
Automated Detection of Duplicate Free-Form
English Bug Reports

Trevor C. Kemp

Problem report submitted to the
 College of Engineering and Mineral Resources

West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Committee Members:
Dr. Bojan Cukic, Chair
Dr. James D. Mooney

Dr. Afzel Noore

Department of Computer Science

Morgantown, West Virginia
2009

Keywords: Natural Language Processing, Vector Space Product, Bug Report

Abstract

Automated Detection of Duplicate Free-Form English Bug Reports

Trevor C. Kemp

Every day, software developers receive reports on defects or suggestions for improvement in
their products. A common way to relay this information is through a report collection tool called a
bug report repository. For sufficiently large products, significant time can be consumed by
personnel attempting to put bug reports through triage when similar reports addressing the
same issue already exist in the repository. This report describes and experiment to automate
this process by using natural language processing and a vector cosine technique applied to
phrase matches found in an index of reports to score the likelihood that a bug report is a
duplicate of another report. Since it can be difficult to determine an exact relationship between
phrase matches and similarity between reports, a neural network is employed to learn the
general relationship when reports are duplicates and when they are not in order to classify
incoming reports appropriately.

iii

Table of Contents

Abstract.. ii

Table of Contents.. iii

List of Figures and Tables .. v

Chapter 1: Introduction ... 1

Chapter 2: Related Work .. 2

Chapter 3: The Dataset .. 4

Gathering Data .. 4

Parsing the Reports .. 4

Chapter 4: The Experiment .. 6

Some Setup ... 6

Indexing Root Duplicates ... 7

Preprocessing the Descriptions ... 9

Stemming ... 9

Synonym Insertions .. 10

The Search and Scoring Process .. 11

Searching ... 11

Scoring ... 12

Creating Result Vectors .. 13

Using the Learner ... 13

About the Learner ... 13

Preparing Tests ... 14

Conducting Testing ... 16

Chapter 5: Results .. 16

Chapter 6: Discussion .. 18

Discussion of Results ... 18

Other Practical Limitations ... 19

Chapter 7: Conclusions and Future Work .. 19

Conclusions ... 19

iv

Suggestions for Improving Run-Time .. 20

Exploiting Code Parallelism ... 20

Maintaining a Smaller Index ... 20

Processing the Shortest Phrases Differently .. 21

Improving Learner Success ... 21

Treating Phrases as Words .. 21

Refining Experiment Results.. 22

Rethinking the Repository .. 22

Bibliography... 23

Appendix .. 24

v

List of Figures and Tables

Figure 1- An example bug report with underlying markup……………………………………………5

Figure 2- Illustration of inverse duplicate table………………………………………………………..7

Figure 3- A simple example index………………………………………………………………………9

Table 1- Tabular depiction of test data………………………………………………………………..14

Table 2- Results from each of 10 tests dissimilarity error method 1……………………………….17

Table 3- Results from each of 10 tests dissimilarity error method 2……………………………….17

Table 4- Global cross validation results dissimilarity error method 1………………………………18

Table 5- Global cross validation results dissimilarity error method 2………………………………18

1

Chapter 1: Introduction
As software developers author the projects they are involved with, it is inevitable that software

defects will arise for any sufficiently large project. At times, these defects will arise during

product testing before an official release is issued. However, since it is impossible to test a

system in a manner that mirrors the exact way that system users will interact with it, a large

number of defects are discovered by people other than those who designed and built the

system. There exist tools which facilitate communication between developers on a project as

well as provide a means for individuals who are not on the project to communicate concerns

and report about errors they have discovered through normal use of the system. One such

common tool is a bug repository such as BugZilla. BugZilla provides a mechanism to automate

bug report collection by allowing users to enter their bug report information through a web

interface. Collection is only one small part of a bug report’s life, however.

Once a bug report exists in the repository, it goes through a process known as triage. During

triage, the report is examined to garner information that developers will use to best resolve the

problem. Each report contains information about the platform on which the defect was

discovered, but the repository software also allows bug reporters to type in a free-form textual

description of what happened when the defect arose. The true severity of the bug is determined,

whether or not the bug will be fixed, which developer will fix it, and the bug report may be

determined to be a duplicate of another report.

In the case of duplicate bug reports, it is highly desirable to filter these reports so that a

developer does not need to expend time analyzing many reports that refer to the same defect.

Additionally, it is desirable to automate this process in order to allow those performing triage to

allocate their time more efficiently for the other triage tasks.

Hereafter, an experiment is described that reports the efficacy of combining minor changes to

previously proposed natural language vector-cosine techniques for duplicate text identification

with a machine learning technique that should discover what signature a duplicate of a report

will have compared to the signature of a non-duplicate report. Only the free-form, reporter-

entered text field from a bug report is used in this experiment to determine if it is a duplicate of

another report. In implementation, this equates to building an index for the purpose of storing

reports, which is later used to find common phrases with a new report. Search results are then

preprocessed for training and testing on a well-known data mining package. The machine

2

learner that discovers what is a good candidate to be a duplicate of a new report and what is not

a good candidate to be a duplicate is the Weka MultiLayerPerceptron module. The module is

trained and tested with vectors from search results that contain the number of each phrases of a

certain length (one element each in the vector for each length 1 to n, where n is the depth of the

index) that an indexed report has in common with a new report, as well as the sum vector-

cosine error from all phrases that two reports have in common. Using this technique, we can

correctly identify 24% of the indexed reports as duplicates of a new report while incorrectly

identifying 3.1% of indexed reports as duplicates of a new report, or correctly identify 14% of

indexed reports as duplicates while incorrectly identifying 1.1% of indexed reports as duplicates

using a slightly different method. Results from each method are validated with 10-way cross

validation.

In the coming chapters, this experiment is explained in much greater detail. Chapter 2 will

discuss related work by other authors. Chapter 3 will describe the dataset used in the

experiment. Chapter 4 will describe the experiment in detail, with results in chapter 5. Chapter 6

will describe some practical limitations of the system. Chapter 7 will conclude the report and

discuss recommendations for future work.

Chapter 2: Related Work

There have been several studies since some early important papers on text classification.

Problems that fall under the domain of textual classification include determining if a new email is

spam, classifying source code to determine which language it was written in, determining the

author of a document, and many others. Some very successful classification schemes have

been produced. These include Bayesian schemes. However, this experiment’s type of text

classification is a very different problem than the ones mentioned. For the above types of

classification problems, membership of a given class is contingent upon what the text contains.

There is something intrinsic to the text which allows one to assign membership. However, the

two document classes (duplicate and non-duplicate) in this experiment have nothing intrinsic

about individual reports which determine membership. Thus, identifying duplicate bug reports is

actually a very different problem than normal text classification.

3

There has been much work in this particular brand of text classification. An excellent tutorial

paper regarding the basics of natural language processing in relation to detecting duplicate bug

reports using natural language processing has been written by Runeson, Alexandersson, and

Nyholm (Runeson). It details the specific actions that must be taken to perform natural language

processing on bug reports. They use a vector cosine model to determine similarity between

reports. Their study report also contains results of many worthy smaller experiments to

determine how decisions like adjusting time window of report collection, choosing a different

similarity model, and other various items will affect the success of duplicate identification. Their

experiment achieved a 30% recall (true positive) rate, but they also returned the 5 topmost likely

articles to be duplicates of a new report. While there is much to learn from this paper, forcing

developers to examine 5 articles for every new one that comes into the repository is probably

not acceptable practice on most projects.

In his master’s thesis, Lyndon Hiew describes a method for identifying duplicate bug reports by

creating vectors for each report in a repository and grouping similar reports into centroids based

upon their term-frequency-inverse document frequency, abbreviated tf-idf (Hiew). A centroid

could be either a grouping of documents or a single unique document. These centroids have an

associated vector. When a new report arrives, a tf-idf vector is created for it, and this vector is

checked for similarity against all centroid vectors. The top centroid vectors are returned as

candidate duplicates. With a 50% recall rate and a 30%precision rate, these were good results.

However, as before, for each new report, triage personnel will need to examine several more

reports.

Podgurski, et. Al. describe an experiment for classifying and grouping similar reports together

(Podgurski). However, their data was quite different than in this experiment. They were

classifying core dumps and captured program executions that had been submitted for 3

compiler projects. Using a clustering technique and multivariate visualization, they were able to

classify and group similar failures based off of features that were gleaned from the reports by a

regression technique. Similarity was determined by use of a distance metric computed for each

cluster. The multivariate visualization was used to add a human opinion in the classification

stage of the experiment because it was believed that automated clustering alone may not have

achieved good results. As they refined each cluster that was built, clusters got smaller but had

more similarity within each cluster. The result was that for the best cluster in each of their 3

datasets, each failure in that cluster was caused by the same thing, meaning 100% correct

classification for this cluster.

4

Still another paper was written by Jalpert and Weimer (Jalpert) that describes a vector cosine

technique combined with a clustering algorithm that will recognize 8% of duplicate new reports

that arrive. The most important aspects of this experiment, however, were that the proposed

system would have been implemented as an inline and online system. It would be inline

because it would filter duplicate reports before they reached triage personnel, and it would be

online because classification of one new report can be performed before new reports arrive.

Chapter 3: The Dataset

Gathering Data

The dataset consists of about 14,000 bug report files from The Eclipse Project (Eclipse

Foundation), an open-source integrated development environment for many languages that is

written in Java. Eclipse's hallmark is its ability to easily integrate plug-ins to give the application

new functionality. It is maintained by the non-profit Eclipse Foundation, which makes its bug

repository available publicly through anonymous (in this case meaning no login is required),

encrypted HTTP connection. To download the bug reports, a script was written to call the

underlying Linux shell command get, which downloads an HTML page to file.

In order to use the get command, one must know the URL of the file to be downloaded. The

Eclipse Foundation uses Bugzilla for its bug repository, which allows for users to access

individual bug reports directly without navigating through the web interface. This is useful

because one can automate the collection process. For instance, accessing the URL

https://bugs.eclipse.org/bugs/show_bug.cgi?id=2001 will allow the user to download bug

number 2001. To download all bug reports numbered between 2001 and 10,000, the script

simply iterates from 2001 to 10,000, downloading each report.

Parsing the Reports

Each bug report is presented with fields displayed that show important information for the bug,

like a description of the platform on which the bug occurred, the severity of the bug, the priority

this bug has been given, a summary title, a textual description, and a status of either resolved

or unresolved. If the bug has been resolved, then there is an accompanying resolution that

describes the findings or actions by developers for the bug. This resolution has some predefined

options that triage personnel can choose to set after viewing the report. Of significant

importance to this experiment is the duplicate option that triage personnel can set. The

duplicate option will also display a bug report number of the report that has been duplicated,

which can be parsed from HTML in order to download the duplicate.

5

Figure 1- An example bug report with underlying markup. The HTML can be easily parsed to determine

that this report duplicates the report numbered 9684.

Parsing the HTML files is simple. Because each bug report page is generated automatically, one

only has to search for specific tags in the file to determine the bug report’s resolution. If the

resolution is marked as a duplicate of another report, then the URL to the original report

(referred to here as the root duplicate) is also downloaded, but is isolated from other bug reports

and placed with root duplicates of other reports.

To get the textual description of the bug report, the HTML is again searched for another specific

sentinel text. Once this text has been found, the description is read into memory in its current

form from the file, and a regular expression is used to strip out the residual HTML in the textual

description. The result is a plain-text description of a bug report that is stored for use later, along

with its root duplicate’s report number if a root duplicate exists for this report.

In this experiment, other than using the resolution field to determine whether or not a report is a

duplicate, only the textual description of these bug reports is used. It is noteworthy that the text

itself in the report is rarely likely to be identical, and the errors may have occurred on different

platforms altogether. Generally speaking, developers will use the semantics (expressed in

6

natural language) in the text field of the bug being described to determine if a new report is a

duplicate of another bug. The other information contained in the report is merely supplementary.

Additionally, this experiment searches on an index created solely from root duplicates. This

allows for a shorter run-time without affecting experimental results, as discussed in subsequent

sections.

Chapter 4: The Experiment

Some Setup

The experiment consists of several small tasks. Each part developed has been coded in Python.

First, all bug reports, except for those in the isolated root duplicate folder, are indexed for

experimental administration purposes. The index is a hash table that uses bug report numbers

as keys. When a bug report is indexed, its full textual description is stored along with its root

duplicate, as described in section 3. Because this hash table contains bug reports where each

may or may not have a root duplicate, this hash table is referred to as the assorted reports

hash table.

Another hash table, the inverse duplicate table, is also created to easily retrieve information

regarding what reports a root duplicate belongs to. The name inverse comes from the idea of an

inverted index where, for example, a web search engine will maintain what web pages a given

text string appears on. For each item in the assorted reports table, if there exists a root

duplicate, the current report number (for the assorted report) is appended to a list stored in the

inverse duplicate table pointed to by the root duplicate’s report number. If an assorted report

does not have a root duplicate, its report number is appended to a list in the same hash table

with an appropriate key to indicate that the items in the list are not duplicates.

7

Figure 2- An example illustration of the Inverse Duplicate Table.

Indexing Root Duplicates

Once these hash tables have been populated, the root duplicates are indexed in the index

object. It is the index that is searched against to uncover potential matches for a new article. In

practice, all known bug reports would be indexed. However, for experimental purposes, only

root duplicates are inserted. A bug report can bring no meaning to the word “duplicate” in and of

itself. This is to say that since there is nothing intrinsic to a bug report that determines if it is a

duplicate, it is the comparison between two reports that determines if the reports are duplicates

of each other. With this in mind, we can safely insert only root duplicates into the index because

when a report r returns matching words or phrases with a particular root duplicate rd from a

search on the index, it makes no difference if these reports do not address the same issue

because the machine learner is still informed during training and testing whether or not these

reports are duplicates. Indexing only root duplicates allows for a faster running experiment

without affecting the quality of the results used to train the learner or conduct tests.

The index should allow for one to search for entire common phrase matches between articles

rather than just the existence of single common words. Indeed, the experiment is built on the

premise that duplicate bug reports will share more phrases in common than non-duplicate

reports even though reports of both types will contain many common words. In order to have the

ability to search the index for phrases, a word-level suffix tree is built. In this case, a suffix is not

•Assorted Report #29701

•Assorted Report #29750

•Assorted Report #29820

•Assorted Report #29837

•Assorted Report #29857

No_Duplicate

•Assorted Report #99876

•Assorted Report #45356

Root Duplicate #5567

•Assorted Report #56575

Root Duplicate #55678

•Assorted Report #432422

•Assorted Report #776656

Root Duplicate #43432

8

determined similar to those that exist in computational biology where each character in the text

is the start of a new suffix. Instead, each word in a text is treated as one position in a suffix

rather than each character being considered as a position in a suffix. The suffix tree thus

operates at the word level, not the character level.

However, because the words to be indexed will come from several different reports, many of

which will not exist until after the initial indexing, the index must be built similar to those

constructed with online algorithms (constructed in linear time and built left-to-right from the text

as opposed to being built right-to-left). However, such algorithms introduce an unnecessary

complexity to the project. Linear insertion time and memory consumption can be achieved by

limiting the depth of the index. In addition to giving a less complex indexing algorithm, informal

timing estimates indicate that indexing reports in this fashion can be accomplished in an

acceptable amount of time, with each report being indexed in less than half a minute on

average. In this project, an index depth of 5 was chosen. This depth has proven sufficient, as it

is rare for bug reports to have common phrases of this length. To build the index, a linked list is

constructed where each successive node corresponds to a new position in a suffix from a bug

report description. Each suffix is inserted starting at the root of the index. Each node in the

linked list contains a hash table. The actual word that is to be indexed at this position in the

linked list is used as they key. When a word is hashed, the term frequency and report number of

the bug being indexed are stored. When the index is searched, the former item is used as a

measure of similarity of usage for a word in two articles and the latter provides the mechanism

for identifying the reports that have commonality with a new report. Each root duplicate is

indexed in this manner.

9

Figure 3- A simple example index. Root duplicate 1 would contain the text "Loop Integer" and root

duplicate 2 would contain the text "Loop Over Additional."

Preprocessing the Descriptions

Stemming

Before the reports can be indexed, the descriptions must be preprocessed. The first

preprocessing action is to stem the words. The purpose of stemming is to reduce the diversity in

the index when words may have commonality and actually refer to the same thing. Stemming is

the process of algorithmically determining the root of a word. Examples of stemming include

reducing the word “running” to “run”, or “cable” to “cabl’. By stemming words, the index will

return more and longer phrase matches when words may be referring to the same idea, but

have different inflections. Since stemming makes similar words with different inflections reduce

to a common word, it does not matter if the root word returned by the algorithm is actually a

valid word at all. The important matter is accuracy; that if words share a common root, then the

algorithm must return the same root for each of the words. The algorithm used is the popular

Porter Stemming algorithm, provided by the Natural Language Toolkit (Natural Language

Toolkit), an open source natural language processing package written entirely in Python. In

addition to stemming the report words, non-alphabetic words are removed along with

punctuation.

Depth 1

'Loop'
Root

Duplicate 1
Root

Duplicate 2

'Integer'
Root

Duplicate 1

'Additional'
Root

Duplicate 2

'Over'
Root

Duplicate 2

Depth 2

'Integer'
Root

Duplicate 1

'Additional'
Root

Duplicate 2

'Over' Root
Duplicate 2

Depth 3 'Additional'
Root

Duplicate 2

10

Synonym Insertions

Another issue when processing textual documents containing natural language is that very

often, it is possible to describe the same event or scenario with different words that essentially

refer to the same idea. Usually, one synonym of a word may be chosen over another synonym

because it more accurately conveys the author’s intent. This may because of pure definitional

differences, or it may be due to connotations that words may carry with them. Regardless, when

processing natural language in this application, we are left with the task of mitigating the effects

introduced by authors using different synonyms when describing the same bug in different

reports. There are two ways to accomplish this task, referred to here as synonym reduction

and synonym indexing.

Synonym reduction is the process of algorithmically discovering the commonalities in synonym

usage in a given corpus or thesaurus. The point is to remove the subtle differences caused by

authors’ usage of different synonyms by reducing the number of synonyms in the corpus or

thesaurus. It is accomplished by determining, for each set of words containing common

synonyms, which word should stand in place of several other words used in a similar context. A

simple means to accomplish this is to choose one synonym (random choice, choose the first

word encountered each time, etc.) to stand in place of all synonyms that “link together” in a

thesaurus. This is to say that if one were to group all words into sets based upon which words

are synonyms of other, the result would be several disjoint sets, and each set would choose a

representative so that whenever a word is encountered, its representative would be returned.

The problem though is that when a word has a synonym, the word and its synonym are not

perfect equivalences of each other. This simple method of synonym reduction yielded very poor

results in the experiment and was abandoned.

The other method of coping with synonyms is to look the synonyms up in a thesaurus and to

index the synonyms of a particular word alongside the original word or likewise instead

performing the same functions at search time. This latter method sacrifices longer search times

for shorter indexing times and a smaller index. In this experiment, the synonym indexing method

was chosen and implemented by inserting the suffixes of a bug report as usual, but also

inserting the synonyms of each word in the suffix at the same spot in the index as the original

word. By this method, all known synonyms of a word will be searched for a match at no extra

cost in search time. However, both of the methods mentioned for dealing with word synonyms

assume the existence of a thesaurus.

11

A thesaurus of over 60,000 words was gathered from an online thesaurus. The thesaurus

service was provided by words.bighugelabs.com (Watson). This website allows users to look up

a word and download the synonyms of said word. An API is provided to accomplish this. For

instance, the link http://words.bighugelabs.com/api/2/api_key/love/xml will return the synonyms

for “love” in XML format, provided that the user has an API key that was issued by the website.

The website allows 10,000 free requests per API key per day. A text file containing 300,000

words was used to seed the lookup process. Once all of the synonyms were downloaded, they

were stemmed and indexed in hash tables, using one hash table to store thesaurus entry words,

and several other hash tables to store the entries’ synonyms, with each entry in the thesaurus

pointing to the hash table that contains its synonyms. This allows for fast synonym lookup.

The Search and Scoring Process

The purpose of the search and scoring process is to prepare the articles for the machine learner

that is used to classify reports as duplicates of each other or not duplicates of each other.

Searching and scoring are accomplished by way of several small steps.

Searching

First, the report’s words are stemmed. Punctuation is removed. Non-alphabetic words are

removed. Then, the suffixes of the new article are successively searched for in the index. The

search results that are returned contain common phrases between the new article and the

articles in the index. In addition to this, for each common word, the program maintains the term

frequency of the words in both the new report and the indexed reports. The term frequency is

directly used to calculate the similarity between two reports. It is also notable that if an index

returns a phrase match of length n for a suffix s in the new report, then the indexed report will

be ignored until we are searching for the new report’s n+s-1 suffix. This prevents bloating the

search results unnecessarily and will also help the learner to distinguish a duplicate from a non-

duplicate.

Importantly, it was noted that because this is real-life data, some of the assorted reports are also

root duplicates. In order to guarantee a sanitary test case, if we begin searching with a report

and get phrase matches back from the same report because it is indexed as a root duplicate,

we do not use these results in the test cases. They are removed from the result set entirely; for

just one search, it is as though the root duplicate is not indexed at all.

12

Scoring

The search results are arranged into vectors. For each common phrase, there are two vectors.

One vector corresponds to the term frequency of the new report’s words from the phrase.

Jalpert’s formula of 1+log(term frequency) is used to reduce the effects of relatively small

differences in term frequencies in the two reports. The second vector corresponds to the term

frequency of the indexed report’s words from the phrase. Then, the vector cosine
𝑎 ⋅ 𝑏

∥ 𝑎 ∥ ∗ ∥ 𝑏 ∥

is computed and stored, where a is the new report’s vector and b is the indexed report’s vector.

The closer the cosine value is to 0, the more similar was the use of the phrase in the two

reports. The error in phrase usage similarity is calculated as 1-abs(cosine(a,b)). In addition to

these calculations, if the length of the common phrase is greater than 1, the cosine for this

phrase is divided by log(length) in order to give a reward for having a longer phrase in common.

Note that it is possible, for each phrase, to compute these term frequencies at the phrase level

rather than the word level to get a more accurate cosine error score.

At this point, each indexed article that returned search results will likely have several such

cosine values. These cosine values are summed to produce a similarity error. However, since

this similarity error only takes common phrases into account, reports that have very much in

common with the new report are penalized much more heavily than those that have less in

common with the new report. In order to penalize reports with less in common, another type of

error is calculated, the dissimilarity error (Lemon 09). There were two methods explored for

computing this error.

For the first method, the error is calculated by finding the number of words from a that do not

appear in b and then dividing the length of a by this value. Since the length of a will be greater

than the number of words from a that do not appear in b, the resulting improper fraction will be

greater than 1 (since there is a search result returned, the articles have some commonality and

such will never return a fraction equal to 1).We then take the log of this value and get its

reciprocal. This reciprocal value is the dissimilarity error.

The second method of error calculation is simpler. We simply divide the number of words in a

that do no appear in b and then divide this number by the length of a. This yields the percentage

of report a that does not appear in b. We take the log of this value in order to slow the growth.

13

The first method essentially progressively penalizes reports that have more than half of the

words uncommon while increasingly rewarding reports that have more than half of the words in

common. The second method is a logarithmically increasing penalty; the penalty increases

slowly as the number of uncommon words increases and never rewards for having reports

having little uncommon.

 Once these calculations have been performed using either method, the similarity error and the

dissimilarity error are multiplied together to get the total error for the two reports in question.

Creating Result Vectors

Once the search has been performed and scored, it is time to arrange the results into suitable

input for the learner. To do this, a result vector of length d + 2, where d is the depth of the

index, is created. The first i..d entries correspond to the count of phrase matches of length i for

the indexed report. The d+1 element of the result vector is the total error for the report. The d+2

element is a textual string that tells the learner whether or not this vector corresponds to a

duplicate or a non-duplicate. The duplicate/non-duplicate status is known for this experiment.

This field is used only for training and evaluation. An example result vector for a non-duplicate

searched against an index depth of 3, 2 common phrases of length 1, 2 common phrases of

length 2, 0 common phrases of length 3, a and total error of 0.00223 would take the form

<2, 2, 0, 0.00223, ‘no_dup’>

Each of the first d elements in the array is normalized to 1. The final result vector would take the

form

<0.5, 0.5, 0, 0.00223, ‘no_dup’>

Each indexed report that returns search results will have such a vector. At this point, the scoring

process is complete and each element in the vector is used as an input to the learner.

Using the Learner

About the Learner

The learner used was the MultilayerPerceptron functionality provided in the Weka data mining

package (Frank). Such a neural network is more appropriate than other learners like Bayesian

approaches because the neural network is capable of generalizing relationships and classifying

based off of inputs that it has never seen before (perfect for floating point calculations), whereas

a Bayesian approach requires some subset of symbols in the inputs to have been seen before.

14

For this experiment, since the inputs will always be floating point numbers that can vary greatly,

the Bayesian approach is inappropriate, although it is simpler to use and understand.

The MultilayerPerceptron function in Weka is a feed-forward network, meaning that there are no

cycles in the network topology. For each input processed, the same artificial neuron will never

be visited twice. Additionally, this package uses back propagation to correct error while training.

The package allows a user to determine the network’s training parameters. For this experiment,

trial-and-error produced acceptable experimental results with the following settings: random

seed = 13, hiddenlayers = a (automatic construction by Weka), learning rate = 0.5, momentum =

0.2, training time = 5000 or 8000 epochs, depending on which dissimilarity error computation

method was used (5000 for method 1, 8000 for method 2).

Preparing Tests

The tests were performed with 10-way cross validation. The data is partitioned as explained.

Since there are slightly more than 1600 root duplicates, each run of the cross validation

contains 160 reports from the assorted reports dictionary that have a root duplicate. These are

selected by randomly choosing a key from the inverse duplicate table and then choosing a

report that is a duplicate of this key. This report is removed from the assorted reports table and

also from the root duplicate table. If the root duplicate key has no more reports listed as

duplicates, the key entry is removed from the table entirely. In addition to 160 assorted reports

with duplicates, 160 assorted reports are chosen at random and removed from the assorted

reports table. This grouping of 320 articles is called a data bin. When choosing assorted reports

at random, assorted reports that have a root duplicate are not chosen. In this manner, no report

will appear in more than 1 time and in no more than 1 data bin.

Data Bin
 Reports With Duplicates 160
 Reports With No Duplicates 160
 Total Reports Per Data Bin 320

Training Set (Subset of a Test Set)

Duplicate Result Vectors 160

Test Set (Search Results from a Data Bin)

Non-Duplicate Result Vectors 1440

Duplicate Result Vectors 160

Total Training Cases 1600

Non-Duplicate Result
Vectors 500,000+

 Total Test Cases 500,160+

Table 1- A tabular depiction of how experimental data is constructed.

15

Once this has been completed, the reports in each data bin are searched against the index. The

result vectors from this searching and scoring are written to a test set. There are 10 such test

sets, one for each data bin. Results show that after performing the search, each test set

contains 160 result vectors classified as duplicates and 3-4 thousand times that number of

result vectors classified as non-duplicates. The large difference in the amount of duplicate

vectors to non-duplicate vectors is because each time article is searched against the index, any

article with commonality will return a vector. Since each data bin contains only 160 duplicates,

this is the maximum number of duplicate vectors that can appear. However, every indexed

report that had commonality with any report in this data bin that also happens not to be a

duplicate is in this set as well. With over 1600 reports indexed, and 320 reports to search in

each data bin, this will result in about half of a million result vectors per test set.

To train the learner, smaller training sets were constructed from each test set. The training

cases for a single training set all come from the same test set of result vectors, and there is no

overlap between training sets. Trial-and-error showed that the best results are yielded when the

Figure 4- A diagram showing the construction of 10 data bins. Each cluster represents a data bin. The

lighter circle in a cluster represents 160 reports with known duplicates. The darker circle represents

160 other reports. There is no overlap in datasets.

16

test sets contain all result vectors classified as duplicates from a test set (160 test cases), and

random result vectors that are not duplicates are chosen from the same test set until the training

set is composed of about 10% result vectors classified as duplicates and the rest classified as

non-duplicates for a total of about 1600 test cases in each training set.

Conducting Testing

To test, the 1st training set is used to train the learner. Then, the 9 test sets that were not used to

create the 1st training set are used for testing. Results are recorded. The neural network is reset.

The training process is repeated with the second training set. Each of the 9 test sets that were

not used to create the 2nd training set are used to test. The results are recorded. This process is

repeated until all 10 training sets have been used, and 90 tests have been conducted. In this

manner, the results are produced and verified using 10-way cross validation.

Chapter 5: Results

Once the results were gathered for each dissimilarity error method, the mean true positive rate

and the mean false positive rate were gathered from each of the 10 tests on training sets. For

the first dissimilarity error method, some tests performed significantly higher (5% – 15%) than

the mean true positive rate while scoring above the mean false positive rate only slightly (2.5%).

For second method, the true positive rate remained around 14% while the false positive rate

remained at about 1.1% in all but the most extreme cases. Both of the terms true positive and

false positive are defined subsequently.

17

Test 1 Test 2
Mean TP 0.285 Mean TP 0.236
Mean FP 0.039 Mean FP 0.027

Test 3 Test 4

 Mean TP 0.281 Mean TP 0.315
Mean FP 0.038 Mean FP 0.041

Test 5 Test 6
Mean TP 0.285 Mean TP 0.193
Mean FP 0.038 Mean FP 0.020

Test 7 Test 8
Mean TP 0.325 Mean TP 0.228
Mean FP 0.048 Mean FP 0.026

Test 9 Test 10
Mean TP 0.091 Mean TP 0.223
Mean FP 0.005 Mean FP 0.027

Table 2- The values obtained from each test under dissimilarity error method 1. TP stands for True

Positive. FP stands for False Positive.

Test 1 Test 2
Mean TP 0.195 Mean TP 0.123
Mean FP 0.023 Mean FP 0.010

Test 3 Test 4

 Mean TP 0.165 Mean TP 0.144
Mean FP 0.011 Mean FP 0.006

Test 5 Test 6
Mean TP 0.149 Mean TP 0.157
Mean FP 0.013 Mean FP 0.013

Test 7 Test 8
Mean TP 0.098 Mean TP 0.067
Mean FP 0.004 Mean FP 0.002

Test 9 Test 10
Mean TP 0.173 Mean TP 0.166
Mean FP 0.014 Mean FP 0.017

Table 3- Results from dissimilarity error method 2

In Figures 5 and 6, the results are listed. The true positive number corresponds to the fraction of

result vectors that belong to reports that that have a duplicate and the vectors were also

18

correctly classified as characteristic of duplicates. The false positive corresponds to the fraction

of result vectors that do not belong to reports with duplicates that were incorrectly classified as

being characteristic of a duplicate. Once these figures were obtained, a global mean of both true

positive percentages and false positive percentages was calculated, as was the variance in the

test figures. The cross validation results are listed subsequently.

Mean TP 0.24667 Variance TP 0.00480
Mean FP 0.03126 Variance FP 0.00016

Table 4- Global mean and variance for dissimilarity error method 1

Mean TP 0.14426 Variance TP 0.00145
Mean FP 0.01164 Variance FP 0.00004

Table 5- Global mean and variance for dissimilarity error method 2

The cross validation reveals that the tests were highly consistent. The learner is capable of

using the proposed model to correctly classify about 24.5% of duplicates with an expense of

about 3.1% of non-duplicate search results being incorrectly classified, or to classify 14% of

duplicates correctly at an expense of 1.1% of non-duplicate search results being classified

incorrectly.

Chapter 6: Discussion

Discussion of Results

Although a true positive rate of 24.5% would be gladly welcomed by any project manager who

has to manually examine bug reports in order to detect duplicates, this success rate comes at a

very high cost in misidentification. Although it seems good that the false positive rate was so low

even though the only information from the reports used were textual descriptions written in

natural language, the 3.1% rate of false positives can be misleading. Since it refers to the

percentage of result vectors from non-duplicate articles that were classified as duplicates, and

each search yields one result vector for each indexed report that has any commonality at all

with a new report, this means that for every new report that was searched, roughly 50 (about

520,000 result vectors per test set /320 articles for each data bin * 3% = 48.75) reports from the

index will incorrectly be considered as a duplicate of the new report. Since each bug report

cannot have more than one duplicate, these results are simply not usable in a practical system

19

because it adds too much overhead in triage. This number shrinks to about 18 duplicates per

new report if the second dissimilarity error method is chosen. However, as the index size

increases, so will the number of false duplicates per new report since more reports are likely to

introduce more commonality.

Other Practical Limitations

The system was built as an experiment in combining machine learning with natural language

techniques. This required a more granular approach to using the vector cosine technique in

order to better train the learner. However, the sheer amount of data produced by a search on a

full index of bug reports would be prohibitive to actively using the system. For every article that

has a word or phrase in common with a new report, a result is returned. There is a high

likelihood that most reports in the index will share some subset of words.

As the number of indexed articles grows, so will the search time. The run-time of a production-

quality version of the system would then be О(l* n), where l is the length of the new report, and

n is the number of indexed reports. For small indexes (when l approaches n), this run-time is

quadratic with respect to the number reports in the index. For large indexes, it results in an

extremely slow sub-polynomial algorithm. In all but the best of cases, the algorithm will also

result in producing an extremely large memory footprint that is not feasible for most systems to

handle. Although the worst cases are not likely to happen, actual use of the system is very slow.

This analysis corresponds to an implementation in a real system, not accounting for all

operations to ensure a good experiment.

Additionally, in contrast to more slow parts of the system, it is noteworthy that in experimentation

the learner added no significant overhead in clock time. For each test, hundreds of thousands of

result vectors were classified within seconds. With a much larger index, this may change.

Chapter 7: Conclusions and Future Work

Conclusions

A system to automate the detection of some software bug reports was proposed that uses a

granular, phrase-based vector cosine technique to prepare a neural network for classifying new

bug reports as either a duplicate of an indexed bug report, or else as not a duplicate. An

experiment was presented, along with results that demonstrate 24.5% of duplicates being

detected at an expense of 3.1% false positives, or 14% being detected at an expense of 1.1%

false positives under a slightly different method. The experiment shows that a neural network

20

can successfully be employed to recognize the general signature that a duplicate relationship

between bug reports has. Practical limitations of the system are explained subsequently, and

some methods for overcoming those limitations are also suggested. Additionally, suggestions for

future work are presented in the form of new ideas to explore in an attempt to get better results

from a machine learner. The experiment shows promise of better results in the application of

older natural language computational techniques to a new problem.

Suggestions for Improving Run-Time

Exploiting Code Parallelism

There are some items that can be implemented on the system in order to improve the speed (in

clock time) that the system performs a search and scores the results. First and simplest, the

very platform where the work is performed has a lot to do with the amount of time it will take to

compute the results. Although it is a very simple improvement that makes no change in theoretic

run-time, the algorithm is ripe for parallelization. It would be a rather simple task to distribute the

index across several computers, allowing each machine to perform part of the search. If the

search on each machine is distributed among one or more processors (or processor cores), a

substantial speedup can be expected since the search is a read-only process.

The scoring aspect of the experiment can also expect speedup from parallelism. By using clever

orders of processing and arranging search results properly, almost every part of the scoring

process can take advantage of inexpensive and efficient vector processors available today.

These can come in the form of processors like the Cell B.E. or graphics processors that have

available API’s for scientific programming. Since the vectors in these processors are usually

large, and there are a number of them available for use, this can reduce the run-time

significantly even if it is only a scalar reduction. Although parallel algorithms can become very

difficult to write, the task is almost trivial when there is not much data to be shared among

running processes. In the case of scoring results with the vector cosine technique, the longest-

running part of the algorithm would be preparing the results to maximize usage of the vectors in

such a processor. The combination of these two types of inexpensively implemented parallelism

can greatly reduce run-time without much of an overhead in algorithm construction.

Maintaining a Smaller Index

The size of results returned by a search directly affects the time it will take to classify a new

report. By keeping the index small, fewer results will be returned. Other studies have indicated

that new bug reports are likely to be duplicates of those that have also been created relatively

21

recently. An empirical study would best determine, for each project, the oldest reports that

should be indexed. Since the purpose of the experiment is to reduce the time it takes to triage

duplicates, not to eliminate it, it is acceptable to maintain a smaller index at the expense of

missing some duplicate bug reports from older items. This would also likely reduce the false

positive rate.

Processing the Shortest Phrases Differently

There is a large likelihood that since all bug reports for a particular project are referring to the

same product that if any new report is searched that a lot of very short phrases will be matched

from otherwise very different reports in the index. This will bloat the search results and greatly

increase scoring time. One option is to provide an empirically-derived threshold in which articles

with no longer phrase matches are only scored if they contain as many or more short matches

as the required threshold, or perhaps ignoring the shorter phrases altogether until a minimum

threshold of word matches exist for a given pair of articles. The definitions of “short match” and

“long match” will also likely depend on the specific project for which bugs are being reported,

and what data is being collected. There are likely many more ways to process shorter phrases

differently, but the key is to reduce the work load created by many small, insignificant matches.

Improving Learner Success

The goal in improving the learner’s ability to classify documents should be to reduce the false

positive rate without significantly lowering the true positive rate rather than aiming to significantly

raise the true positive rate. There are a few ideas that can, perhaps, increase the classification

success.

Treating Phrases as Words

The vector-cosine technique described calculates on several vectors based on a word-by-word

basis for each vector. If one were to instead treat each common phrase between two articles as

a single word, the phrases could be compared based upon their phrase frequency. The new

report and the indexed report with commonality would arrange one large vector of these phrase

frequencies, with each element of the vector corresponding to the frequency of a phrase’s

appearance inside the report. Then, the vector cosine could be applied to find the error between

the two reports. This information would then be used as the final numerical input to the learner

rather than the sum of all error from phrase lengths. This technique would likely also provide a

faster run-time, as only one vector cosine needs to be calculated per report in the search

results.

22

Refining Experiment Results

Since often times declaring a bug report as a duplicate is a very political process on message

boards, and some reports classified as duplicates actually bear little common language, it is

possible that the learner is generalizing its knowledge in order to include these “difficult

duplicates” and introducing many false positives in the process since non-duplicates can look

similar to these particular duplicates. It would likely be advantageous to run another experiment

after running it once, using just the correctly classified result vectors to train a new neural

network and removing all incorrectly classified result vectors from the training set. By doing this,

it is possible that the learner will be able to maintain the same 25% true positive rate and

significantly lower the false positive rate by learning from correct examples only.

Rethinking the Repository

Perhaps the most problematic aspect of automatic bug report processing is that a user is free to

enter a textual description he or she deems necessary. Although this is the very strength of a

bug reporting tool, this can lead to a lot of confusion for an automating tool that relies on word

frequencies, length of postings, phrase matches, and any other form of natural language

processing to aid in identifying duplicate bug reports..

Some individuals write very accurate and concise bug reports. Others will write a description of

the problem, and then proceed to issue a multi-paragraph complaint, masking the most useful

parts of the description behind “noise.” Still other bug reports contain example output from

applications or compiler warnings, or stack traces from a program crash. It is probable that the

learner’s accuracy would be improved if bug repositories migrated to a more granular storage

schema whereby users are instructed to include only a description of the problem in one field,

code examples in another, stack traces from program crashes in another if applicable, and

personal comments in yet another. It may be necessary to enforce these measures by

restricting the sizes of certain fields. However, the most important aspect of this plan is to isolate

key report description parts into their own group in a bug report form. This granularity would

allow for a much greater degree of flexibility in automating the triage and duplicate detection

processes in addition to reducing the amount of “noise” in a textual description.

23

Bibliography

Eclipse Foundation. Eclipse bugs. 2007. March,April 2009 <https://bugs.eclipse.org/bugs/>.

Frank, Ian H. Witten and Eibe. "Data Mining: Practical machine learning tools and techniques",
2nd Edition. San Francisco: Morgan Kaufmann, 2005.

Hiew, Lyndon. "Assisted Detection of Duplicate Bug Reports." MS Thesis University of British
Columbia, May 2006. 19 April 2009
<www.cs.ubc.ca/grads/resources/thesis/Nov06/Hiew_Lyndon.pdf>.

Jalpert, Nicholas and Weimer, Westley. "Automated Duplicate Detection for Bug Tracking
Systems." International Conference on Dependable Systems & Networks. Anchorage: IEEE,
2008. 52-61.

Lemon, Bryan. Personal Communication, February - March 2009.

Lewis, David and Ringuette, Marc. "A Comparison of Two Learning Algorithms for Text." 1994.
CiteSeerx Beta. 19 April 2009 <http://www.cs.cmu.edu/~mnr/papers/categ.ps>.

Madnani, Nitin. "Getting Started on Natural Language Processing with Python." 2007. Madnani,
Nitin Personal Site. 19 April 2009 <http://www.umiacs.umd.edu/~nmadnani/>.

Natural Language Toolkit. December 2008 <http://code.google.com/p/nltk/>.

Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J. and Wang, B. "Automated
support for classifying software failure reports." 25th International Conference on Software
Engineering. Portland, 2003. 465-475.

Runeson, Alexandersson and Nyholm. "Detection of Duplicate Defect Reports Using Natural
Language Processing." 29th International Conference on Software Engineering (ICSE'07).
IEEE, 2007. 499-510.

Watson, John. Big Huge Thesaurus: Synonyms, antonyms, and rhymes (oh my!). 2009. January
2009 <http://words.bighugelabs.com>.

24

Appendix
Six sample bug reports are included. Each pair of two reports has been classified as duplicates.

The first report is the original, the second is the duplicate. The data presented in the first two

duplicate pairs illustrates why automated duplicate analysis in free-form text can be so difficult.

It can be difficult for even a human to determine, based off of the description text alone that the

reports should be considered duplicates.

Each page contains one report, with only minor editing to reduce the physical size and was

copied directly from the HTML rendering in a browser. Each duplicate pair is separated by a

heading for clear demarcation. These reports come from the Eclipse bug report site,

https://bugs.eclipse.org/bugs/.

25

First Pair

Details

Summary:
Cannot use CVS keywords in code

templates

[Eclipse]

Bug#:
27301

Product: JDT

Component: Core

Status: RESOLVED

Resolution: FIXED

Hardware: PC

OS:
Windows

2000

Version: 2.1

Priority: P3

Severity: normal

Target

Milestone:
2.1 M4

People

Reporter: pgawron@dmcs.p.lodz.pl

Assigned To:
JDT-Core-Inbox <jdt-core-

inbox@eclipse.org>

QA Contact:

Description:
Opened: 2002-11-28 07:44 -

0400

I wanted to generate my own file template which would already use $Revision$

and Log keywords. $ sign starts Eclipse variables in templates and I

receive

error "template has incomplete variables".

How to produce:

Menu: Window->Preferences->Java->Templates.

Choose template and edit template. Try to insert $Revision$.

I cannot confirm my new template.

Bye,

Piotr

https://bugs.eclipse.org/bugs/show_bug.cgi?id=27301
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\describecomponents.cgi
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23status
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23resolution
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23priority
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23bug_severity
mailto:pgawron@dmcs.p.lodz.pl
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23assigned_to
mailto:jdt-core-inbox@eclipse.org
mailto:jdt-core-inbox@eclipse.org
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\show_bug.cgi%23c0

26

Details

Summary: Problems starting Eclipse Linux-Motif

[Eclipse]

Bug#:
27666

Product: Platform

Component: SWT

Status: RESOLVED

Resolution:
DUPLICATE of

bug 27031

Hardware: PC

OS:
Linux-

Motif

Version: 2.1

Priority: P3

Severity: normal

Target

Milestone:

People

Reporter:
DJ Houghton

<dj_houghton@ca.ibm.com>

Assigned To:
Platform-SWT-Inbox <platform-

swt-inbox@eclipse.org>

QA Contact:

Description:
Opened: 2002-12-04 11:05 -

0400

build 2002-11-27

I have a new install of RedHat 8.0.

I downloaded and tried to start the motif build.

I get the following error message:

bash-2.05b$ Warning: Missing charsets in String to FontSet conversion

X Error of failed request: BadFont (invalid Font parameter)

 Major opcode of failed request: 55 (X_CreateGC)

 Resource id in failed request: 0x1e00028

 Serial number of failed request: 297

 Current serial number in output stream: 337

Is there something wrong with my install?

Thanks.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=27666
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\describecomponents.cgi
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23status
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23resolution
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\show_bug.cgi
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23priority
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23bug_severity
mailto:dj_houghton@ca.ibm.com
mailto:dj_houghton@ca.ibm.com
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23assigned_to
mailto:platform-swt-inbox@eclipse.org
mailto:platform-swt-inbox@eclipse.org
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\show_bug.cgi%23c0

27

Second Pair

Details

Summary:
Tagging warns about uncomitted

changes that are not visib...

[Eclipse]

Bug#:
29026

Product: Platform

Component: Team

Status: RESOLVED

Resolution: FIXED

Hardware: PC

OS:
Windows

2000

Version: 2.1

Priority: P3

Severity: normal

Target

Milestone:
2.1 M5

People

Reporter:
Øyvind Harboe

<oyvind.harboe@zylin.com>

Assigned To:
Michael Valenta

<Michael_Valenta@ca.ibm.com>

QA Contact:

CC: flyguy@null.net

pascal_rapicault@ca.ibm.com

Description:
Opened: 2003-01-06 06:49 -

0400

Here is what I did:

- Nobody else is using the repository

- Team->Synchronize. Result:

"Workspace resources are the same as remote".

- Team->Tag as version. Result:

"You are tagging 'foobar' that has uncomitted changes..."

https://bugs.eclipse.org/bugs/show_bug.cgi?id=29026
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\describecomponents.cgi
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23status
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23resolution
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23priority
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23bug_severity
mailto:oyvind.harboe@zylin.com
mailto:oyvind.harboe@zylin.com
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23assigned_to
mailto:Michael_Valenta@ca.ibm.com
mailto:Michael_Valenta@ca.ibm.com
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\show_bug.cgi%23c0

28

Details

Summary:
Decorators show directory has updated

files, replace w la...

[Eclipse]

Bug#:
29413

Product: Platform

Component: Team

Status: RESOLVED

Resolution:
DUPLICATE of

bug 29026

Hardware: PC

OS:
Windows

2000

Version: 2.1

Priority: P3

Severity: normal

Target

Milestone:

People

Reporter: IH <flyguy@null.net>

Assigned To:

Platform-VCM-Inbox

<platform-vcm-

inbox@eclipse.org>

QA Contact:

Description:
Opened: 2003-01-13 16:35 -

0400

Decorators show directory has updated files, replace w latest doesn't remove

decorator. No files are highlighted in the directory. Synch with repository

reports same as source.

cvs update -C -d -P "/directory"

I turned off prune empty directories and then issued the replace with latest.

The decorator turned off and a directory was created with no files inside. I

then turned prune empty directories back on and replace with latest. The

directory was pruned and the decorator remained off.

This is using M4

https://bugs.eclipse.org/bugs/show_bug.cgi?id=29413
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\describecomponents.cgi
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23status
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23resolution
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\show_bug.cgi
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23priority
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23bug_severity
mailto:flyguy@null.net
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23assigned_to
mailto:platform-vcm-inbox@eclipse.org
mailto:platform-vcm-inbox@eclipse.org
mailto:platform-vcm-inbox@eclipse.org
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\show_bug.cgi%23c0

29

Third Pair

Details

Summary:
[Key Bindings] Keybinding

preference page: Usability

[Eclipse]

Bug#:
28470

Product: Platform

Component: UI

Status: RESOLVED

Resolution: FIXED

Hardware: PC

OS:
Windows

2000

Version: 2.1

Priority: P3

Severity: major

Target

Milestone:

People

Reporter:
Martin Aeschlimann

<martin_aeschlimann@ch.ibm.com>

Assigned To:
Chris McLaren

<csmclaren@andelain.com>

QA Contact:

CC: akiezun@mit.edu

Description:
Opened: 2002-12-17 05:55 -

0400

20021216

The current configuration dialog for keybindings requires a lot of clicks

through combo boxes to get things done. Especially when you want to get a

global picture of where is what action configured, this requires to go

through

each combination.

I was thinking that a table of all shortcurts with there currently assigned

action would be a good approach.

Having a combo box to select which configuration should be changed

(Default/Emacs) and the table with columns

'shortcut', 'global action' and 'text action'

where the table contains all possible shortcuts with the current action for

the

selected configuration.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=28470
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\describecomponents.cgi
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23status
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23resolution
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23priority
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23bug_severity
mailto:martin_aeschlimann@ch.ibm.com
mailto:martin_aeschlimann@ch.ibm.com
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23assigned_to
mailto:csmclaren@andelain.com
mailto:csmclaren@andelain.com
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\show_bug.cgi%23c0

30

Details

Summary: key bindings - UI is the other way around

[Eclipse]

Bug#:
28493

Product: Platform

Component: UI

Status: RESOLVED

Resolution:
DUPLICATE of

bug 28470

Hardware: PC

OS:
Linux-

Motif

Version: 2.1

Priority: P3

Severity: major

Target

Milestone:

People

Reporter:
Adam Kiezun

<akiezun@mit.edu>

Assigned To:
Platform-UI-Inbox <Platform-

UI-Inbox@eclipse.org>

QA Contact:

Description:
Opened: 2002-12-17 08:12 -

0400

20021216

there's no easy way to do the most obvious thing that people will want to do

-

namely, change the binding for a function

as it is now, you have to know the key sequence first.

i never do - if i did i wouldn't be chaning the binding - i know what the

function is, however

major - makes the feature half-usable only

https://bugs.eclipse.org/bugs/show_bug.cgi?id=28493
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\describecomponents.cgi
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23status
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23resolution
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\show_bug.cgi
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23priority
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23bug_severity
mailto:akiezun@mit.edu
mailto:akiezun@mit.edu
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\page.cgi%23assigned_to
mailto:Platform-UI-Inbox@eclipse.org
mailto:Platform-UI-Inbox@eclipse.org
file:///C:\Documents%20and%20Settings\Administrator\Desktop\problem%20report\show_bug.cgi%23c0

		2009-05-06T13:59:09-0400
	John H. Hagen
	I am approving this document.

