
Tool Support for Software Performance Risk Assessment

Archana Radhakrishnan

Problem Report submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Electrical Engineering

Hany H. Ammar, Ph.D., Chair
Katerina Goseva Popstanjanova, Ph.D.,

Tim Menzies, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2007

Keywords: Performance Risk, Software Performance Risk Assessment Tool, UML,
Software Architecture, Software Metrics

© 2007 Archana Radhakrishnan

ABSTRACT

Tool Support for Software Performance Risk Assessment

Archana Radhakrishnan

The Software Architecture Risk Assessment (SARA) tool is a utility to compute and
analyze different architectural risk factors of software architecture modeled using Unified
Modeling Language (UML). The different architectural risk factors are maintainability,
requirements, reliability, and performance. The problem report focuses on risk
assessment of software performance. Performance risk is a non-functional attribute which
is generally assessed during late life cycle of software architecture design and has high
impact on safety-critical systems in case of performance failure. The risk is a
combination of probability of performance failure and severity and they are estimated
using a Software Performance Risk Assessment (SPRA) methodology. A tool is
developed supporting this methodology and added as one of the risk assessment features
of SARA tool. It performs scenario based performance risk assessment of a model by
analyzing annotated UML diagrams. The output is expressed as scenario risk factor and
overall system risk factor. It provides a descriptive explanation of the results obtained in
each step of the methodology. The results help in identifying the risk factor and the
bottleneck component causing high risk of scenarios in the software model. The tool is
illustrated with various case studies.

 iii

Acknowledgements

I would like to place on record my sincere gratitude to Dr. Hany Ammar, my advisor,

for the support, guidance, and invaluable inputs that he had consistently provided me

throughout my project. No sooner Dr. Hany Ammar assigned me the problem report, I

realized that the project would be really challenging, since it involves resolving real time

problems.

I had the privilege to enroll in “Advanced Real Time System” course under Dr. Hany

Ammar which gave me an opportunity to learn in depth on software designing using

UML. As I learnt that Dr. Hany Ammar’s research topic is more related to software risk

assessment using UML, I approached him to be my advisor for my problem report. He

provided me opportunity to explore and learn his research projects and also helped me

inventing new ideas in developing a tool in Java. It was a great pleasure working with

him and his supervision and guidance helped me in completing my project work on time.

I also place on record my sincere thanks to Dr. Katerina Goseva-Popstojanova and Dr.

Tim Menzies for their support, review, and for serving as a member for my graduate

committee. The “Software Performance Engineering” course that I took under Dr.

Katerina also motivated me in working on my problem report.

I like to thank my family members especially my mom and dad, and my friends for

being a great support through out my research. I am very grateful to my friend, Rajesh

 iv

who was my mentor and colleague in India. Without his support in helping me in

programming concepts, it would have been difficult for me to complete my project. He

helped me throughout my project irrespective of the time difference between India and

US. Also, I like to thank Randy Hudak, Director of Facilities Management (FM), for

funding my masters program, Joe Patten and Barbara Angeletti, whose supervision and

support has shaped me into a professional person.

Last but not the least, I like to specially thank my husband, Mr. Anand Chandrashekaran

and his parents, Mrs & Mr. Chandrashekaran for their love and motivation throughout my

problem report. My husband being an Industrial Engineer helped me in developing my

tool more user-friendly by asking me intriguing questions more from user perspective. He

suggested me different approaches to solve my technical problems. His involvement

while preparing my slides for presentation helped me to represent my ideas in such a way

that even a layman could understand my technical project. Incidentally, I must thank him

for his taking over the complete household activities that helped me in focusing on my

project without any distraction.

I always would hesitate to call Anand’s parents as my in-laws as they bestowed so much

of affection and love on me. They motivated me to take up the masters and extended all

the moral support to me to complete it. Though they are miles apart, they called me every

day and night to know about my problem report updates. Their love and encouragement

cannot be matched with anything else in this world. Their sweet words and positive

attitude helped me in completing my project.

 v

TABLE OF CONTENTS

INTRODUCTION .. 1

1.1 Problem Statement .. 1

1.2 Related Work .. 3

1.3 Research Objectives.. 5

1.4 Preview of Chapters.. 6

BACKGROUND .. 7

2.1 Software Performance Risk Assessment (SPRA)... 7

2.1.1 Architectural level Performance based Risk Analysis....................................... 8

2.1.2 UML Performance Profile ... 9

2.2 StarUML Tool... 10

2.3 SPRA Methodology.. 11

2.4 SARA Tool ... 16

TOOL FOR SPRA .. 18

3.1 UML Performance Diagrams and Annotations .. 18

3.1.1 Use Case Model ... 21

3.1.2 Deployment Model .. 28

3.2 Tool Support for SPRA... 30

3.2.1 Development Environment .. 34

3.2.2 Integrating JFreeChart Package ... 38

3.2.3 XMI Parser... 38

3.2.4 Exception Handling ... 42

 vi

3.3 Sensitivity Analysis .. 43

3.3.1 Scenario level Sensitivity Analysis.. 45

3.3.2 System level Sensitivity Analysis.. 48

TESTING AND RESULTS.. 50

4.1 Ecommerce application... 50

4.2 Earth Observation System - Case Study ... 68

CONCLUSION AND FUTURE WORK ... 81

5.1 Conclusion .. 81

5.2 Future Work .. 82

REFERENCES ... 83

 vii

LIST OF FIGURES

Figure 1 User Interface of SARA Tool... 17

Figure 2 Input Requirements to the Tool supporting SPRA... 19

Figure 3 Model Explorer of Ecommerce Application in StarUML.................................. 20

Figure 4 Use Case Diagram in StarUML.. 21

Figure 5 Annotations for Use Case Diagram in StarUML ... 22

Figure 6 Sequence Diagram in StarUML ... 24

Figure 7 Properties section of an interaction in StarUML.. 25

Figure 8 Properties section of interaction with concurrent action 26

Figure 9 Deployment Diagram in StarUML... 29

Figure 10 Overview of Tool supporting SPRA .. 31

Figure 11 UML Class Diagram of SPRA in SARA tool .. 32

Figure 12 Tool supporting SPRA as part of SARA tool... 33

Figure 13 Eclipse IDE Snapshot ... 35

Figure 14 XMI file of Ecommerce application... 41

Figure 15 Error Message if XMI file missing... 42

Figure 16 Error Message if Settings Dialog input parameters are missing 42

Figure 17 Error Message if few of Settings Dialog input parameters are missing 43

Figure 18 Sensitivity Analysis as menuitem of Performance Risk................................... 47

Figure 19 Importing XMI file for Performance Risk Assessment.................................... 51

Figure 20 Error Notification for not importing XMI file.. 51

Figure 21 Listing Scenarios of the model ... 52

 viii

Figure 22 Settings Dialog for Performance Risk Assessment .. 53

Figure 23 Settings Dialog with Inputs .. 54

Figure 24 Additional Settings Dialog for Performance Risk Assessment........................ 55

Figure 25 Sensitivity Analysis Dialog .. 57

Figure 26 Risk Factor vs Software Resource.. 58

Figure 27 Executing Scenario to perform SPRA using SARA tool 59

Figure 28 Results Tab displaying the SPRA... 60

Figure 29 Execution Graph Tab.. 61

Figure 30 Execution Time Tab ... 61

Figure 31 Performance Failure Tab .. 62

Figure 32 Model Output of Place Requisition Scenario ... 63

Figure 33 Component Vs Normalized Time Graph of Place Requisition Scenario 64

Figure 34 Component Vs Normalized Time Graph of Browse Catalog Scenario............ 65

Figure 35 Overall System Risk Factor vs Probability of Occurrence of Scenario 66

Figure 36 System Risk Factor vs Components of Place Requisition Scenario (Range)... 67

Figure 37 Sys. Risk Factor vs Components of Browse Catalog Scenario (Range) 67

Figure 38 Use Case Diagram of EOS ... 68

Figure 39 Preplanned Emergency Command Transmission (SD1) scenario.................... 69

Figure 40 Handle Transmission Failure (SD2) scenario... 69

Figure 41 Execution graph of Preplanned Emergency Scenario 70

Figure 42 Deployment Diagram of EOS .. 71

Figure 43 Dialog to enter the Probability of Occurrences and choose the Scenario 72

Figure 44 Input Values for Probability of Occurrences of Scenario 72

 ix

Figure 45 Settings Dialog of Transmit Emergency Scenario ... 73

Figure 46 Additional Settings Dialog of Transmit Emergency Scenario 73

Figure 47 Sensitivity Analysis Dialog of Transmit Emergency Command Scenario 74

Figure 48 Sensitivity Analysis graph for T1 component .. 75

Figure 49 Results Dialog of Transmit Emergency Command Scenario........................... 76

Figure 50 Execution Graph Tab of Transmit Emergency Command Scenario 76

Figure 51 Execution Time Tab of Transmit Emergency Command Scenario.................. 77

Figure 52 Performance Failure Tab of Transmit Emergency Command Scenario 78

Figure 53 Model Output – Risk Factor vs Scenario Graph .. 79

Figure 54 Model Output – Component vs Normalized Time Graph................................ 79

Figure 55 System Risk vs Probability of Occurrence of Scenario.................................... 80

Figure 56 System Risk vs Component of Scenario (Range)... 80

 1

CHAPTER 1

INTRODUCTION

Performance is defined as the amount of resources needed by the software or the final

product to provide full functionality under all possible environmental conditions. Risk is

defined as an undesired event or any uncertainty in a system. Performance risk is a

combination of two factors: probability of performance failure and the severity due to this

failure. Performance failure occurs when a system or system component does not meet or

perform the required function of the performance requirements. Though the software

system is functionally correct, it may lead to performance failure. Risk assessment of

non-functional attributes such as performance is an essential process for every software

risk management. Cortellessa et. al., (2005) introduced a SPRA methodology to find the

performance risk of a software model. A tool is developed based on the methodology to

perform software performance risk assessment and also scenario level and system level

sensitivity analysis.

1.1 Problem Statement
The impact of performance has larger significance in software systems especially is

safety-critical domain. Non-functional requirement describes not what software will do

but how software will do it (Ebert, 1997). In real time environment, there is a wide gap

between software developers and performance validation as performance is a non-

functional attribute. The developers following either a ‘fix-it-later’ approach during the

 2

software development process that belongs to late-life cycle or devoting very less time

and effort for performance validation is still dominant. Work et al. (1995) explains the

usual practices where metrics are applied only to software functional requirements. This

explains that metrics has to be defined for non-functional requirements as failures are

detected in performance. The failure and its probability, its severity, and the components

causing risk should be identified during software design that belongs to early life cycle to

avoid unpredicted or undesirable consequences in the late life cycle. Early identification

and intervention of performance metrics such as response time, utilization etc., are key

steps to manage risks of software system. Performance validation performed at the end of

development process or in the late life cycle can lead to using more expensive and

powerful hardware than originally proposed, time consuming tuning measures, or in

extreme cases, completely redesigning the software model (Dimitrov, 2002).

SARA tool is developed as a solution to perform risk management of non-functional

attributes in the early life cycle. The problem stated above regarding performance risk is

also addressed by extending SARA tool to support SPRA. The SPRA helps in identifying

the scenario with high risk factor in a software model and also the component causing the

high risk. The tool also performs sensitivity analysis of system risk factor and probability

of occurrences of the scenarios in the system as even scenarios with low risk but with

high probability of occurrence can also lead to high system performance risk. This helps

in improving the system performance as performance failure is identified and avoided in

the early life cycle.

 3

1.2 Related Work
Recently, Software Performance Engineering (SPE) has largely been active in software

development life cycle as responsiveness of software systems under different workload

conditions has become an important factor. The response time is a key attribute of

software performance. Performance risk analysis performed early in the software life-

cycle facilitates in making drastic changes in the system design so that the final product

performs better.

There are many approaches and tools to perform performance risk analysis. These

approaches are broad and do not propose any formal methods to evaluate performance.

Some of the approaches are direct representation of performance aspects using UML and

either the tools support for these approaches are very limited or that the software to

performance models must be transferred manually (Dimitrov et al., 2002). There are also

other approaches performing performance analysis by combining UML with formal

description technique such as Message Sequence Chart (MSC) and Specification and

Descriptive Language (SDL) (Dimitrov et al., 2002). This requires specialized skills and

in-depth knowledge of the description techniques to perform performance modeling.

There are approaches to analyze performance but the sensitivity of the performance risk

factor towards its input parameters are not experimented and tested. The risk analysis

together with the sensitivity analysis can be used to access the effects of changes in the

software model.

Most of the software systems adopt two principal methods for performance analysis:

simulation and analytical methods. The analytical methods are faster in generating

 4

results; however they produce less accurate results due to their methodology and cannot

be used to plan real networks. Some approaches are based on analytical methods that

require knowledge on queuing theory, Petri Net, and Markov chain. The simulation

methods are slower in generating results than analytical methods but are the only means

of planning and dimensioning the real networks (Molkdar et al., 2002). Sharma (2006)

also discusses about various approaches and tools for performance attributes such as

Software PErformance Evaluation and moDeling (SPEED) based on SPE approach, Use

Case Maps to Layered Queuing Networks (UCM2LQN) and LQN solver based on LQNs,

Client/Server Software Performance Evaluation (CLIPPSE) for client server systems,

evaluates the performance characteristics of the specified software systems for given

workload. The results of these approaches and tools are performance predictions and the

performance engineers should carry out further investigation of the performance risk to

improve the software system.

 These real time approaches and tools required extensive knowledge and this spawned

research and development of a light-weight approach which is a step-by-step

methodology for software performance risk assessment. The major motivation for a new

approach and tool are the following characteristics:

• Simulation modeling technology to identify and predict performance failure,

bottleneck components and scenarios causing high risk of the software system.

• A user-friendly tool that requires less performance modeling techniques and

knowledge from the user.

 5

• An integrated software performance tool that is mostly automatic and the users

should not perform actions or computations by hand.

• Detailed picture of performance prediction or the results that helps the user to

analyze the cause for performance failure of the system

• A proactive performance engineering solutions tool that focus on all aspects of

product life cycle including design, development, and production.

1.3 Research Objectives
The main objectives of the tool supporting SPRA are:

• To automate the SPRA methodology and add as a feature to the SARA tool to

support model based performance risk.

• To support UML that is the standardized specification language for object

modeling in software performance engineering and provides standards for

performance profile (extensions or annotations).

• To understand the UML graphical notation and performance annotations to

extract data from the design diagrams (usecase diagram, sequence diagram, and

deployment diagram) by accepting input files in XMI format.

• To support software design that has multiple scenarios. The software performance

engineering plays a predominant role in most of the real time applications and the

tool is developed and can be used for performance risk assessment of these

extensive real time applications.

• Ability to find the scenario and system risk factors and also identify the

bottleneck components causing the risk.

 6

• To automate sensitivity analysis in the scenario level and system level that helps

in assessing the effects of changes in system.

• User friendly tool with good look and feel, performance, portability, and

scalability.

1.4 Preview of Chapters
Chapter 2 briefly explains the background of the tool supporting SPRA that includes

SPRA, its architectural level, UML performance profile, StarUML tool that is used to

develop UML diagrams, the SPRA methodology and the SARA tool. Chapter 3 explains

the different UML diagrams and its performance annotations used for SPRA

methodology and the tool supporting SPRA with a detailed explanation of it Graphical

User Interface (GUI), its development environment, the open-source packages used by

the tool and the XMI parser, and an introduction about system level and scenario level

Sensitivity analysis performed by the tool. Chapter 4 demonstrates the tool supporting

SPRA by testing it with various real time applications such as ecommerce application and

earth observation system. Chapter 5 discusses the conclusion of the report and about its

future work.

 7

CHAPTER 2

BACKGROUND

2.1 Software Performance Risk Assessment (SPRA)
The goal of many organizations today is a light-weight approach that helps in improving

system performance by reducing performance risk. The reason being the proactive

assessment of performance risk will lead to problem identification, analysis, and

resolution activities before the development process. This facilitates in reducing

additional development costs, avoiding time-consuming performance tuning, and also

helps in time-to-market performance critical software systems. The result is a heuristic

approach of model-driven SPRA methodology introduced by Cortellessa et al. (2005)

based on quantitative analysis of system performance. It also requires thorough

understanding of all elements of system performance to perform performance risk

assessment. The SPRA focuses on Model Driven Architecture (MDA) that is used in

object-oriented design of software systems. MDA is a technology introduced by Object

Management Group (OMG) built using UML that provides a set of guidelines for

structuring specifications expressed as models. SPRA is applied on any platform-

independent models built using MDA and UML technology.

The performance requirements of SPRA is classified based on two types: a) time-related

where, for e.g., the completion time of a specific operation must be less than a certain

threshold and b) resource-related where, for e.g., the utilization of a specific device must

 8

fall into a certain range (Cortellessa et al., 2005). The performance risk analysis focuses

on the time-related requirement. The SPRA is also based on architectural level

performance-based risk analysis and UML Performance Profile.

2.1.1 Architectural level Performance based Risk Analysis
The architectural level performance-based risk is obtained from two types of models that

provide information of architectural assessment: the software execution model and

system execution model (Smith et al., 2001).

The software execution model represents key aspects of the software execution behavior

and they are used to identify performance problems due to poor architectural decisions.

That is, the software execution model provides a preliminary understanding of the

software performance. The model accommodates current execution of several instances

of the scenarios of the software system in a single instance. The single instance is

identified as the worst case analysis of the scenario and is provided as input to system

execution model. The software execution model is implemented by extending the UML

sequence diagram.

The system execution model is a dynamic model that characterizes software performance

in the presence of factors, such as multiple users or other workloads that could cause

contention for resources. The results obtained by solving the software execution model

provide input parameters for the system execution model. Solving the system execution

model provides the following additional information (Guedem, 2004):

1 more precise metrics that account for resource contention

 9

2 sensitivity of performance metrics to variations in workload composition

3 identification of bottleneck resources

4 comparative data on options for improving performance through workload

changes, software changes, and hardware upgrades

2.1.2 UML Performance Profile
Unified Modeling Language (UML) is a language for specifying, constructing,

visualizing, and documenting the artifacts of a software-intensive system. It covers the

complete software life cycle of software performance modeling, from requirements,

analysis through implementation. The UML diagrams that are used to estimate the

performance failure of a system are represented as annotations or extensions. The

diagrams are annotated or extended using stereotypes and arguments to annotate

performance requirements. The stereotype in UML is represented with << >> symbol.

The extended UML is based on the UML profile for performance that is specified by

OMG UML profile for schedulability, performance, and time (SPT) (UML Profile,

2005).

The UML diagrams such as use case diagram, sequence diagram and deployment

diagram with extended annotations are used for the SPRA methodology. The

performance domain/requirement model is represented as UML use case diagrams and it

is a composition of one or more use cases. The use case describes scenarios that are

formal, sequential descriptions of steps taken to carry out the use case, or the flow of

events that occur during a use case instance. That is, the scenario is a description of the

interactions between the system and its environment or between the internal objects

 10

involved in particular use of the system under development (Smith et al., 1997). The

annotated sequence diagram is used to describe the scenarios of the model. The hardware

environment of the scenarios is represented as annotated deployment diagrams.

2.2 StarUML Tool
The UML diagram representing the software model is developed using StarUML tool

which is an open source project. Features supported by StarUML are:

• Latest UML 2.0 standard: The tool provides support to latest UML standards. The

current standard for UML introduced by OMG is UML 2.0. This helps the user to

take advantage of the latest UML standards through an open source tool.

• MDA: It is designed to support MDA which is a modeling technology used by

SPRA and provides customization variables such as UML performance profile.

This helps in extending UML with performance annotations and extensions for

SPRA.

• User-friendly: The tool is user-friendly and helps in developing fast, flexible

annotated UML diagrams. The tool is implemented with easy-to-use dialogs,

diagram overview such as Model Explorer and Diagram Explorer. It does not

require any expertise knowledge to use the tool other than UML.

• XMI file format: The UML diagrams developed can be exported as XML

Metadata Interchange (XMI) files which is the recommended interchange format

for UML models.

• Plug-in Architecture: Many users require more and more functionalities to plug

into the software modeling tools. To meet the requirements, the tool must have

 11

well-defined plug-in platform. StarUML provides simple and powerful plug-in

architecture.

• A compelling replacement of commercial tools such as Rational Rose, Visio, and

Together

Though many software modeling tools are available in the market, StarUML provides the

features almost supported by most commercial tools and is also an open source project.

2.3 SPRA Methodology
The SPRA methodology is applied for various scenarios in a model to estimate a)

probability of performance failure of a scenario in a software model, b) its severity, and

c) its bottleneck component. The steps are explained in brief.

STEP 1 - Assign demand vector to each action/Interaction in Sequence Diagram; build a

Software Execution Model

STEP 2 – Add hardware platform characteristics on the Deployment Diagram; conduct

stand-alone analysis

STEP 3 – Devise the workload parameters; build a System Execution Model; conduct

contention-based analysis and estimate probability of failure as a violation of a

performance objective

STEP 4 - Conduct severity analysis

STEP 5 – Estimate the performance risk of the scenario; Identify high-risk components

 12

In Step 1, the demand vectors are obtained for each action of a scenario from the

annotated UML sequence diagram. The amount of resources required for each action is a)

CPU demand expressed in terms of CPUwork units which is a measure of CPU required to

perform this action and b) Disk demand expressed in terms of Diskdata which contains the

number of bytes that are read or written to disk. The amount of resources required for

each interaction is network demand expressed in terms of MSG which contains the size

of data being exchanged. Then, the demand vectors assigned to the sequence diagram is

translated into Execution graph which is called the Software execution model. The

difference between sequence diagram (SD) and execution graph (EG) is that the SD

describes the sequence of action (internal to the components) and interactions (among

components) that are triggered from an external event and EG is a structure describing all

possible sequence of actions that a system performs in response to external triggers. To

calculate the response time of the system, the completion times of all the actions in the

longest path, where the demand is highest, is calculated. In case of concurrent executions,

a worst case analysis which assumes that concurrent branches serialize (i.e. when one

branch is completed, the next begins) gives the longest path.

To calculate time-based demands, the demand vectors are combined with hardware

device characteristics because the same demands may take considerably different time

depending on the hardware devices. In Step 2, the hardware platform information is

obtained from annotated deployment diagram. An annotated UML diagram for

client/server interconnection is defined in Gomma et al. (2000). Also, the service time or

the speed of each hardware device is obtained as input. Based on the software execution

 13

model, the total demand for each hardware device expressed in work units for CPU, KB

for disks and KB for networks is calculated. Then, this is multiplied with service time of

corresponding hardware devices to find the service demands, Di, for each hardware

device in time units. Adding the service demands (completion time) of all demand vector

provide the total elapsed time (response time). This is called the standalone analysis that

provides elapsed time of the scenario executed on a hardware platform with single user or

workload.

Then, the performance objective is obtained as input to analyze whether the completion

time value of the scenario meets the performance requirement. Failure to meet the

requirement would mean that the probability of performance failure would occur in the

software system. So, either the software design or the hardware configuration or the

performance objective has to be reconsidered. But if the time value meets the

performance objective, then system behavior can be analyzed under different workload

conditions. This is called Content-based Analysis that considers any delay due to

contention of resources. Thus, the value obtained from the standalone analysis helps to

find whether the software system has the probability of performance failure without

further investigation. Smith et al. (2002) explains a complete analysis of an in-range data

reading scenario which includes, modeling a software execution model for the scenario,

analyzing in different number of hardware machines and comparing the throughput

values with the performance objective. In this methodology, instead of throughput, the

response time of the scenario is calculated and is compared with the performance

objective.

 14

In Step 3, the batch workload is considered which is parameterized with population N.

The information obtained as input from the software execution model is mapped with the

parameters of deployment diagram to form a complete system execution model. Here, the

worst-case situation is considered and the completion time of the scenario is calculated

by summing the service demands of the longest path. To estimate the probability of

performance failure, the asymptotic bound analysis on response time is used (Guedem,

2004). There are many advantages of bounding analysis, few of which can be listed as

follows:

1 The influence of system bottleneck is highlighted and quantified

2 These bounds can be computed simply and quickly (even by hand)

3 It takes very less computation to determine response time with respect to system

workload intensity.

The asymptotic bound analysis, as explained in Lazowska et al. (1984), provides

optimistic (upper) and pessimistic (lower) bounds on system response time. The

parameters required for the bound analysis are:

1 Dmax, the largest service demand in the scenario

2 D = ∑ Di, sum of all demands in the scenario

3 N, number of customers or workload

and the equation defining the bounds on response time is:

 max(D, N * Dmax) ≤ R(N) ≤ N * D

 where max(D, N * Dmax) is the upper bound and N * D is the lower bound.

 15

With the performance objective provided as input to the methodology and from the

asymptotic bound on the performance, the probability of performance failure at a

particular workload is obtained by partitioning the plot into 3 partitions as follows:

1. Zone Z1: The failure probability is zero, i.e, Z1 = 0.

2. Zone Z2: The failure probability, Z2 = (Upper bound – Performance Objective) /

 (Upper bound – Lower bound).

3. Zone Z3: The failure probability, Z3 = 1

The advantage of using this methodology in finding the probability of performance

failure using asymptotic bound is

1 The equations requires only a few arithmetic operations

2 The computation is independent of number of resources in the model and also

range of customers which scales the methodology well

3 The methodology does not require the knowledge of Queuing Network which is

complex.

In Step 4, a Functional Failure Analysis (FFA) is performed that is a technique used to

estimate and assess severity of the scenario. This high level FFA gives a comprehensive

view of the ways in which the system can fail (Hassan, 2004). It uses system parameters

to describe the effects of failure. The FFA analyses each event and the guidewords such

as 'Late' and 'Early' for performance failure (more are discussed in Hassan (2004)), and

decides whether hypothetical failure mode is possible and if so, what are their

consequences or effects. The severity is classified as a)catastrophic, b)critical, c)major,

and d)minor. The input to the methodology is the severity of different events based on

 16

FFA. This methodology combines the probability of performance failure with severity to

estimate the risk factor of the scenarios.

In Step 5, the bottleneck component causing the high performance risk in the scenario is

estimated by calculating residence time of each component in a scenario. For a

component Ci in Sj scenario, the residence time is given by

Rci in Sj = Overall residence time of Ci in Sj/Response time of Sj [3]

The component with the highest residence time is the cause for performance failure in the

scenario and is the bottleneck component that requires more time and resources which

can be spent on other devices for improving performance. The detailed performance risk

assessment methodology is explained in (Cortellessa, 2005).

2.4 SARA Tool
Clements et al. (2002) explains Software Architecture as “Software Architecture of a

program or computing system is the structure or structures of the system, which comprise

software elements, the externally visible properties of those elements, and the

relationships among them”.

The SARA tool is developed as an automated tool to perform different architectural risk

factors by providing software architecture as input. The software architectures are

developed as UML models developed using software modeling tools such as StarUML,

Rational Rose, and Java Understand static analysis files. The SPRA methodology is

implemented in SARA tool as one of its features and accepts input from StarUML. The

GUI of SARA tool is easy-to-use and has file menuitems that facilitates user to easily

 17

provide the input, select the risk factors, and perform different actions. The tool performs

the calculation based on user’s command and displays the output in numerical value and

using graphs and bar charts. The different frames in the GUI of the tools are expandable

upto the maximum size for best visibility and clarity of data.

There is no special requirement for the hardware. Any desktop with common or average

configuration in the market could be used to run SARA tool, For instance, 1.0-2.0 GHZ

PIII CPU with 256 MB Memory, 20 GB hard disk etc. The user interface of SARA tool is

shown in figure 1.

Figure 1 User Interface of SARA Tool

 18

CHAPTER 3

TOOL FOR SPRA

3.1 UML Performance Diagrams and Annotations
In the UML performance profile, an extension to UML notation to performance

annotation is proposed. The performance domain model is modeled using pa-UML

diagrams where pa is performance analysis. The performance domain model is classified

into workload, scenario, and resource based analysis. A framework that does performance

modeling using UML where the UML performance model are then transformed into

stochastic queuing theory with simultaneous resource possession is presented in

Kakhipuro (1999). Then the queues are derived from the class diagram and workload

from the collaboration diagram. A different type of performance annotation on UML

diagrams is used in the model based on a heuristic SPRA methodology defined in

Cortellessa et al. (2005).

SPRA methodology focuses on scenario based assessment using UML diagrams such as

Use case diagrams, Sequence diagrams, and Deployment diagrams. The UML diagrams

of SPRA is developed using StarUML tool. The performance-annotated UML diagram is

mapped to a software model which can be used to analyze the performance of the model.

This is provided as input to the tool supporting SPRA and the figure 2 provides a clear

picture of the input requirements to the tool.

 19

Figure 2 Input Requirements to the Tool supporting SPRA

StarUML performs software modeling by creating ‘Project’ that is the main management

unit and can manage one or more software models. Project is the top-level package and is

split into multiple software model elements. In general, one project is saved as a file with

extension ‘.UML’ format or as XMI format. A project file contains the following

information:

• Information of all the models

• Information of all the diagrams and views

• UML performance profile used in the project

The default model elements while creating a project are a) Use Case Model, b) Design

Model, c) Analysis Model, d) Implementation Model, and e) Deployment Model. The

models used for SPRA methodology are a) Use Case and b) Deployment Model.

To create a new diagram for the project,

• Select from the model explorer, a model element (e.g., Use Case Model) to

contain new diagram

 20

• Right-click and select the [Add Diagram] menu.

To create element for the diagram,

• Select an element type to create from the pallet

• Drag the mouse to select an area to specify the size of the new element

The figure 3 shows the Model Explorer of ecommerce application where ‘Ecommerce

Application’ is the project file and ‘Use Case Model’ and ‘Deployment Model’ are the

model elements.

Figure 3 Model Explorer of Ecommerce Application in StarUML

 21

3.1.1 Use Case Model
A Use Case Model describes the functionality to be built in the proposed system. It

represents a discrete unit of interaction between user or actor (human or machine) and the

system. The model can include multiple use cases or scenarios and each scenario is

extended to an annotated Sequence Diagram. An example of use case model supported

by StarUML is explained with an ecommerce application as shown in figure 4.

Figure 4 Use Case Diagram in StarUML

The Use Case Diagram shows an ecommerce application where the Customer (actor) is

interacting with the Supplier (actor) through internet (system). The model has multiple

scenarios such as Browse Catalog, Place Requisition, Process Deliver Order, Confirm

 22

Shipment, Confirm Delivery, and Send Invoice. Each scenario is annotated to provide

information about its probability of occurrence that is used to calculate system risk factor.

The annotation of use case diagram is optional as either the probability of occurrence can

be provided as input through the diagram or in the user interface of the tool. If the use

case diagram is annotated, the tool automatically uses the input and the user can change

it, if required, in the user interface of the tool.

Figure 5 Annotations for Use Case Diagram in StarUML

 23

Annotation Definition for Use Case Diagram:

The figure 5 shows the annotation of ‘Browse Catalog’ scenario in the use case diagram.

Select the scenario from the use case diagram and select the Attributes section of General

dialog. Click “…” to open the Collection Editor window. In the ‘Attributes’ tab, click the

add attribute symbol, to add an attribute. Then add an attribute with ‘probability’ in the

Name section and its value in the InitialValue section of Properties window of Attributes.

This annotates the probability of occurrence of the scenario in the system model.

Each scenario is further extended to annotated sequence diagram. Sequence diagrams

provide a graphical representation of object interactions over time. Each sequence

diagram typically represents a single Use Case 'scenario' or flow of events. The sequence

diagram in use case model of StarUML is represented as objects and their interaction

(using Stimulus or SelfStimulus). Each interaction is denoted by demand vectors which

are represented as stereotypes and tagged values.

Annotation Definition for Sequence Diagram:

Demand Vectors

The annotation of Sequence diagram basically involves defining the demand vectors that

is a unique representation of the objects/components of the scenario in each interaction

between them. This means that the same object/component is used in different scenarios

and the demand vectors helps in identifying the components of the particular scenario.

The heuristic SPRA methodology has defined an annotation for the demand vectors

where the first letter of each word of the object appended by a number is used for its

 24

unique representation. The figure 6 shows an annotated sequence diagram of Place

Requisition scenario in StarUML.

Figure 6 Sequence Diagram in StarUML

The Place Requisition scenario in figure 6 shows interaction between its

objects/components. Please note that the scenario names mentioned in the use case

diagram and the annotations, interactions/steps, and component names in sequence

diagram MUST not have space (“ “) in between them. The interaction between

components is mapped to demand vectors. For e.g., the CustomerRequest() which is the

step 2, in figure 6, is an action that is initiated from the CustomerInterface

 25

object/component, and is assigned to a demand vector, CI1 (as ‘C’ from Customer and ‘I’

from Interface of Customer Interface and appended to ‘1’) . Also, the RequisitionOutput()

in step 14 is an action initiated from the same component and is assigned to a demand

vector, CI3. Thus the demand vectors represent the objects/component but they are

unique for every interaction in a scenario.

The demand vectors MUST be provided in the ‘Stereotype’ and ‘Arguments’ of Detail

section in the Properties of the interaction as shown in figure 7.

Figure 7 Properties section of an interaction in StarUML

Concurrent Actions

In case of concurrent actions, the annotations used are ‘SPLIT’ or ‘FORK’ or ‘JOIN’.

SPLIT denotes the sequence of actions that does not have a join and FORK-JOIN denotes

the sequence of actions that splits into parallel actions and finally joins into a single

action. The ‘SPLIT’, ‘FORK’, and ‘JOIN’ are the keywords that MUST be provided in

the ‘Branch’ of Detail section in the Properties of the interaction as shown in figure 8.

 26

Figure 8 Properties section of interaction with concurrent action

Looping

The looping of interaction in sequence diagram is supported or annotated using ‘LOOP’

and ‘LOOPEND’ keyword. Though StarUML supports modeling of sequence diagram

with looping by choosing ‘Combined Fragment’ from the pallet of Sequence diagram, the

XMIAddIn.dll does not support it and StarUML throws ‘Access Violation’ while

exporting sequence diagram with combined fragment into XMI file. To support looping

in the tool supporting SPRA, the sequence diagram is annotated with ‘LOOP’ keyword in

the ‘Iteration’ of Properties section of the interaction where the looping starts and

providing the number of times the loop has to be executed in the ‘Return’ of Properties

section of the interaction. To end the loop, the interaction where the loop ends is

annotated with ‘LOOPEND’ keyword in the Iteration’ of Properties section of the

interaction.

 27

Figure 9 shows that the annotated sequence diagram of ‘Transmit Emergency Command’

scenario of Earth Observation System model. The sequence diagram is annotated with

looping starting from interaction, Cts() to interaction, Upc() that has to be executed for 2

times. In the Properties section of the Cts() interaction as shown in the right bottom of the

below figure, it is observed that the Cts() is annotated with ‘LOOP’ keyword in the

‘Iteration’ and to denote that the loop has to be executed 2 times, the Cts() is annotated

with ‘2’ in the ‘Return’. The tool supporting SPRA multiplies the amount of resources

provided for each demand vector with the number of times the loop has to be executed.

Figure 9 Looping Annotated in Sequence Diagram

 28

3.1.2 Deployment Model
The Deployment Model shows the hardware platform for your system, the software that

is installed on the hardware, and the middleware (network connection) used to connect

the disparate machines to one another. The deployment diagram explores the architecture

of embedded system and shows how the hardware and software components work

together. The software installed on the hardware and the hardware devices are

represented as ‘Nodes’ where the software components are represented as node names

and hardware devices are represented as stereotypes. The network connection (network or

LAN or WAN) between the nodes is represented as ‘Association’ in pallet of deployment

model. The type of network connection is represented as stereotypes and name of the

network connection is represented as node names.

Annotation Definition for Deployment Diagram:

The demand vectors used in the sequence diagram MUST be used as software installed in

the hardware devices. They are provided in the node names of the deployment diagram.

The hardware devices such as the processor and disk MUST be represented as ‘CPU’

appended with a number/text such as ‘CPU-1’ or ‘CPU-DB’ and ‘DISK’ appended with a

number/text such as ‘DISK-1’or ‘DISK-DB’ respectively. The hardware devices are

represented using << >>. The network connection between hardware devices is also

represented using nodes in the deployment diagram where the name of the network is

represented in the node names and the type using << >>. The type MUST be represented

using ‘network’ appended with number/text such as ‘network-LAN’ or using ‘LAN’

appended with number/text or using ‘WAN’ appended with number/text. The figure 10

shows the Deployment model of ecommerce application in StarUML.

 29

Figure 10 Deployment Diagram in StarUML

The components of the Place Requisition scenario such as CI1 and CI3 are installed in

the hardware devices CPU-1, DISK-1 in a node as shown in the above figure where the

hardware device is provided in the ‘Stereotype’ and software components are provided in

the ‘Name’ of General section in the Properties of the node. Similarly, the type of

network connection such as network-WAN is provided in the ‘Stereotype’ and name of

the network such as N1 is provided in the ‘Name’ of General section in the Properties of

the node representing network. Please note that the hardware devices and list of

components mentioned in deployment diagram MUST not have space (“ “) in between

them. This explains the complete development of annotated UML diagrams of a software

 30

performance model using StarUML tool. The model is converted to a XMI file using

StarUML and provided as input to the tool supporting software performance risk

assessment.

3.2 Tool Support for SPRA
The SPRA methodology is a more extensive approach in performing performance risk

assessment and to bring it to practice in real time and also to be used by stakeholders, a

tool is developed supporting the methodology. The basic development requirements of

the tool are: to understand the input file in the XMI format using an XMI parser

explained later in this chapter, perform SPRA computations and provide the required

output in numerical data or in graphical form or using bar charts. Apart from performing

risk analysis, the tool also performs sensitivity analysis where the changes in software

performance risk factor are observed by changing its input parameters. The tool provides

scenario level and system level sensitivity analysis that helps in user for to make

performance based decisions.

Figure 11 shows an overall picture of the tool supporting SPRA as a flow graph where

the blocks highlighted in blue represent inputs from the user, the blocks in green

represent the SPRA methodology, blocks in orange represents the output, and the blocks

in pink represents the scenario-level sensitivity analysis. The annotated UML diagrams

are designed using StarUML as per the performance annotations proposed in the section

3.1.

 31

Software Resource Requirements,
Service time of hardware devices,

Performance requirement,
Workload, Severity

Develop Execution Graph
from demand vectors

Building Sys. Execution Model:
Total Demand, TDc = Sum(Dc in

KB or WU * Service time in
microsec/(KB or WU))

Total Execution Time in sec =
Sum(TDc/1000000)

Finding Probability of
Performance Failure using

Asymptotic Bounds
Pf = (UB-Performance
Objective) / (UB-LB)

Risk Factor,
RF = Pf * Severity

System Risk Factor,
Srf = Sum(RFn * Pn)

Overall Scenario
level Output

2. Identify
Bottleneck
Component

1. Scenario vs
Risk Factor

graph

Prob. of Occurrence
of Scenarios (Pn)

System level Output –
Sensitivity Analysis

4. Component vs
System Risk

Factor

3. Pn vs System
Risk Factor

User’s Input

Software Resource Requirement vs
Risk Factor graph

next scenario

Input

Input

Input

Sensitivity AnalysisUser’s Input

Annotated UML diagrams

Choose a scenario

Figure 11 Overview of Tool supporting SPRA

The above figure shows the scenario level SPRA and the output of the scenarios are used

for the further output analysis. The output of the tool is further categorized as scenario

level and system level outputs. The inputs for the different output are also represented in

the above figure and are explained in the Chapter 4 with case studies.

The tool is build as one of the features of SARA tool along with other features such as

 32

maintainability, reliability, and requirement risk assessment. The figure 12 shows UML

class diagram that represents the performance risk assessment and its association with

SARA tool as part of other risk factors and Shaik (2007) explains the UML class diagram

for SARA tool.

MyFrame1 - SARAT

+MenuBar
+Menuitem
+StringTokenizer
+calculationModule

+actionPerformed()
+instantiate()
+import()

Risk Component

+MaintainabilityRisk()
+ReliabilityRisk()
+RequirementRisk()
+PerformanceRisk()

Performance Risk Parser

+parserStarUML()

1..*

computationModule

+fileConnector

+doDataProcessing()
+calPerformaceRisk()
+saveDate()
+getData()

PerformanceRisk Functionality

+calSPRAMethodology()
+performSensitivityAnalysis()

Display Component

+ScenarioSettingsFrame()
+ModelFrame()
+BarChartFrame()
+GraphFrame()
+TabbedPane()
+SplitPane()
+DynamicBarChartFrame()
+DynamicGraphFrame()

Figure 12 UML Class Diagram of SPRA in SARA tool

Figure 13 shows the tool supporting SPRA as a feature of SARA tool.

 33

Figure 13 Tool supporting SPRA as part of SARA tool

The Performance Risk menu in the SARA tool denotes the tool supporting SPRA. The

steps to work with the tool are explained as below:

i) Create a model by using File->New Model option

ii) Import the XMI file of the software requirements model developed using

StarUML by using File -> Import Arch.Desc File -> XMI file for StarUML

option as shown in figure 5 below.

iii) Go to Risk -> Performance Risk -> Scenario -> Settings for Performance

Risk Assessment Settings. There are 2 Settings dialog and click Next button to

go to next/last dialog and Back button to make modifications to the previous

dialog.

iv) Provide the inputs and click OK button to save the input values for the

scenario.

 34

v) Go to Risk -> Performance Risk -> Scenario -> Sensitivity Analysis to

perform sensitivity analysis of the scenario. This step is optional.

vi) Go to Risk -> Performance Risk -> Scenario -> Run for executing SPRA.

vii) Follows the same steps for other scenarios.

viii) Click Risk -> Performance Risk -> Model for the overall results about the

software model. The tab ‘Risk Factor vs Scenario’ shows the risk factor vs

scenario graph.

ix) Select the next tab ‘Component vs Normalized Time’ that shows the different

scenarios and their bottleneck component. Select the scenario from the left to

view its bottleneck component.

x) Select the next tab ‘Sys. Risk vs Probability’ that shows the overall system

risk factor and also the sensitivity analysis graph that represents the changes in

the system risk factor based on the probability of occurrences of the scenarios.

xi) Select the next tab ‘Sys. Risk vs Component’ that shows the sensitivity

analysis graph that represents the changes of System risk factor based on the

components of the scenario. Select the scenario to view the sensitivity analysis

of system risk factor vs component of that scenario.

3.2.1 Development Environment
The easy-to-use GUI of the tool supporting SPRA provides better user interaction such as

obtaining user input, displaying calculated results clearly and precisely, and also good

exception handling. The Integrated Development Environment (IDE) used to develop the

tool is the open source software, Eclipse 3.2 from IBM Corporation. The advantages of

using Eclipse IDE are

 35

• create and edit source code files, compile, and debug java projects seamlessly in

a single IDE.

• automatic syntax check, automatic brace generation, parentheses and quote check

etc.

• fits development projects in any scale

• open standard – a Worldwide standard of IDE

• IDE with many features such as optional plug-ins offered as freeware or

commercial basis.

The figure 14 shows the snapshot of Eclipse IDE.

Figure 14 Eclipse IDE Snapshot

 36

The tool is build using Java programming language and J2SDK1.5.2 compiler, which is

the latest version of Java compiler introduced by Sun Corp. This makes the tool to make

complete use of the highly object oriented java classes and create simple and efficient

source code. The look & feel of the tool improves the usability and also performance as

they use light weight components such as the Swing classes in javax package. Some of

the swing components used are JComboBox, JList, JTabbedPane, JSplitpane etc. Finally,

the JVM compiler provides both rapid memory allocation for objects and also performs

garbage collection of seldom used code, thereby improving performance. Any platform

with Java Virtual Machine (JVM) 1.2 or higher can run the feature in SARA tool.

The java files used for developing the tool supporting SPRA is compiled and integrated

with the SARA development kit package. The different java files used for the tool

supporting SPRA are:

• MyFrame1: This is the main class executing the different architectural risk factors

and is used to call the performanceRiskAssessment class to perform SPRA.

• performanceRiskAssessment: This is the frame that forms the GUI of the tool

supporting SPRA. It performs the complete computations of SPRA methodology

by obtaining the input, parsing it using parserPerf and perfScenarioCombobox

class and displays the results using perfGraph, perfModel, compTimeModel class

files.

• parserPerf: This is a file that is used for parsing the information required for the

SPRA methodology from the XMI file generated using StarUML and is explained

later in this chapter.

 37

• perfGraph: The file is used to display the results of asymptotic bound analysis (for

finding the probability of performance failure) in a graphical format. The file uses

classes packaged with JFreechart for graphical representation and is explained

later in this chapter.

• perfModel: This file is used to display the risk factor vs scenario graph and uses

JFreechart package for the graphical representation.

• compTimeModel: This file is used to display the component vs normalized time

graph and uses JFreechart package for the graphical representation.

• perfScenarioCombobox: This file is used to get and set the values selected from

the combobox containing the scenarios parsed from the XMI file. The get method

of the class is used by the performanceRiskAssessment class to quantify the input

parameters based on the selected scenario. The set method is used by the

MyFrame to store the selected scenario in a variable used for displaying in the

GUI.

• perfSensitivity: This file performs the sensitivity analysis of the scenario and is

called from the main class, MyFrame. The MyFrame calls the

performanceRiskAssessment to perform the computations for sensitivity analysis

and calls the perfSensitivity to display the results. The file also performs system

level sensitivity analysis explained later in the chapter. The perfSensitivity file

uses JFreechart package to display the output in graphical format.

The libraries or jars used for JFreehcart that are packaged with the SARA tool are

jfreechart-1.0.6.jar and jcommon-1.0.10.jar. The jar files are available under

 38

jfreechart_graph folder in SARA tool.

3.2.2 Integrating JFreeChart Package
The tool supporting SPRA shows the results in a more presentable format such as graphs

and 3D bar charts by using JFreechart libraries. JFreechart is an open source java project

that helps to display professional quality charts in any Java based application.

JFreechart’s extensive features are:

• supports wide range of chart types.

• A flexible design that is easy to extend and integrate with any application.

• support for many output types including Swing components

JFreeChart requires the Java 2 platform (JDK version 1.3 or later). It is a class library

used by developers and is not an end user product. It has well documented API that helps

in utilizing or extending its API to support wide range of chart types. The JFreeChart

package is bundled with sample applications that help in developing different 3D bar

charts and graphs. Each sample application extends an ApplicationFrame class which

opens as a frame. The frame is called in the panel used for displaying results in the tool

supporting SPRA. The other different classes used for charts are JFreeChart, ChartPanel

and ChartFactory and for dataset are XYSeries, XYDataCollection, and XYDataset.

3.2.3 XMI Parser
The SARA tool is packaged with an XMI parser to obtain input from the XMI file

developed using StarUML. The XMI parser understands the different model elements and

the UML performance annotations to provide input to the tool supporting SPRA. The

 39

following are the model elements that are supported by the XMI parser of the tool.

• UML Use case diagram

• annotated UML Sequence diagram

• annotated UML Deployment diagram

Please note that

• The scenario names mentioned in the use case diagram and the annotations,

interactions/steps, and component names in sequence diagram and the hardware devices

and list of components mentioned in deployment diagram MUST not have space (“ “) in

between them. The XMI parser obtains each value required as input to the tool by using

StringTokenizer(“ “) function in Java. This parses the string containing information of

different model elements by splitting them using space.

• The names of the class/components used in all the diagrams MUST be the same.

Parser Design:

• Take XMI file as input

• Read the input file line by line and store it in an temporary storage area

• Extracting the scenario names to list them in a combobox:

1. Search for the tag that begins with “<UML:UseCase xmi.id” and store the

names, that represent the names of the scenario, in an array to display in

the combobox

2. The starting occurrence and ending occurrence (using “</UML:UseCase”)

of the scenario name is stored in another string arrays to display the details

of only that scenario selected. Please note that the scenario(s) without any

 40

sequence diagram MUST be created finally in the Use Case model.

• Extracting the messages between the objects from sequence diagrams:

1. Search for the tag which begins with “<UML:Message xmi.id” and store

the names of the messages in an array

2. Store the sender ID and receiver ID in separate arrays. Note: in sequence

diagrams, the objects are represented with a unique ID.

• Extracting the component names installed in the hardware devices from

deployment diagram

1. Search for the tag which begins with “<UML:Node xmi.id” and store the

names of the component in an array

• Extracting the association information between the nodes from the deployment

diagram

1. Search for the tag which begins with “<UML:AssociationEnd xmi.id” and

store them in an array. The array is used to find the components installed

in the hardware device.

• Extracting the node names that represent the hardware devices from the

deployment diagram

1. Search for the tag which begins with “<UML:Stereotype xmi.id" and store

the names in the ‘extendedElement’ in an array. If the array contains

‘network’ or ‘LAN’ or ‘WAN’, they are stored in a separate array that

represents the network devices.

• Extracting the component names from the sequence diagram

 41

1. Search for the tag which begins with “<UML:TaggedValue xmi.id” and

store its value in an array. The value with tags such as ‘SPLIT’, ‘FORK’

and ‘JOIN’ are stored in a separate for computation of the longest path

with highest demand.

• Extracting the probability of occurrence of the scenario from the use case diagram

1. Search for the tag which begins with “<UML:Expression xmi.id” and

store its value in an array.

Figure 15 shows an XMI file of ecommerce software model that is generated using

StarUML tool.

Figure 15 XMI file of Ecommerce application

 42

3.2.4 Exception Handling
The tool supporting SPRA has a user-friendly interface that helps easy user interaction. It

also warns the users using messages in a pop-up window. While running the tool, the user

might have problems such as missing some input parameters. The tool should not crop up

in the normal course of operations. The tool handles such exceptions by performing

exception handling using ‘try’ and ‘catch’ in java and throwing the exception using

‘JOptionpane’ class. The figure 16 shows the pop-up window if the input XMI file is

missing

Figure 16 Error Message if XMI file missing

Figure 17 shows the pop-up window if the input values in the ‘Settings’ dialog of the tool

is missing

Figure 17 Error Message if Settings Dialog input parameters are missing

If any of the input parameter of the Settings Dialog is missing, the pop-up window shows

that the corresponding messages are missing. Figure 18 shows the pop-up window if the

input values of the software requirements alone in ‘Settings’ dialog is provided and the

rest of them are missing.

 43

Figure 18 Error Message if few of Settings Dialog input parameters are missing

3.3 Sensitivity Analysis
The Sensitivity Analysis is a measure to analyze the uncertainty in output of a system

model due to small perturbation in its input parameters. With the increased attention to

quantitative risk analysis of software systems, there is a need to quantitatively evaluate

the behavior of the models used to assess the risk. This is an important component for

mathematical, computational, and simulation models as the model output is determined

by uncertainty of input variables, computations, and other parameter values. Sensitivity

analysis helps in identifying the input parameter that has the greatest impact on the output

and aid in developing priorities for risk mitigation. The analysis can play an important

role in verification and validation of a model, as well as to provide insight into the

robustness of model results, when making decisions. The results can be used for various

purposes, e.g., ranking the inputs in order of their impact on the output, assessing changes

in the output due to parameter and input variations, improving the quality of the

computations, or limiting the use of a program to appropriate parts for the input domain.

The sensitivity analysis can either be performed using mathematical or computational

methods. The mathematical sensitivity analysis of a model is performed by calculating

the variability of output (dependent variable) with respect to perturbations in the input

(independent variable). It becomes difficult if an automatic computation of the

 44

mathematical equations involved in finding the output is not available because the input

variables can be related indirectly or in a complicated fashion with the parameter of the

model. The limitation of mathematical sensitivity analysis is that it becomes more time

consuming and complex as the model can evolve over time with more modifications. To

overcome the limitation, the computational sensitivity analysis is used that assess the

changes in output for any small change in input by automatically performing the

calculations.

Liebrock (2005) explains that the behavior of uncertainty of system model could be any

of the following:

For a small change in input parameter,

i) The output is a relatively small change which is acceptable or

ii) The output is a drastic change which in turn can lead to two results:

• This change is acceptable or

• This change is not acceptable

The above theory helps in analyzing the behavior of uncertainty due to performance risk

factor in software system. The sensitivity analysis of software performance risk

assessment means that

For a small or drastic change in input parameter, the output is

i) acceptable, if the value of performance risk factor is between 0 and 1.

ii) not acceptable, if the value of performance risk factor is greater than 1.

 45

The tool supporting SPRA also supports sensitivity analysis of the software model

assessed using SPRA methodology. It performs computational sensitivity analysis of

performance risk factor that automatically performs computations used for SPRA

methodology in estimating risk factor. This helps in reducing the pain to perform the

procedure of SPRA methodology repeatedly for every small change in the input

parameters. The objective of performing the sensitivity analysis in the tool is to analyze

the variation of performance risk factor of a scenario in a software model based on small

changes in its input parameters. The different ways or cases to perform computational

sensitivity analysis to obtain risk factor for a scenario are:

1. Base Case: In this case, run the code with the original inputs and record the

outputs.

2. Comparison case: Vary selected input parameters one at a time, rerun the code

with the changes, and record the corresponding changes in the outputs calculated

by the code.

3. Compute Sensitivity: Represent the sensitivity for the parameter under test in a

graphical form as risk factor vs the input parameters.

Case 2 and 3 are used for sensitivity analysis of SPRA. In SPRA, two types of sensitivity

analysis are performed. The following section explains the scenario level and system

level sensitivity analysis.

3.3.1 Scenario level Sensitivity Analysis
The SPRA methodology is a scenario-level simulation method that performs

computations for performance risk assessment. To perform the scenario level sensitivity

 46

analysis, the most critical input parameter of the scenario that has greater impact on its

risk factor should be identified. The different input parameters to the SPRA methodology

are:

• Software resource requirements

• Service time or speed of hardware devices

• Performance Objective

• Realistic Workload and

• FFA table for severity analysis

The service time or speed of hardware devices are the characteristics of the hardware

platform used by the software model and this cannot be changed as the functionality of

the software model will be affected. The performance objective is the inability of the

system to meet its performance requirements and this is already defined by the developer

for a software model and hence cannot be changed. The impact due to different workload

conditions is already implemented in the SPRA methodology using asymptotic bound

analysis. Also, the severity analysis is performed using FFA in the methodology and

hence cannot be changed. The input parameter that can be changed to assess the variation

of performance risk factor is by changing each input to the software resources and is

considered for performance sensitivity analysis of the tool supporting SPRA

methodology. The main goal of the analysis is to understand which aspect of the input is

limiting the performance or causing performance risk of the scenario.

 47

Once the XMI input is provided as input to the SARA tool, the SPRA is performed by

using Risk->Performance Risk->Scenario->Settings. The input parameter is provided in

the Settings Dialog and Scenario->Sensitivity Analysis is selected to perform the

sensitivity analysis. Performing sensitivity analysis is optional and is added as a feature

for the user to get an insight of the impact of his input parameters on the performance risk

assessment. The figure 19 shows the Sensitivity Analysis as a feature of performance risk

in SARA tool.

Figure 19 Sensitivity Analysis as menuitem of Performance Risk

Once the Sensitivity Analysis is selected, the software requirements input parameter is

displayed along with the range. The user has to choose the software requirement for

which he has to perform the sensitivity analysis testing, select the range, and click the

‘Perform Sensitivity Analysis’ button to view the change of performance risk factor

 48

based on the change of the software requirements between the given range. The risk

factor vs software resources presented in a graphical format helps the user to assess the

values provided as input to the software model.

3.3.2 System level Sensitivity Analysis
 The system risk factors are estimated using the scenario risk factors and is given

as follows in Popstojanova et. al., (2003):

Where rf is the overall system risk factor, rfk is the risk factor of the use cases and pk is

the probability of occurrences of use case. The risk factor of use case and scenario is

identical as one scenario per use case is considered.

From the above expression, it is obvious that the overall system risk factor is dependent

on probability of occurrence of the scenarios (use case). So the system level sensitivity

analysis can be performed by varying the probability of occurrences of each scenario.

This provides a closer view of the changes in system risk factor based on probability of

occurrences of the scenarios in the system. Also, the system level sensitivity analysis can

be performed by observing the changes of system risk factor based on the components of

each scenario. The system level sensitivity analysis helps in experimenting the system

risk factor with input parameters that are more critical and can cause unpredictable

changes in the system. The tool facilitates in performing sensitivity analysis not only in

scenario level but also in system level which requires more computations as the number

 49

of scenarios in a system increases, repetition of mathematical calculation, and time-

consuming manual analysis. Once the complete scenario level SPRA is performed using

the SARA tool, select Performance Risk->Model and view ‘Sys. Risk vs Probability’ tab

and ‘Sys. Risk vs Component’ tab to view system level sensitivity analysis.

 50

CHAPTER 4

TESTING AND RESULTS

The tool supporting SPRA is integrated with SARA tool and functionally tested on

multiple case studies. This section explains the tool on ecommerce application and Earth

Observation System (EOS).

4.1 Ecommerce application
An ecommerce application allows a customer to interact with supplier through internet

system. The customer browses through various catalogs provided in the internet to select

an item and place a requisition to the supplier. The supplier then processes the order and

proceeds with shipment and delivery information by validating the customer’s account

with the supplier and with one or more banks through which the payment can be made.

Then the supplier checks the availability of the product and if it is available, ships the

product to the customer. The customer confirms the delivery and the supplier sends an

invoice statement to the bank. The bank transfers the funds from the customer’s account

to the supplier’s account. The Use case model and Deployment model of the ecommerce

application is shown in figure 1 and 3 respectively.

Figure 20 shows the SARA tool to which the XMI file with the defined UML

performance specifications as explained in Section 3.1 is imported.

 51

Figure 20 Importing XMI file for Performance Risk Assessment

If the XMI file is not imported, the SARA tool reports an error notification as shown in

figure 21.

Figure 21 Error Notification for not importing XMI file

Once the XMI file is imported, the Performance Risk Assessment is performed using Risk

-> Performance Risk ->Scenario -> Settings. The ‘Sensitivity Analysis’ and ‘Run’

menitem will be enabled once the Settings dialog is selected. The ‘Model’ menuitem will

be enabled after performing performance risk assessment for atleast one scenario. Figure

 52

22 shows the window that displays the values of probability of occurrences of scenario if

annotated using the use case diagram or else the user can input the values. It also lists the

scenarios of the software model.

Figure 22 Listing Scenarios of the model

The scenario for which the performance risk assessment is to be performed is selected

from the combo box. The GUI of SPRA consists of 2 settings dialog or the input to be

obtained from the user for performance risk assessment. The Settings dialog lists the

software components and the interaction between them in a scenario. The software

components are the demand vectors annotated in the sequence diagram of the scenario.

The amount of resources such as CPUwork_units and Diskdata for software components and

MSGdata for interactions between components are required as input. It also displays the

hardware devices in which the software components are installed and the type of network

connection. The hardware devices and the type of network connection are derived from

the annotations of the deployment model. The service time for each hardware device and

 53

its network that is the speed of processor, disk, and network in terms of time units (µsec)

is required as input.

Figure 23 shows the settings dialog of Place Requisition scenario where the components

and their interaction are listed in a table and the hardware devices in which the

components are installed in listed in another table. The amount of resources required for

the components and network and the service time of hardware devices for the scenario is

provided as input as shown in figure 24.

Figure 23 Settings Dialog for Performance Risk Assessment

 54

Figure 24 Settings Dialog with Inputs

Once the required input is provided, the Next button will display the next Settings dialog

as shown in figure 25 that requires information such as performance objective, realistic

workload, and the FFA table for severity analysis. The FFA table displays the scenario

name and requires the input such as selecting the events with high severity, stating its

reason to fail and the effect of failure and selecting its severity. Any number of events

can be added using the Add Event button and can be deleted using the Delete Event

button. The event with the maximum severity rate will be taken as the severity for the

scenario.

 55

Figure 25 Additional Settings Dialog for Performance Risk Assessment

The Back button is used to go to the previous settings for any modification in the input. In

brief, the tool requires the following input:

• XMI file containing details of the software model

• amount of resources required for software components and its interaction

• service time of hardware devices and network

• performance objective

• realistic workload

• Severity using FFA

The OK button saves the input values of the scenarios.

 56

Then, the user can perform sensitivity analysis to assess the impact of the input values to

performance risk factor. Once sensitivity analysis is selected, it displays the software

resources with the software requirements provided as input by the user in the Settings

dialog. It also displays the range of software requirements. The user can select the range

to experiment or analyze the risk factor of the scenario by varying the software

requirement within that range. The Sensitivity Analysis feature is applied on this

scenario. Kamavaram et.al. (2003) explains the sensitivity analysis of ecommerce

application to perform software reliability.

Figure 26 shows the Sensitivity Analysis dialog of Place Requisition Scenario that

performs software performance. The following are the steps to perform sensitivity

analysis of software performance risk:

• Choose a cell or value of a component whose software requirement is to be

experimented for sensitivity analysis. Please note that the sensitivity analysis is

performed for testing the change of a software requirement of a component with

the scenario risk factor. Hence, multiple selections of software requirements are

not supported.

• Provide the input range. This is the range of values for the software requirements

to be experimented and is the values of x-axis.

• Click ‘Perform Sensitivity Analysis’ button.

 57

Figure 26 Sensitivity Analysis Dialog

The figure 27 shows the graphical representation of risk factor vs the range of software

resources where the value of CPUworkunits of CA4 component is changed within a

range of 1 to 10. The figure 25 shows that there is a linear increase of scenario risk factor

with the increase of CPU of CA4 component.

 58

Figure 27 Risk Factor vs Software Resource

From the graph, it is seen that the risk factor for 5 workunits of CPU for CA4 component

is 0.765 which is acceptable as it lies between 0 and 1. The risk factor is greater than 1 if

the CPUworkunit is greater than 6 and this leads the Place Requisition scenario to have

performance risk. Thus, the sensitivity analysis helps the user to verify and validate his

input parameters to avoid performance risk. The tool supporting SPRA performs the

computations required to calculate the risk factor automatically by getting the software

requirement value and its range as input. This facilitates the user to run SPRA

methodology as many times to estimate the risk factor of the software model.

Then Scenario - > Run button is selected that performs the performance risk assessment

 59

as shown in figure 28.

Figure 28 Executing Scenario to perform SPRA using SARA tool

Figure 29 shows a tabbed window with a ‘Results’ tab displaying the results: Risk factor

of the scenario and the bottleneck component causing the performance risk. The Risk

factor is obtained by multiplying probability of performance failure and the severity. The

probability of performance failure is obtained from the asymptotic bounds which are

represented as a graph in figure 32 and the severity is obtained from the FFA table

provided in the Settings Dialog. The categories of severity is assigned to a numerical

value as 0.95 to catastrophic, 0.75 to critical, .5 to major, and .25 to minor.

 60

Figure 29 Results Tab displaying the SPRA

The other tab displays the output obtained in the step-by-step performance risk

assessment methodology. The Execution Graph tab displays the execution graph or the

software execution model of the scenario. It is a flow graph that represents the sequence

of demand vectors and the longest path (worst case analysis) with the highest demand.

The longest path considered for the input to system execution model is marked in red

color and the demand vectors that are not considered are marked in blue color. If the

scenario does not have concurrent actions, the longest path is the sequence of its demand

vectors. The figure 30 shows the execution graph of Place Requisition scenario where

there are two concurrent paths and the path with the highest demand is represented in red.

 61

Figure 30 Execution Graph Tab

Figure 31 Execution Time Tab

 62

The Execution Time tab, in figure 31, displays the total execution time of the scenario. In

figure 30, the components shaded with gray represent the components that are not

considered for the performance risk assessment as they do not belong to the longest path.

This result in the tab clearly explains the total demand in KB units in each hardware

device and they are converted to seconds units by multiplying with the speed or service

time provided as input in the Settings dialog. The total demand in seconds unit is

displayed in cyan whose sum provides the total execution time of the scenario.

The Performance Failure tab, in figure 32, displays the asymptotic bound graph and

probability of performance failure.

Figure 32 Performance Failure Tab

 63

Once the performance risk assessment is performed for a scenario, the similar steps are

followed for different scenario in the model. The risk factor of the scenario obtained by

performing software performance risk assessment is a numerical value and the overview

of Risk factor vs Scenario graph helps in understanding the impact of the scenario in the

model. By navigating to Risk -> Performance Risk -> Model, the overall details about

the scenarios in the model can be viewed. Figure 33 gives a clear picture of the scenario

with high risk factor from the risk factor versus scenario graph. The Place Requisition

scenario is identified as the scenario causing high risk.

Figure 33 Model Output of Place Requisition Scenario

 64

The next tab shows a Component vs Normalized time for each scenario. This helps in

identifying the bottleneck component that consumes most of the residence time of the

scenario thereby reducing the response time of the scenario. This identifies the scenario

causing high risk in the system model. Figure 34 shows the component vs normalized

time graph of Place Requisition scenario that shows that CustomerAgent component takes

90% of the total residence time of Place Requisition scenario and is the bottleneck

component of the scenario.

Figure 34 Component Vs Normalized Time Graph of Place Requisition Scenario

 65

Figure 35 shows the component vs normalized time graph of Browser Catalog scenario

that shows that CatalogServer component takes 85% of the total residence time of the

scenario and is identified as the bottleneck component.

Figure 35 Component Vs Normalized Time Graph of Browse Catalog Scenario

The next two tabs represent the system level sensitivity analysis. The figure 36 shows the

overall system risk factor and the graph represents the sensitivity analysis that shows the

change in the overall system risk factor based on probability of occurrence of scenarios.

It is observed from the figure 36 that even though the Place requisition scenario has high

risk factor, if the probability of occurrence of the scenario is less, then the scenario does

not have any major impact on the overall system risk factor. But, if the probability of

 66

occurrence of the Process Delivery Order that has less risk factor is high, then it has an

impact on the overall system risk factor.

Figure 36 Overall System Risk Factor vs Probability of Occurrence of Scenario

The next tab represents the sensitivity analysis between overall system risk factor and the

components of a scenario. The scenario is selected to view the changes of system risk

factor based on changing the total demands of the component in that scenario. Figure 37

and 38 shows the sensitivity analysis for Place Requisition and Browse Catalog scenarios

respectively.

 67

Figure 37 System Risk Factor vs Components of Place Requisition Scenario (Range)

Figure 38 Sys. Risk Factor vs Components of Browse Catalog Scenario (Range)

 68

4.2 Earth Observation System - Case Study
The SPRA methodology is applied on NASA’s Earth Observation System (EOS) which

is the first observing system to offer integrated measurements of the Earth’s processes.

The Flight Operations Segment (FOS) of EOS is responsible for the planning, scheduling,

commanding, and monitoring of the spacecraft and the instruments on board. The SPRA

is performed based on commanding service. The figure 39 shows the use case diagram of

commanding service of EOS.

Figure 39 Use Case Diagram of EOS

The Preplanned emergency scenario comprises of two sequence diagrams:

• Preparation of command groups that are to be uplinked (SD1)

• Handling the transmission failure during uplink (SD2)

It is assumed for the purpose of illustration that SD1 is executed once and SD2 i.e. the

retransmission twice before there is a mission failure. The figure 40 shows the sequence

diagram of the Preplanned Emergency Command Transmission (SD1) scenario and

figure 41 shows the sequence diagram of Handle Transmission Failure (SD2) scenario.

 69

Figure 40 Preplanned Emergency Command Transmission (SD1) scenario

Figure 41 Handle Transmission Failure (SD2) scenario

 70

Figure 42 shows the Execution graph of Preplanned Emergency Scenario where SD2 is

run in a loop that executes twice.

Figure 42 Execution graph of Preplanned Emergency Scenario

The sequence diagram of both the scenarios (SD1 and SD2) can be represented in the

same sequence diagram with looping for SD2. With looping, the tool multiplies the

amount of resources provided for each demand vector with the number of times the loop

has to be executed. The figure 43 shows the deployment diagram of EOS.

 71

Figure 43 Deployment Diagram of EOS

The EOS model developed using StartUML is provided as input to the tool developing

SPRA. Figure 44 shows the window that pops-up where the probability of occurrences

should be provided by the user as it is not annotated in the use case diagram and figure 45

shows the window with its input. Then choose the scenario to perform SPRA from the

combobox.

 72

Figure 44 Dialog to enter the Probability of Occurrences and choose the Scenario

Figure 45 Input Values for Probability of Occurrences of Scenario

The figure 46 and figure 47 shows the Settings Dialog where the amount of resources

required by the components, speed of hardware devices, performance objective, realistic

workload, and severity obtained from FFA is provided as input.

 73

Figure 46 Settings Dialog of Transmit Emergency Scenario

Figure 47 Additional Settings Dialog of Transmit Emergency Scenario

 74

Once the input is provided, click OK button to save the settings. The user can perform

sensitivity analysis of the input values to view its impact on the scenario risk factor.

Figure 48 shows the Sensitivity Analysis dialog for Transmit Emergency Command

Scenario.

Figure 48 Sensitivity Analysis Dialog of Transmit Emergency Command Scenario

Figure 49 shows the sensitivity analysis graph between scenario risk factor and changes

of MSG software requirement of T1 component in the range of 1 to 100. It is seen that

the value of data size of the network for the T1 component increases the risk factor as its

value increases.

 75

Figure 49 Sensitivity Analysis graph for T1 component

Once performing sensitivity analysis, the Scenario -> Run is clicked which performs the

calculations as per the SPRA methodology and displays the results. Figure 50 shows the

Results dialog with risk factor and bottleneck components and Figure 51 shows the

Execution graph of the scenario.

 76

Figure 50 Results Dialog of Transmit Emergency Command Scenario

Figure 51 Execution Graph Tab of Transmit Emergency Command Scenario

 77

Please note that the execution graph shown in figure 42 and figure 51 is different because

of the limitation of the tool not supporting ‘looping’ in converting demand vectors into

execution graph. The execution graph shows the longest path in red and since there are no

concurrent actions in the scenario, all the components are considered for System

Execution Model of the scenario.

Figure 52 and Figure 53 represent the Execution Time tab and Performance Failure tab of

Transmit Emergency Command scenario.

Figure 52 Execution Time Tab of Transmit Emergency Command Scenario

 78

Figure 53 Performance Failure Tab of Transmit Emergency Command Scenario

Once the scenario based SPRA is performed using the tool, the overall picture of the EOS

model can be obtained by selecting the model output of the tool. The figure 54 shows the

risk factor vs scenario graph, figure 55 shows the component vs normalized time of each

scenario, and figure 56 and figure 57 shows the system level sensitivity analysis. Since

the tool is implemented for commanding service functionality of EOS model, the model

output displays output for Transmit Emergency Command scenario.

 79

Figure 54 Model Output – Risk Factor vs Scenario Graph

Figure 55 Model Output – Component vs Normalized Time Graph

 80

Figure 56 System Risk vs Probability of Occurrence of Scenario

Figure 57 System Risk vs Component of Scenario (Range)

 81

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion
The step-by-step methodology for Software Performance Risk Assessment is an

extensive and light-weight approach to perform performance modeling and it can be

applied in real time by use of an easy-to-use and automated tool. The problem report

describes the tool developed for implementing the SPRA methodology in SARA tool as

one of its features. The tool supporting SPRA is an automated tool that provides 3

outcomes: a) the probability of performance failure, b) estimating risk factor, and c)

identifying the high-risk or bottleneck component causing the performance risk The tool

performs the calculation in the background from the annotated UML sequence diagram

that describes the scenario of a software architectural model and annotated UML

deployment diagram that provides hardware information of the model as input files to the

tool.

The tool helps software developers and designer in early identification of performance

risk and intervention to rectify the changes which is more cost-effective. These outcomes

are an important feedback to the designers as they can devise more effort to the design

and implementation of the most critical components.

 82

5.2 Future Work
The future work of the problem report is

• The tool should be compatible to inputs developed using other software modeling

tools such as Rational Rose.

• The tool should support use case with multiple scenarios in a system model.

 83

REFERENCES

Cortellessa, V., Popstojanova, K., Appukkutty, K., Guedem, A., Hassan, A., Elnaggar,

R., Abdelmoez, W., Ammar, H. (2005), Model-Based Performance Risk Analysis,

IEEE transactions on software engineering, Vol. 31, No. 1.

Clements, P. and Northrop, L. (2002), Software Product Lines Practices and Patterns,

Addison-Wesley.

Dimitrov, E. and Schmietendorf, A., Deutsche Telekom, Dumke, R., University of

Megdeburg (2002), UML-Based Performance Engineering Possibilities and

Techiniques.

Ebert, C. (1997), Dealing with nonfunctional requirements in large software systems,

Annals of Software Engineering 3.

Fullam, K., Lam, D. (2003), Performance Simulations from UML Performance Work

Product.

Gomma, H., Menasce, D. (2000), Design and Performance Modeling of Component

Interconnection Patterns for Distributed Software Architectures, ACM, NY, pp.

117 – 126.

Guedem, A. (2004), Software Architectural Risk Assessment, Masters Thesis, Department

of Computer Science and Electrical Engineering Morgantown, WVU.

Hassan, A. (2004), dissertation, Architectural Level Risk Assessment, College of

Engineering and Mineral Resources, WVU.

Kakhipuro, P. (1999), UML based performance modeling of object-oriented distributed

systems, Proc. Second Int’l Conf. the Unified Modeling Language.

 84

Kamavaram, S. and Popstojanova, K. (2003), Sensitivity of Software Usage to Changes in

the Operational Profile, Lane Department of Computer Science and Electrical

Engineering West Virginia University, Morgantown, WV

Liebrock, L. (2005), Empirical Sensitivity Analysis for Computational Procedures, New

Mexico Institute of Mining and Technology Computer Science Department

Socorro, NM, pp 32-35.

Lazowska, D., Zahorjan, J., Graham, S., and Sevcik, K. (1984), Quantitative System

Performance: Computer System Analysis Using Queuing Network Models,

Prentice-Hall, Inc.

Molkdar, D., Burley, S., and Wallington, J. (2002), Comparison Between Simulation and

Analytical Methods of UMTS Air Interface Capacity Dimensioning, Motorola

Systems Engineering Analysis, United Kingdom, pp. 1596 – 1601.

Popstojanova, K., Hassan, A., Guedem, A., Abdelmoez, W., Nassar, D., Ammar, H.,

Mili, A. (2003), Architectural-Level Risk Analysis Using UML, IEEE.

Shaik, K., (2007), Software Architecture Risk Assessment Tool, Masters Problem Report,

College of Engineering and Mineral Resources, WVU.

Sharma, V., Jalote, P., Trivedi, K. (2006), A Performance Engineering Tool for Tiered

Software Systems, Proceedings of the 30th Annual COMPSAC.

Smith, C., and Williams, L. (1997), Performance Engineering Evaluation of Object-

Oriented Systems with SPE.ED, Computer Performance Evaluation: Modelling

Techniques and Tools, Berlin.

Smith, C., and Williams, L. (2001), Performance Solutions: A Practical Guide to

Creating Responsive, Scalable Software, Addison-Wesley, ISDN 0-201-72229-1

 85

Smith, C. and Williams, L. (2002), PASASM: An Architectural Approach to Fixing

Software Performance Problems, Software Engineering Research and

Performance Engineering Services.

UMLTM Profile for Schedulability, Performance, and Time Specification (2005), An

Adopted Specification of the Object Management Group (OMG), Inc,Version 1.1.

Work, P. and Johnson, H.E., Jr. (1995), Risk Management in Computer-Based Systems

Development by Use of Performance and Reliability Metrics, Systems

Engineering of Computer Based Systems, pp. 367-373.

	INTRODUCTION
	1.1 Problem Statement
	1.2 Related Work
	1.3 Research Objectives
	1.4 Preview of Chapters

	BACKGROUND
	2.1 Software Performance Risk Assessment (SPRA)
	2.1.1 Architectural level Performance based Risk Analysis
	2.1.2 UML Performance Profile

	2.2 StarUML Tool
	2.3 SPRA Methodology
	2.4 SARA Tool

	TOOL FOR SPRA
	3.1 UML Performance Diagrams and Annotations
	3.1.1 Use Case Model
	3.1.2 Deployment Model

	3.2 Tool Support for SPRA
	3.2.1 Development Environment
	3.2.2 Integrating JFreeChart Package
	3.2.3 XMI Parser
	3.2.4 Exception Handling

	3.3 Sensitivity Analysis
	3.3.1 Scenario level Sensitivity Analysis
	3.3.2 System level Sensitivity Analysis

	TESTING AND RESULTS
	4.1 Ecommerce application
	4.2 Earth Observation System - Case Study

	CONCLUSION AND FUTURE WORK
	5.1 Conclusion
	5.2 Future Work

	REFERENCES

		2007-12-13T19:28:46-0500
	John H. Hagen
	I am approving this document.

