
 * Sets the total number of movable record trees.
 *
 * @throws SQLException
 */
 public void setNumMovableRecordTrees()
 {
 logger.info("Setting total number of movable record trees");

 // add number of movable RTs associated with each Manager to running
 // total
 for (Manager d : Managers)
 {
 totalNumMovableRTs = totalNumMovableRTs + d.getCurrentRTload();
 }

 if (debug)
 {
 logger.debug("Total number of movable record trees: "
 + totalNumMovableRTs);
 }
 }

 /**
 * Gets the total number of movable record trees.
 *
 * @return the total number of movable RTs

50
 */
 public long getNumMovableRootObjects()
 {
 return totalNumMovableRTs;
 }

 /**
 * Sets the total number of movable records.
 *
 * @throws SQLException
 */
 public void setNumMovableRecords() throws SQLException
 {
 logger.info("Setting total number of movable records");

 // add number of movable records associated with each Manager to
running
 // total
 for (Manager d : Managers)
 {
 totalNumMovableRecords = totalNumMovableRecords
 + d.getCurrentRecordLoad();
 }

 if (debug)
 {
 logger.debug("Total number of movable records: "
 + totalNumMovableRecords);
 }
 }

 /**
 * Gets the total number of movable records.
 *
 * @return the total number of movable records
 */
 public long getNumMovableRecords()
 {
 return totalNumMovableRecords;
 }

 /**
 * Sets the desired RT load for each Manager object. Since the final load
 * should be distributed evenly among all desired Managers, the final load
 * for each desired Manager is determined by dividing the number of
movable
 * record trees by the number of desired Managers. The desired load for
each
 * desired Manager is then set to this value. Managers not desired remain
at
 * their initialization value of zero. If the number of Managers does not
 * divide evenly into the number of movable record trees, 1 is added to
the
 * desired load of each Manager (starting with the first) until there is
no
 * remainder.
 */

51
 public void setDesiredLoads()
 {
 logger.info("Setting desired loads for each Manager");

 // If number of desired Managers does not divide evenly into the number
 // of
 // record trees, calculate the remainder so it can be evenly
distributed
 // among as many Managers as possible
 int remainder = (int) (totalNumMovableRTs % desiredManagerIDs.size());

 for (Manager d : Managers)
 {
 // only add remainder to desired ManagerIDs
 if (desiredManagerIDs.contains(d.getManagerID()))
 {
 // desired load = total number of record trees divided by number
 // of desired Managers
 d.setDesiredRTload(totalNumMovableRTs
 / desiredManagerIDs.size());

 // If remainder is greater than zero, add one record tree to the
 // current Manager, and decrement the remainder
 if (remainder > 0)
 {
 d.setDesiredRTload(d.getDesiredRTload() + 1);
 remainder--;
 }
 }
 }
 // initialization value of desiredLoad = 0, so no need to set it for
 // non-desired Managers
 }

 /**
 * Sets the maximum Unique ID for all Managers.
 */
 public void setMaxUniqueIDs() throws SQLException
 {
 // loop through each table and Manager
 for (Manager d : Managers)
 {
 setMaxUniqueID(d);
 }
 }

 /**
 * Sets the maximum unique identifier for a Manager. Unlike other methods
in
 * this class, setMaxUniqueID does consider nonmovable
 * records. This is done in order to preserve the uniqueness of the
 * unique_id, version_id, and manager_ID fields between all table records
in
 * the Table Group.
 */
 private void setMaxUniqueID(Manager Manager) throws SQLException
 {

52
 // execute query to retrieve maximum unique_id for all Managers
 ResultSet rs = null;
 try
 {
 for (int i = 1; i <= tableNames.size(); i++)
 {
 retrieveMaxUID.setString(i, Manager.getManagerID());
 }
 rs = retrieveMaxUID.executeQuery();
 rs.next();
 Manager.setMaxUniqueIdentifier(rs.getLong(1));

 }
 // catch database exceptions
 catch (SQLException e)
 {
 e.printStackTrace();
 throw new SQLException();
 }
 // close ResultSet
 finally
 {
 try
 {
 if (rs != null) rs.close();
 }
 catch (Exception e)
 {
 }
 }

 }

 /**
 * Balances movable RTs among desired Managers, moving them from undesired
 * current Managers as appropriate. If the current and desired loads of
any
 * Manager is different, this method searches for a Manager with too many
 * RTs (current load greater than desired load) and one with too little
 * (desired load greater than current load). It then takes the minimum of
 * these differences, and moves that minimum number of RTs associated with
 * the first Manager to the second, by batching and periodically
committing
 * the appropriate update statements. Manager current load and maximum
 * unique id information is then updated, and the process repeats until
 * current and desired loads are equal for all Managers.
 *
 * @throws SQLException
 */
 public void balance() throws SQLException
 {
 logger.info("Starting load balance: " + totalNumMovableRTs
 + " movable record trees, " + totalNumMovableRecords
 + " movable records");

 // move RTs until all Managers balanced

53
 int startIndex = 0; // index of Managers ArrayList for prospective
start
 // Manager
 int endIndex = 0; // index of Managers ArrayList for prospective end
 // Manager
 long recordTreesInTransit = 0;
 while (!isBalanced())
 {
 // look for start Manager with RTs to move, and end Managers with
 // space for
 // them
 if (Managers.get(startIndex).getCurrentRTload() > Managers.get(
 startIndex).getDesiredRTload()
 && Managers.get(endIndex).getCurrentRTload() < Managers.get(
 endIndex).getDesiredRTload())
 {
 // get number of RTs to move
 recordTreesInTransit = Math.min(Managers.get(startIndex)
 .getCurrentRTload()
 - Managers.get(startIndex).getDesiredRTload(), Managers
 .get(endIndex).getDesiredRTload()
 - Managers.get(endIndex).getCurrentRTload());

 // display balance status on console
 logStatus(Managers.get(startIndex).getManagerID(), Managers
 .get(endIndex).getManagerID(), recordTreesInTransit);

 // get calculated number of RTs using PreparedStatement
 ResultSet rs = null;
 try
 {
 int i;
 // populate PreparedStatement
 for (int j = 0; j < tableNames.size(); j++)
 {
 for (i = 1; i <= tableNames.size(); i++)
 {
 retrieveRTs.setString(i + j
 * (tableNames.size() + 1), Managers.get(
 startIndex).getManagerID());
 }
 retrieveRTs.setLong(i + j * (tableNames.size() + 1),
 recordTreesInTransit);
 }
 // execute PreparedStatement
 rs = retrieveRTs.executeQuery();

 // update each RT retrieved
 while (rs.next())
 {
 updateRecordTree(rs.getString(1), rs.getString(2),
 endIndex);
 }

 // commit leftovers in each batch
 for (String s : tableNames)
 {

54
 tables.get(s).getPs().executeBatch();
 conn.commit();
 tables.get(s).getPs().clearBatch();
 tables.get(s).setBatchSize(0);
 }
 }
 // catch database errors
 catch (SQLException s)
 {
 s.printStackTrace();
 throw new SQLException();
 }
 // close ResultSet object
 finally
 {
 try
 {
 if (rs != null) rs.close();
 }
 catch (Exception e)
 {
 }
 }

 // update Manager current load info
 treesMoved = treesMoved + recordTreesInTransit;
 updateManagerInfo(Managers.get(startIndex), Managers
 .get(endIndex), recordTreesInTransit);

 if (debug) logManagerInfo();
 if (debug) logDBrecords();
 }
 /*
 * prospective destination Manager either had no room for new RTs,
 * or has just had RTs transferred to it; look at next destination
 * Manager in either case
 */
 endIndex++;
 /*
 * all destination Managers for this starting Manager have been
 * investigated; increment starting Manager, and reset ending
 * Manager to 0
 */
 if (endIndex == Managers.size())
 {
 endIndex = 0;
 startIndex++;
 }
 // both start and destination Manager have reach their maximum value
 // without records having been balanced; reset both to 0 and start
 // over
 if (startIndex == Managers.size())
 {
 startIndex = 0;
 endIndex = 0;
 }
 }

55
 }

 /**
 * Changes the records associated with a given RT in a given table from
its
 * old Manager to its new one. The appropriate PreparedStatement is first
 * populated, then added to the batch appropriate for that table name.
When
 * any batch reaches MAX_BATCH_SIZE, its contents are executed, committed,
 * and cleared.
 *
 * @param recordTreeID
 * the ID of the RT being moved
 * @param tableName
 * the table name where the records being moved reside
 * @param endManagerindex
 * the index (in {@link #Managers}) of the destination Manager
 *
 * @throws SQLException
 */
 private void updateRecordTree(String recordTreeID, String tableName,
 int endManagerindex) throws SQLException
 {
 // populate the update RT PreparedStatement
 tables.get(tableName).getPs().setLong(1,
 Managers.get(endManagerindex).getMaxUniqueIdentifier());
 tables.get(tableName).getPs().setString(2,
 Managers.get(endManagerindex).getManagerID());

 // add parent_id field value, if exists in this table, add RTID
 // regardless
 if (tables.get(tableName).isParentID())
 {
 tables.get(tableName).getPs().setLong(3,
 Managers.get(endManagerindex).getMaxUniqueIdentifier());
 tables.get(tableName).getPs().setString(4, recordTreeID);
 }
 else
 {
 tables.get(tableName).getPs().setString(3, recordTreeID);
 }

 // add update statement to batch and increment batch size
 tables.get(tableName).getPs().addBatch();
 tables.get(tableName).setBatchSize(
 tables.get(tableName).getBatchSize() + 1);

 // execute, commit, and clear batch if table's batch is greater than
 // maximum
 if (tables.get(tableName).getBatchSize() >= MAX_BATCH_SIZE)
 {
 tables.get(tableName).getPs().executeBatch();
 conn.commit();
 tables.get(tableName).getPs().clearBatch();
 tables.get(tableName).setBatchSize(0);
 }
 }

56

 /**
 * Updates information in the starting and ending Managers involved in a
 * move. This method adds the number of record trees moved to the current
 * load of the ending Manager, and subtracts that number from the starting
 * Manager. It also updates the maximum unique_identifier of the ending
 * Manager.
 *
 * @param startManager
 * the Manager from which RTs were moved
 * @param endManager
 * the Manager to which RTs were moved
 * @param rootObjectsMoved
 * the number of RTs moved
 * @throws SQLException
 */
 private void updateManagerInfo(Manager startManager, Manager endManager,
 long rootObjectsMoved) throws SQLException
 {
 // subtract number of RTs moved from current RT load of start Manager
 startManager.setCurrentRTload(startManager.getCurrentRTload()
 - rootObjectsMoved);

 // add number of RTs moved to current RT load of destination Manager
 endManager.setCurrentRTload(endManager.getCurrentRTload()
 + rootObjectsMoved);

 // update maximum unique ID of destination Manager
 setMaxUniqueID(endManager);
 }

 /**
 * Determines whether all Managers have been balanced. If current RT load
 * equals desired RT load for each Manager, isBalanced returns true, and
 * false otherwise.
 *
 * @return whether the specified table/Manager combination has been
balanced
 */
 private boolean isBalanced()
 {
 boolean isBalanced = true;
 // if current and desired RT loads for any Manager are different, the
 // table/Manager combination hasn't been balanced
 for (Manager d : Managers)
 {
 if (d.getCurrentRTload() != d.getDesiredRTload())
 isBalanced = false;
 }
 return isBalanced;
 }

 /**
 * Logs information (name, current and desired RT load) for all Managers.
If
 * the logging level is set to debug, the maximum unique ID is also
logged.

57
 */
 public void logManagerInfo()
 {
 // if debugging, log name, current and desired RT load, and maximum
 // unique ID for each Manager
 if (debug)
 {
 for (Manager d : Managers)
 {
 logger.debug("ManagerID: " + d.getManagerID()
 + ", current RT load: " + d.getCurrentRTload()
 + ", desired RT load: " + d.getDesiredRTload()
 + ", maximum UID: " + d.getMaxUniqueIdentifier());
 }
 }
 // if not debugging, log only name and current and desired RT load
 else
 {
 for (Manager d : Managers)
 {
 logger.info("ManagerID: " + d.getManagerID()
 + ", current load: " + d.getCurrentRTload()
 + ", desired load: " + d.getDesiredRTload());
 }
 }
 }

 /**
 * Logs LoadBalancer-specific record values from all specified tables.
 *
 * @throws SQLException
 */
 private void logDBrecords() throws SQLException
 {
 logger.debug("Logging records from database");

 Statement stmt = null;
 ResultSet rs = null;
 try
 {
 stmt = conn.createStatement();
 // iterate through each table
 for (String s : tableNames)
 {
 // log DB records from tables that do not have a parent_id field
 if (!tables.get(s).isParentID())
 {
 rs = stmt
 .executeQuery("SELECT unique_identifier, "
 + "version_id, Manager_id, root_object_id, live FROM "
 + s);

 logger.debug("Table name: " + s);
 while (rs.next())
 {
 logger.debug("UID: " + rs.getLong(1) + ", versionID: "
 + rs.getLong(2) + ", ManagerID: " + rs.getString(3)

58
 + ", RTID: " + rs.getString(4) + ", STP_live: "
 + rs.getString(5));
 }
 }
 // log DB records from tables that don't have a parent_id field
 else
 {
 rs = stmt.executeQuery("select unique_identifier, "
 + "version_id, Manager_id, root_object_id, parent_id, "
 + "parent_version_id, live from " + s);

 logger.debug("Table name: " + s);
 while (rs.next())
 {
 logger.debug("UID: " + rs.getLong(1) + ", versionID: "
 + rs.getLong(2) + ", ManagerID: " + rs.getString(3)
 + ", RTID: " + rs.getString(4) + ", PID: "
 + rs.getLong(5) + ", PVID: " + rs.getLong(6)
 + ", STP_live: " + rs.getString(7));
 }
 }
 }
 }
 // catch database exceptions
 catch (SQLException s)
 {
 s.printStackTrace();
 throw new SQLException();
 }
 // close ResultSet and Statements objects
 finally
 {
 try
 {
 if (rs != null) rs.close();
 }
 catch (Exception e)
 {
 }
 try
 {
 if (stmt != null) stmt.close();
 }
 catch (Exception e)
 {
 }
 }
 }

 /**
 * Displays the load balancing status. The last displayed starting
Manager,
 * ending Manager, and percent complete are compared against the current
 * values for those variables. If any are different, a new status line is
 * displayed, giving the percentage of total record trees that have been
 * moved, and the starting and ending Manager of record trees that are
 * currently being moved.

59
 *
 * @param sManager
 * the current Manager from which record trees are being moved
 * @param eManager
 * the current Manager to which record trees are being moved
 */
 public void logStatus(String sManager, String eManager,
 Long numRootObjectsBeingMoved)
 {
 // assign new values to status variables
 int currentPercent = (int) ((double) treesMoved
 / (double) totalNumMovableRTs * 100);
 percentMoved = currentPercent;
 startManager = sManager;
 endManager = eManager;

 // log values
 logger.info("Load balance " + percentMoved
 + "% complete: currently moving " + numRootObjectsBeingMoved
 + " record tree(s) from Manager " + startManager + " to Manager "
 + endManager);
 }

 /**
 * Logs whether each specified table has a parent_id field. The table name
 * is logged, along with a boolean value; true if the table has a
parent_id
 * field, and false if not.
 */
 private void logHasParentID()
 {
 logger.debug("Logging whether table has parent_id:");
 for (String s : tableNames)
 {
 logger.debug("Table name: " + s + ", has parent_id? "
 + tables.get(s).isParentID());
 }
 }

 /**
 * Logs the name of each specified table. Currently designed to be called
 * just before the user is asked whether they wish to engage in the
 * balancing process.
 */
 public void logTableNames()
 {
 StringBuffer nameBuffer = new StringBuffer();
 for (String s : tableNames)
 {
 nameBuffer.append(s + ", ");
 }
 nameBuffer.delete(nameBuffer.length() - ", ".length(), nameBuffer
 .length());
 logger.info("Database tables on which balancing will be performed: "
 + nameBuffer);
 }

60
 /**
 * Logs the database URL.
 */
 public void logURL()
 {
 logger.info("Database URL: "
 + config.selectSingleNode("/config/databaseInfo/url")
 .getStringValue());
 }
}

61

Manager.java
package com.LoadBalancer;

/**
 * The Manager class models a Manager. Each Manager is
 * associated with multiple record trees (RTs), each with its own unique Root
 * Object ID (RTID). Each RT is composed of one or more records, with the
 * maximum value of unique_id from all those records also stored in the
 * attributes of this class. A record or RT is considered "movable" if it is
 * live (i.e., the value in its live field(s) = "T") and is associated with a
 * user-specified table and current Manager.
 *
 * @author Jonathan Mack
 */
class Manager
{
 /** The Manager ID. */
 private String managerID;
 /**
 * The number of live RTs in user-specified tables associated with this
Manager.
 */
 private long currentRTload;
 /**
 * The number of live records in user-specified tables associated with
this
 * Manager.
 */
 private long currentRecordLoad;
 /**
 * The optimal number of RTs associated with this Manager, such that the
 * difference between current and desired load is zero for all Managers
after
 * balancing.
 */
 private long desiredRTload;

 /**
 * The maximum Unique Identifier of all records associated with this
Manager.
 * Unlike other fields, this includes both movable and nonmovable records.
 */
 private long maxUniqueIdentifier;

 /**
 * Creates a new Manager object, with the Manager name as its
 * parameter.
 *
 * @param aManagerID
 * the ID of the Manager
 */
 public Manager(String aManagerID)
 {
 managerID = aManagerID;
 currentRTload = 0;
 currentRecordLoad = 0;

62
 desiredRTload = 0;
 maxUniqueIdentifier = 0;
 }

 /**
 * Sets the Manager ID.
 *
 * @param ManagerID
 * the Manager ID
 */
 public void setManagerID(String ManagerID)
 {
 this.managerID = ManagerID;
 }

 /**
 * Gets the Manager ID.
 *
 * @return the Manager ID
 */
 public String getManagerID()
 {
 return managerID;
 }

 /**
 * Gets the current number of movable RTs.
 *
 * @return the number of movable RTs
 */
 public long getCurrentRTload()
 {
 return currentRTload;
 }

 /**
 * Sets the current number of movable RTs.
 *
 * @param currentRTload
 * the number of movable RTs
 */
 public void setCurrentRTload(long currentRTload)
 {
 this.currentRTload = currentRTload;
 }

 /**
 * Gets the current number of movable records.
 *
 * @return the current number of movable records
 */
 public long getCurrentRecordLoad()
 {
 return currentRecordLoad;
 }

 /**

63
 * Sets the current number of movable records.
 *
 * @param currentRecordLoad
 * the current number of movable records
 */
 public void setCurrentRecordLoad(long currentRecordLoad)
 {
 this.currentRecordLoad = currentRecordLoad;
 }

 /**
 * Gets the optimum number of movable RTs.
 *
 * @return the optimum number of movable RTs
 */
 public long getDesiredRTload()
 {
 return desiredRTload;
 }

 /**
 * Sets the optimum number of movable RTs.
 *
 * @param desiredRTload
 * the optimal number of movable RTs
 */
 public void setDesiredRTload(long desiredRTload)
 {
 this.desiredRTload = desiredRTload;
 }

 /**
 * Gets the maximum Unique ID of all records associated with this Manager.
 *
 * @return the maximum Unique ID of all records associated with this
Manager
 */
 public long getMaxUniqueIdentifier()
 {
 return maxUniqueIdentifier;
 }

 /**
 * Sets the maximum Unique ID of all records associated with this Manager.
 *
 * @param maxUniqueIdentifier
 * the maximum Unique ID of all records associated with this
Manager
 */
 public void setMaxUniqueIdentifier(long maxUniqueIdentifier)
 {
 this.maxUniqueIdentifier = maxUniqueIdentifier;
 }
}

64

Table.java
package com.LoadBalancer;

import java.sql.PreparedStatement;

/**
 * The Table class provides objects and methods to store, alter, and retrieve
 * information on the database tables updated by the TableGroup class.
 * Attributes include the following:
 *
 * The table name
 * Whether or not it has parent_id (and by association parent_version_id)
 * fields
 * The PreparedStatement needed to update record trees (RTs) in this
table
 * The number of unexecuted update statements associated with this
table's
 * PreparedStatement batch
 *
 *
 * @author Jonathan Mack
 */
public class Table
{
 /** The name of the table. */
 private String tableName;
 /** Whether or not the table contains parent_id and parent_version_id
fields. */
 private boolean parentID;
 /** The PreparedStatement used to update RTs associated with this table.
*/
 private PreparedStatement ps;
 /**
 * The number of unexecuted update statements associated with this table's
 * PreparedStatement batch.
 */
 private int batchSize;

 /** Creates a new table object, with the specified String as its name. */
 public Table(String aTableName)
 {
 tableName = aTableName;
 parentID = false;
 ps = null;
 batchSize = 0;
 }

 /**
 * Gets the table name.
 *
 * @return the table name
 */
 public String getTableName()
 {
 return tableName;
 }

65

 /**
 * Sets the table name.
 *
 * @param tableName
 * the table name
 */
 public void setTableName(String tableName)
 {
 this.tableName = tableName;
 }

 /**
 * Returns whether the table contains the parent_id and parent_version_id
 * fields.
 *
 * @return whether the table contains the parent_id and parent_version_id
 * fields
 */
 public boolean isParentID()
 {
 return parentID;
 }

 /**
 * Sets whether the table contains the parent_id and parent_version_id
 * fields.
 *
 * @param parentID
 * whether the table contains the parent_id and
parent_version_id
 * fields
 */
 public void setParentID(boolean parentID)
 {
 this.parentID = parentID;
 }

 /**
 * Gets the PreparedStatement used to update RTs associated with this
table.
 *
 * @return the PreparedStatement used to update RTs associated with this
 * table
 */
 public PreparedStatement getPs()
 {
 return ps;
 }

 /**
 * Sets the PreparedStatement used to update RTs associated with this
table.
 *
 * @param ps
 * the PreparedStatement used to update RTs associated with
this

66
 * table
 */
 public void setPs(PreparedStatement ps)
 {
 this.ps = ps;
 }

 /**
 * Gets the number of unexecuted update statements associated with this
 * table's PreparedStatement batch.
 *
 * @return the number of unexecuted update statements associated with this
 * table's PreparedStatement batch
 */
 public int getBatchSize()
 {
 return batchSize;
 }

 /**
 * Sets the number of unexecuted update statements associated with this
 * table's PreparedStatement batch.
 *
 * @param batchSize
 * the number of unexecuted update statements associated with
 * this table's PreparedStatement batch
 */
 public void setBatchSize(int batchSize)
 {
 this.batchSize = batchSize;
 }
}

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Application requirements
	Application Design
	Performance
	Testing
	Conclusions
	Bibliography
	Appendix

		2008-12-04T14:06:57-0500
	John H. Hagen
	I am approving this document.

