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This work describes the production of an application Error Propagation Metrics 

from XMI which can extract process and display software design metrics from 

XMI files. The tool archives these design metrics in a standard XML format 

defined by a metric document type definition.

XMI is a flavour of XML allowing the description of UML models. As such, the 

XMI representation of a software design will include information from which a 

variety of software design metrics can be extracted. These metrics are potentially 

useful in improving the software design process, either throughout the early 

stages of design if a suitable XMI-enabled modelling tool is deployed, or to 

enable the comparison of completed software projects, by extracting design 

metrics from UML models reverse engineered from the implemented source 

code.

The tool is able to derive the error propagation of metrics from test XMI files 

created from UML sequence and state diagrams and from reverse engineered 

Java source code. However, variation was observed between the XMI 

representations generated by different software design tools, limiting the ability of 

the tool to process XMI from all sources. Furthermore, it was noted that subtle 

differences between UML design representations might have a marked effect on 

the quality of metrics derived.
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In conclusion in order to validate the usefulness of these metrics that can be 

extracted from XMI files it would be useful to follow well-documented design 

projects throughout the total design and implementation process. Alternatively, 

the tool might be used to compare metrics from well-matched design 

implementations. In either case design metrics will only be of true value to 

software engineers if they can be associated empirically with a validated 

measure of system quality.
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1 INTRODUCTION

XMI provides a standard format for representing UML models of software design, 

potentially allowing software engineers to archive and exchange models in a tool 

independent fashion. If a current or future version of XMI becomes widely accepted, 

and supported by commercial modelling tools, it will be highly desirable to develop 

freely available tools which can use and manipulate these XMI files. The major 

practical motivation for the work described in this dissertation was to develop such 

a tool and demonstrate that it can process XMI files to access software design 

parameters and calculate Error Propagation Probabilities. Further to this aim, it was 

hoped to determine whether any such software metrics extracted from the XMI 

representation would have any value in analysing and improving the software 

design process.

The first major Section (2) of this report reviews the topic of software metrics, with 

particular emphasis on definitions of object-oriented metrics and how it is hoped 

that these metrics may be used to measure how well a system design meets the 

accepted object-oriented design paradigm and hence to improve design quality. 

This is followed by a Section (3) detailing the technical background for the work: the 

salient features of UML notation, XML and XMI. Error Propagation term, the design, 

implementation and testing of this tool Metrics from XMI is described in Sections 4 

and 5, Final conclusions from the MSc project are presented in Section 6.
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2 LITERATURE REVIEW: SOFTWARE METRICS

Software metrics measure attributes of a software system and may be used to 

quantitatively express elements of a system model or of program code.  A 'metric' 

may be a direct measure of a particular attribute (for example Lines of Code or 

Number of Classes) or, potentially more usefully, an indirect measure of a higher 

level features of the system, such as Quality or Complexity. These indirect metrics 

often express relationships both between the directly observable metrics, and also 

with external attributes of the system, such as runtime failures or problems 

(Bennatan, 1995; Fenton and Pfleeger, 1997).

Historically software metrics have been used to assist in both estimating the costs, 

effort and timescale for the development and maintenance of a system, or 

alternatively to provide a measure of the quality of the whole system and its 

individual components. The most common fundamental use of software metrics is 

to measure or predict system size, which is considered to be the major driver for 

estimations of system cost or development effort. Size metrics are also used as 

simplistic measures of a software engineer's productivity and to measure progress 

of a developing system (reviewed by Hughes and Cotterell, 1999). Software metric 

is valuable only if it can be shown empirically to be associated reliably with 

important quantitative or qualitative attributes of the system (Fenton and Pfleeger, 

1997).
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2.1 Uses for Software Metrics

Software metrics can input into several areas of the software development life cycle 

(Hughes and Cotterell, 1999):

 Effort or cost estimation: time and resource allocation: project planning

 Improving the design process

 Measuring ongoing project development in terms of specific outputs

 Evaluating the quality of the product, in terms of functionality, faults and 

design

 Evolving and maintaining the product

These functions are implemented in the following processes

1. Project Management

Relatively simple metrics such as lines of code, or defect rates are widely used 

in industry for managing software development projects. Predictive metrics are 

used to estimate the effort, timescale and resource requirements of projects; 

while assessment metrics track progression of a project, as a means of 

assessing productivity (Fenton and Pfleeger, 1997).

Simple metrics are favoured for this because of their ease of collation, 

application and comprehension, although limits to their usefulness are well 

documented (Bennatan, 1995).
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2.   Quality Control and Assurance

Appropriate software metrics can also be used to measure the quality of the 

software product throughout development and upon completion. These metrics 

may be simple rates of fault detection, or be more abstract measures of system 

function and complexity (Bennatan, 1995). 

3.   Design Process

Perhaps the greatest unrealized potential of software metrics is in the 

evaluation and improvement of the design process (Reiing, 2001).

Particularly in an object-oriented design environment, the quality of the design 

is critical for the implementation, structure and quality of the final product. 

Mistakes and bad choices in the design stage can be difficult and expensive to 

correct later in development.

Metrics which can be used to capture high level design concepts and measure 

their quality have the potential to assist in the design of the overall system, and 

in identifying potential problem areas during implementation.

2.2 Types of Software Metrics

2.2.1 Direct versus Indirect

Software metric may be a directly derived attribute of the system such as: 

(thousand) Lines of Code (KLOC), number of errors per KLOC, Direct Source 

Instructions (DSI) or other, low-level, code-based metrics. An indirect metric has 
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value as a measure of a higher level, abstract property of the system such as 

quality or complexity (Bennatan, 1995). 

Direct metrics can of course be used as indicators of higher level properties, for 

example the average number of methods per class can be indirectly interpreted as 

a measure of complexity or quality, when compared to a quality standard or model. 

Alternatively, more complex metrics may be derived or calculated, often from low-

level, direct metrics, in order to capture measures of system complexity (for 

example, function point analysis, Section 2.3) (Fenton and Pfleeger, 1997).

2.2.2 High Level versus Low Level

Low level metrics are recorded from direct inspection of the code, a process lending 

itself to automation, but necessarily not available until code is being implemented.

High level metrics focus on the architecture of a design or program. They might be 

defined on the basis of a design model and available early in the development 

process, or they may be derived from underlying low level metrics, and dependent 

on detailed design knowledge and code. Tools also exist to assist in the calculation 

of certain high level metrics, for example the Together UML design tool can extract 

design metrics from system models throughout development (Together 2002).
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2.2.3 Predictive versus a Posteriori

A posteriori metrics (Nesi and Querci, 1998) are calculated from completed 

software projects, where a full range of detailed parameters can be derived from the 

fully implemented code and design. These metrics are useful for examining the 

quality of the system, and relating its final properties to earlier, predictive models 

and estimations. They can be used for the testing and evaluation of the system, and 

contribute to ongoing evolution and maintenance.

Predictive metrics, derived in the early, pre-coding design phase, or during the 

course of implementation, can be used both in project planning as effort estimators, 

and as 'early quality indicators' (Basili et al., 1996; Chidamber and Kemerer, 1998). 

Early prediction is a useful goal, allowing identification of high risk components 

which will be 'expensive' to implement or error prone (Emam et al., 2001). As an 

example, a metric indicator of poor design might be 'exceptional class complexity'.

2.2.4 Procedural versus Object-Oriented 

During the previous 30 years, a range of software metrics have been evolved for 

the assessment of software programs developed in functional programming 

languages (reviewed for example in Hughes and Cotterell, 1999). The sequential 

nature of 'traditional' software development lifecycle models has meant that these 

metrics were considered usefully adequate, if not ideal, for project management 

applications, and have also been useful for some quality control functions. 
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However, the introduction of object-oriented design and programming has lead to 

marked changes in working practices. The old models of development lifecycles are 

less relevant as design and implementation stages overlap and cycle, and as the 

balance of developers’ time have shifted from the implementation of code to the 

analysis of design. Novel aspects of the object-oriented paradigm such as 

encapsulation, inheritance, abstraction, coupling and cohesion cannot be captured 

by the standard existing metrics (Booch, 2000). 

Whereas the main cost driver for non object-oriented systems is deemed to be 

system size, measured by simple low level metrics or higher level estimates of 

complexity (such as function point analysis) there is a belief that the further 

structural properties of object-oriented systems will incur additional cost factors; 

hence new metrics must be derived to represent these. Furthermore, controlling the 

design complexity of object-oriented systems is considered to be of central 

importance, and new metrics should be defined which assess the quality of the 

design (Chidamber and Kemerer, 1994; Marchesi, 1998; Booch, 2000).

2.3 'Traditional' Software Metrics

The simplest code-based, software metrics have been used since the 1960s for 

measuring productivity and for time, cost and effort estimations. These include 

variants on (thousands) of Lines of Code (KLOC), delivered source instructions 

(DSI) and rates of defects per KLOC as a measure of quality. These metrics can be 

directly measured or statistically estimated. Several models for estimation of system 

cost or effort prediction use these metrics as inputs including SLIM (Putnam, 1978) 
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and Constructive Cost Models (COCOMO: Boehm, 1981). Even such simple 

metrics are difficult to count or estimate accurately, and indeed to use meaningfully, 

requiring expertise and historical datasets with which to calibrate the models.

Metrics which try and estimate complexity are potentially better estimators of effort. 

Function complexity can be estimated directly from code, for example McCabe's 

cyclomatic complexity Mc (McCabe, 1976) and Halstead's measure Ha (Halstead, 

1977). If these estimators measure complexity in a programming language neutral 

form they can be more readily applied and compared across a wider range of 

design projects.

More abstract measures of function size attempt to provide more useful predictors 

of system size. Function Point Analysis (FPA: Albrecht and Gaffney, 1983; Symons, 

1988) provides a complex method to measure size in terms of functional outputs. 

System functions are enumerated and weighted according to complexity, and then 

scaled relative to a system complexity factor. Whilst theoretical and practical 

criticisms of FPA have been made (it is difficult to calculate, the weighting is 

complex and somewhat arbitrary, and there is dispute over how to define relevant 

independent functions and indeed whether weightings are necessary) it can be 

implemented early in design, and is useful for predictive modelling. FPA has been 

widely used in certain sectors of the industry (Heiat and Heiat, 1997).

These established metrics are well understood by practitioners and researchers, 

and there is extensive empirical evidence to support their use in structural systems 
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albeit with limited accuracy. However, it is necessary to calibrate the metrics with 

relevant historical data sets or to otherwise account for the specific system 

environment (Kemerer,  1987; Subramanian and Corbin, 2001).

2.4 Object-Oriented Software Metrics

2.4.1 The Object-Oriented Paradigm

Object-orientation has become the predominant model for the analysis, design and 

implementation of software projects and applications. Object -orientation seeks to 

model the 'real world', as collections of objects which have attributes (state) and 

operations (behaviour).

An object-oriented program is based on classes that describe collections of objects 

and define the 'type' of an object, the properties and behaviour of objects. Object-

orientation seeks to provide

 Modularity: the program is assembled from components, which can allow 

re-usability and pluggability

 Interfaces: public interfaces describe how components can be used by their 

clients i.e. their publicly accessible attributes and operations

 Abstraction: publicly accessible interfaces of modules hide the complexities 

of implementation from their clients, allowing pluggability

 Encapsulation: modules hide their information from clients, preventing its 

misuse
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 Minimal Coupling: the dependency between modules is minimized which 

allows modules to be maintained and modified independently

 Optimized Cohesion: well designed modules provide related functionality, 

realized by operations acting on shared attributes

 Inheritance: Allows components to be extended, so that hierarchies of 

increasingly specialized components can be created from ancestors 

(superclasses)

 Polymorphism: through inheritance and overriding, attributes and 

operations have context dependent meaning and behaviour. This allows for 

late binding. (References Stevens and Pooley, 2000; etc.)

Object-oriented development is claimed to provide competitive advantage 

(facilitating faster development and more flexible products) and may be required for 

increasingly complex applications (Rational, 2000).

2.4.2 Metrics to assess the object-orientation of software

In the past 10 years a number of groups have developed sets of metrics which seek 

to capture and quantify the novel structural aspects of object-oriented design and 

software projects, namely inheritance, abstraction and encapsulation. Metrics 

defined for object-oriented applications can broadly be divided into system/package 

level, class level and method level. Method level metrics correspond to the 

traditional functional metrics discussed above (LOC, Mc, Ha, etc.), and to some 

extent class level metrics may be considered as aggregations of these, with 

additional parameters reflecting class architecture. However, the higher level 

package and system metrics seek to represent the uniquely important features of 
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object-oriented design, and as such might be important aids to improving the 

object-oriented design (Nesi and Querci, 1998).

The work of Chidamber and Kemerer (1991, 1994, 1998) has been seminal in 

defining, theoretically validating, and to some extent empirically verifying a set of six 

object-oriented metrics. Their metric set is listed in Table 1, summarizing how each 

metric is derived, and which object-oriented features they seek to represent. These 

metrics seek to quantify how well a system meets the object-oriented paradigm, in 

terms of optimizing inheritance, ensuring encapsulation, minimizing coupling and 

improving cohesion. The metrics can then be used to judge the quality of a system, 

and to identify potential error prone elements, such as overly complex classes. To 

this end the utility of the metrics has to a degree been empirically verified by several 

studies (Li and Henry, 1993; Basili et al., 1996; Chidamber and Kemerer, 1998; 

Briand et al., 2000).

It can be argued that the Chidamber and Kemerer metric set focuses on class level 

metrics and that several of them are highly dependent on low level (i.e. code) 

metrics for their derivation, and as such are not ideally suited to early stage design 

analysis. Furthermore, the metric set may not capture overlapping properties of the 

system nor are the metrics formally and unambiguously defined. Considering again 

Table 1 while DIT and NOC can easily be formalized, WMC is somewhat vague in 

its definition. Futhermore to determine CBO requires detailed design data and RFC 

and LCOM would require code level analyses (Reiing, 2001). Never the less, the 
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value of refined versions of these metrics has been demonstrated by studies in 

which they have accurately predicted poorly designed, error-prone classes (Briand 

et al., 2000). The Chidamber and Kemerer metrics therefore give useful measures 

of class complexity, however, some evidence suggests that class size is still the 

most influential (and possibly useful) metric, and current measures of coupling and 

cohesion fail to markedly improve the value of the metrics (Briand and Wüst, 2001).

Several alternative object-oriented metric sets have been proposed by other 

workers, which tend to share many of the properties of the Chidamber and Kemerer 

set, but may be focused at a higher or lower level of the design. Lorenz and Kidd 

(1994) have defined an extensive set of metrics, which are relatively low level and 

directly measurable, and hence may give a more limited architectural view 

(Harrison et al., 1997). 

Specifically in response to some of the criticisms of the Chidamber and Kemerer 

metric set alternative, 'early definition' metrics have been proposed which should be 

obtainable from early and incomplete program designs (Abreu et al., 1995; Martin, 

1995; Marchesi, 1998, Table 2 and Table 3; Reiing, 2001, Table 4 Bansiya and 

Davis, 2002). Operationally these metrics start by defining which direct metrics or 

parameters are available at an early stage of development, in the absence of code 

(see for example Table 2) and use these direct attributes to define higher level 

measures of structural complexity (see Table 3). Marchesi (1998, Table 2 and 

Table 3) defines sets of measures that are available at the very earliest design 
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stages, i.e. class design, whilst others use properties that will emerge as the design 

is developed (Reiing, 2001;Table 4). Again these metrics seek to allow the 

properties of a system to be compared to a quality model, i.e. against heuristic rules 

which suggest that classes should not have public attributes, coupling should be 

reduced, inheritance hierarchies have an optimal size, etc. As such this early-

definition, high-level metrics would possibly reflect the properties of inheritance, 

encapsulation and coupling. The same metrics sets might then be applicable 

throughout the development lifecycle and a posteriori to measure system and 

component quality.

Marinescu (2001) has identified an important a posteriori use for metrics in the re-

engineering of object-oriented applications. He has described a simple set of 

metrics that can be derived from implemented software projects, which might be 

used to identify potentially poorly designed classes. He pinpoints these as 'outliers' 

that conform badly to the object-oriented paradigm (see Table ). These metrics are 

derived by definition from the fully implemented source code, a process which can 

be automated with parsing tools. Indeed some of Marinescu's metrics are 

incorporated in the Together design package's metric module (Together 2002).

Our approach was a bit different from the perspective of others and our aim is to 

calculate error propagation values from UML diagrams (see Table 6). We interpret 

EP(A,B) as the probability that an error in A is propagated by B (as opposed to 

being masked by B) because the outcome of executing B will be affected by the 

error in A. By extension of this definition, we let EP(A,A) be equal to 1, which is the 
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probability that an error in A causes an error in A. Given architecture with N 

components, we let EP be an NN matrix such that the entry at row A and column 

B be the error propagation probability from A to B.

Table 1: Summary of Chidamber and Kemerer's Six Object-Oriented Metrics

METRIC
HIGH-LEVEL 

ATTRIBUTE
 GENERAL SUMMARY

Weighted Methods 

per Class (WMC)
size

Various weighting schemes can be used, 

reflecting traditional low-level metrics 

Depth of Inheritance 

Tree (DIT)
inheritance

Maximum level of inheritance hierarchy for a 

class, from its root superclass. An indicator 

of re-use and complexity.

Number of Children 

(NOC)
inheritance

Number of subclasses per class, indicates 

extent of re-use.

Lack of Cohesion in 

Methods (LCOM)
cohesion

Somewhat arbitrary definition of cohesion 

calculated by determining how many

methods in a class share attributes.

Coupling Between 

Objects (CBO)
coupling

The number of classes to which a class is 

coupled, by using their methods or 

attributes.

Response set for a 

Class (RFC)
coupling

The number of methods that can be invoked 

in response to a message to a class.
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Table 2: List of Early-Definable System Parameters

(Marchesi, 1998)

Number of Classes

Number of Packages

Number of Root Classes

Number of Responsibilities for a Class

Number of Abstract Responsibilities for a Class

Number of Concrete Responsibilities for a Class

Number of Subclasses of  a Class

Number of Dependencies of  a Class

Number of Dependencies between a Pair of Classes
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Table 3: Marchesi's Proposed 'Early Definition' Object-Oriented Metrics

Class Metrics

CL1 Weighted number of responsibilities for a class

CL2 Weighted number of dependencies for a class 

CL3 Depth of inheritance tree

CL4 Number of immediate subclasses of a class

CL5 Number of distinct classes dependent on a class

Package Metrics

PK1 Number of dependencies outwith a package

PK2 Number of dependencies within a package

PK3 Average of PK1

Global Complexity Metrics

OA1 Number of classes

OA2 Number of inheritance hierarchies

OA3 Average weighted number of class responsibilities 

OA4 Standard deviation of OA3

OA5 Average number of direct dependencies of a class

OA6 Standard deviation of OA5

OA7
Percentage of inherited responsibilities  with respect to total number of 

responsibilities
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Table 4: Reiing's Proposed 'Early Definition' Object-Oriented Metrics

Class Metrics

NAP Number of public attributes in the public interface of a class

NAI Number of public attributes in the inheritance interface of a class

NIA Number of inherited associations of a class

NLA Number of local (non-inherited) associations of a class

NAA Number of all associations of a class

Package Metrics

DNH Depth in the nesting hierarchy

NCP Number of total classes in a package

NPP Number of nested packages in a package

System Metrics

NIH Number of inheritance hierarchies

aggregates

 total number of classes

 mean number of methods per class

 maximum depth of inheritance hierarchy

 etc.
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Table 5: Marinescu's a Posteriori Metrics for Identification of Badly Designed 
Classes

Data-Classes: define few methods other than accessor functions

Weight of Class 

(WOC)

Ratio of non-accessor 

methods to total number 

of interface members

A low WOC value indicates low 

functionality

Number of Public 

Attributes (NOPA)

The number of non-

inherited attributes

belonging to  the class 

interface

 A high NOPA violates 

encapsulation and couple clients to 

the class

Number of Accessor 

Methods (NOAM)

The number of non-

inherited methods 

declared in the class 

interface

High NOAM values may indicate 

that the functionality of the class is 

misplaced in other classes

God-Classes: over-centralize the functionality of the system

Access of Foreign 

Data (AOFD)

The number of external 

classes from which a 

given class accesses 

attributes 

High AOFD indicates tendency to 

Godliness

Weighted Method 

Count (WMC)

A measurement of the 

size and complexity of a 

given classes methods

A high WMC may indicate a major 

abstraction class or Godliness

Tight Class Cohesion 

(TCC)

A relative index of the 

number of connected 

methods accessing 

common instance 

variables

Low TCC ratios indicate non-

communicative behaviour within a 

class
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Table 6: Our Metric Identification

Number of States

Number of Messages

Number of Classes

Number of Packages

Number of Abstract Responsibilities for a Class

Number of Concrete Responsibilities for a Class

Number of Subclasses of  a Class

Number of Dependencies of  a Class

Number of Dependencies between a Pair of Classes
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3 TECHNICAL BACKGROUND

3.1The Unified Modelling Language (UML)

 (These sections reference the UML standards versions 1.3 and 1.4 - available from 

OMG(2002),  and Stevens and Pooley, 2000).

UML arose as a standard language for the specification of the artefacts of software 

systems from the convergence of three object-oriented analysis and design 

methodologies, initially defined by the Rational Software Development Company 

(Rational 2002). Its standards and developments are now controlled by the 

independent Object Management Group (OMG). Being both expressive and 

extensible UML is also suitable for business and non-software object-oriented 

modelling. While used by many software development tools, UML is not itself a 

methodology, and is implementation independent. The language supports higher 

level development concepts such as components, collaborations, frameworks and 

patterns. As such it can be used to document reusable artefacts (components and 

frameworks) as well as supporting system development.

The current version of UML is 1.4 (OMG 2001 UML1.4) Increasing numbers of 

software development tools are compliant with (some of) the 1.3 standards, though 

many still work from previous standards.

A model is a precise, abstract representation of the essential details of a design or 

system, from a given view. UML represents a model by any number of various 
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graphical diagrams which provide multiple perspectives of the system under 

analysis or development. The underlying model integrates these views, which are 

represented to the modeller as a number of artefacts including:

• use case diagrams

• class diagrams

•behaviour diagrams (statechart, activity, interaction (sequence, 

collaboration))

• implementation diagrams (component, deployment).

Architecturally the actual model is described by a UML meta-model and UML 

metamodels are themselves loose instances of MOF (Meta-Object Facility) meta-

metamodels, which provides an architecture neutral format for the inter exchange of 

model objects.

Three main types of modelling diagrams are supported:

 use case model (expressing system requirements from a users viewpoint)

 static model (describing the elements of a system and their relationships)

 dynamic model (describing the behaviour over time of a system).

For the purposes of this study we will restrict consideration to the UML class 

diagram, sequence diagrams and state machines, which captures many of the 

metrics of potential interest for the purposes described in Section 2.
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2.4.3 UML Diagrams

Class diagrams document the static structure of a system: what classes (and 

packages) there are and how they are related, without specifying how they 

implement interactions to achieve behaviour. They can be created early in the 

design process, and refined throughout development, and they are readily 

obtainable from implemented application code. The classes provide all the 

behaviour required by the system.

Some of the class diagram features from which software metrics can be derived of 

are shown in Figure 3. These adapt examples in Stevens and Pooley (2000) or the 

OMG UML 1.3 and 1.4 specifications (OMG 2002).
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Figure 1: Class Notation

The attributes are the data contained in an object of a class, while operations define 

how objects interact open receipt of a message. The operation signature, with 

selector, return type and formal parameters, can be given (for example 

getLength(b:Record): int ).

c

Class Name

Properties

Attributes
  +public
  -private
  #protected
  ~package

Operations

Window

Window

size: Area
visibility: Boolean

display()
hide()

Window         
{abstract,

              author = 'Trevor'}

+size: Area = (100,100)
#visibility: Boolean = true
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: Xwindow*

+display()
+hide()
+create()
-attachXWindow(xwin:Xwindow*)

a

b

Class Notation:
(a) Details suppressed (b) Anlaysis-level details 
(c) Implementation level details (adapted from OMG UMLv1.4)
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Figure 2: Relationships between Classes: Class Association and 
Generalization

In Figure 2a generalization (inheritance) is represented by the open arrow joining a 

subclass to the superclass it inherits from.  The subclass should match the interface 

Student Module
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is taking

is taking

mark:int

getMark():int

Student Module

1..* 6
is taking

Mark

mark:int

getMark():int

1

6 1..*

6

Person
a

b
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of the superclass, so that messages given to the superclass can also be given to 

the subclass (and a subclass can be used in place of a superclass (polymorphism)).

The navigability of an association shows the direction in which messages can be 

passed, where only one class knows of the other (as an instance variable for 

example). However, introducing navigability increases coupling between classes.

Figure 3: Relationships between Classes: Aggregation and Composition

Aggregations (Figure 3a) and compositions (or composite aggregations) (Figure 3b) 

are specialized (optional) forms of association where one class is part of an object 

of another class. Composition defines a much stronger ownership than aggregation, 

and for example deletion of the owning class deletes the associated classes. 

HonoursCourse Module

Chessboard Square

64

1..*

1

6..*

a

b
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Figure 4: Relationships between Classes: Dependency and Interfaces

UML defines a number of 'stereotypes' and allows additional ones to be defined 

within a model - to provide extensibility. An <<interface>> stereotype defines a list 

of operations that any class matching (or realising/ implementing) the interface must 

provide. Classes may match more than one interface. Dependencies are 

necessarily reflected in close coupling between the dependent classes, and should 

<<interface>>
Printable

pixelate(): String

Document

pixelate(): String
...

Printer

<<interface>>

Printable

pixelate(): String

Document

pixelate(): String

...

Printer

<<use>>
prints

prints

Printable

a

b
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be represented as explicitly as possible (for example generalisation is a form of 

dependency). 

Figure 5: Packages

Packages are collections of any of the model elements composing the UML model, 

for example classes and the relationships between them. Package icons, illustrated 

in ,  can be used in several types of UML diagrams. Packages might define a 

design component, or may be used to divide a project up into workloads for the 

design team. 

Collaboration diagrams allow the designer to specify the sequence of messages 

sent between objects in collaboration. The style of the diagram emphasizes the 

relationships between the objects as opposed to the sequence of the messages. In 

this column we will be discussing UML Sequence diagrams. Sequence diagrams 

contain the same information as Collaboration diagrams, but emphasize the 

sequence of the messages instead of the relationships between the objects.

Graphics

Draw

Refresh

Panels
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Figure 6: Collaboration Diagrams

State diagrams are used to describe the behavior of a system.  State diagrams 

describe all of the possible states of an object as events occur.  Each diagram 

usually represents objects of a single class and track the different states of its 

objects through the system.

Figure 7: State Diagram
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3.2XML Representations of UML  Diagrams

As described above many of the structural elements of a software application can 

be represented at the design stage, or upon implementation, as a UML diagrams. 

Class, collaboration and state diagrams presenting one of a number of views of a 

development model can be created using commercial or open source software 

development tools (for example Rational Rose (Rational 2002), Together  (Together 

2002) or argoUML (AroUML 2002) ).  The requirement for this model information to 

be stored and transferable between different modelling tools, and other applications 

and repositories, was one of the main drivers behind the development of the XMI 

standard (XML Metadata Interchange). As XML (Extensible Markup Language) is 

not object-oriented XMI provides a standard method for mapping object models to 

XML to facilitate data exchange (Grose et al., 2002). 

2.4.4 Extensible Markup Language (XML)

It is necessary to be familiar with the concepts of XML in order to use XMI, as XMI 

implements XML DTDs (Document Type Definitions) and XML Documents.  XML is 

an open standard, currently version 1.0, second edition, maintained by the World 

Wide Web Consortium, (WC3 2002 XML). (Additional references for this section: 

Carlson, 2001; Goldfarb and Prescod, 2001).

XML was defined as a lightweight, extensible meta-language for the representation 

of data and information about data (metadata) in the absence of details about its 

presentation. One of its primary aims is to facilitate the exchange of information in 

an application and architecture independent manner.
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XML Parsers check that XML documents are 'well-formed', complying with a strictly 

defined and meaningful syntax, and create a data-structure (tree) of the entire 

document which can be accessed through the XML Document Object Model 

(DOM). The markup tags of XML define the meaning of the document structure, 

and can be extended through user defined tags. The allowable elements, tags, 

attributes and nestings can be described in internal or external SGML-style DTD or 

in more expressive, XML-compliant XML Schemas. Validating-Parsers can check 

the validity of an XML document to a given (linked) DTD or Schema.

XML documents are plain text documents containing nested tags describing 

element tags, attributes and data content. Stylesheets can be linked to XML 

documents in order to add presentational information. Cascading Style Sheets 

(CSS) can be used in a similar manner to their use with HTML, to enrich graphical 

display in a browser. Alternatively XSL stylesheets can be used to apply layout style 

in order to render an XML document for visual presentation. 

3.2.1.1 Extensible Stylesheet Language (XSL)

W3C maintains the XSL standard, currently version 1.0 (W3C 2001 XSL). 

Conceptually XSL consists of two parts, a language for transforming XML 

documents, and an XML vocabulary for specifying how the (transformed) document 

is formatted. The first function is provided by XSLT (see Section 3.2.1.2) which 

transforms the source XML tree into another tree form, which may then be rendered 
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for display by the formatting syntax of the second function (XSL-FO "flow-object"). 

This is shown in Figure 8 (from the W3C XSL specification, 2001).

Figure 8: XSL Processing is Two-Stage

The XPath language provides the third necessary component: an addressing 

mechanism that allows specification of a path to any element of the source tree, 

allowing its manipulation.

Transformation converts from one XML vocabulary into another, or indeed into plain 

text, HTML style or other formats and markups. The formatter adds abstract 

formatting objects and attributes to the result tree produced by the transformation 

(for example paragraph styles, table style, font and colours) so that target 

applications (browsers, printers etc.) render the document as desired.
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3.2.1.2 Extensible Stylesheet Language for Transformation (XSLT)

XSLT provides a rich, non-procedural language for the transformation of an XML 

source document to one or more outputs, providing a lightweight alternative the 

creation of bespoke parsing applications to access and modify the XML document 

directly or through the DOM. (W3C XSLT version 1.0 specification, 1999). XSLT 

functionally resembles a scripting language, where the transformation process 

applies regular expressions to an input stream, transforming matched elements to 

an output stream, and has similar elements of control flow. Whilst XSLT is highly 

specialized for transforming XML trees, it is not very powerful at string or numeric 

manipulation.

XSLT can be used to transform an XML document from one schema (or DTD) to 

another, providing they have comparable semantics, and differ only in grammar. 

This can allow documents to be translated between standard and non-standard 

schemas. 

An XSLT processor operates by applying order-independent template rules 

(specified in an XSLT document) to pattern-matched elements of the source 

document tree, returning the template results to the results tree, without altering the 

source document (see Figure 9). Each rule specifies a pattern for elements or 

attributes to match and a set of actions (template) of what to produce when a match 

occurs. Each rule adds a new node to the result tree, and can reorder and duplicate 

source elements, filter (delete) elements and attributes and add content to the 
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document. The stylesheet language provides powerful techniques to access and 

rearrange all of the content (and tags) of an XML document by allowing conditional 

operations and specification of variables, parameters and indexable keys. Powerful 

pattern matching is performed using the XPath pattern matching language. 

XSLT is highly suited to many XML processing applications, but cannot be used for 

continuous data streams, nor for heavyweight computational analysis or very large 

source documents (over a few megabytes) (Carlson, 2001).

  

Figure 9: XSL Processing Converts the Source Node Tree into the Result 
Node Tree

3.2.1.3 XML Path Language (XPath)

XPath (W3C XPath version 1.0 specification, 1999) allows all the parts of an XML 

document to be addressed by providing a hierarchical datamodel of the document 

as a tree of element nodes. Under any given element node, there are further text 
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nodes, attribute nodes, element nodes, comment nodes, or processing instruction 

nodes. Some node types have a name, and each node possesses an associated 

string value. Text nodes represent the textual data content of the document.

In general, an XPath expression specifies a pattern that selects a set of XML 

nodes. The location path resembles a filesystem naming hierarchy. An XPath 

expression may include a wide range of operators, functions and wildcards to allow

accurate searching. Furthermore, XPath expressions can include predicates or 

selection-criteria, which allow nodes to be filtered or selected by name or value.

The path can be searched along different axes: the default child axis, the attribute 

axis, the content axis, the descendant axis, etc. Different axes allow a different set 

of defined node tests to be applied, for example in any context:

node() returns all the child nodes

* returns nodes of the current principal type

@* matches any attribute node

or working within a content axis:

text() returns any text node

comment() returns any comment node.

XPath defines many functions. These can be used to return a set of nodes, or a 

string, number or boolean value. The functions include node-set functions, string 
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functions, Boolean functions, positional functions, numeric functions and 

namespace functions. The operation of many of these functions depends on the 

context from which they are invoked.

XPath is used by XSLT and the XPointer language (which allows XPath 

expressions to be appended to URIs to point to XML data distributed over the 

Internet). It is also implemented in some applications of the DOM.

3.2.1.4 Programming Interfaces with XML

DOM

The Document Object Model (DOM) is the W3C platform- and language-neutral 

standardized API for managing and manipulating XML (and HTML) documents by 

building an object representation of the data (W3C (2002) DOM). The DOM allows 

programs and scripts to dynamically access and updates the complete content, 

structure and style of XML documents. DOM applications are well suited for 

interactive applications because the entire object model is present in memory, 

where it can be accessed and manipulated by the user. However, creation and 

retention of the DOM tree can be resource heavy for large XML documents, 

especially in a distributed environment. 

The 'objects' held in the W3C standard DOM are in fact low level data-structures, 

not rich objects.  An alternative, fully object-oriented API, JDOM, has been 

developed which represents XML documents in Java using an XML parser to build 

the document (jdom.org 2002). The alternative JDOM data representation seeks to 
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provide a simpler programming environment, while integrating fully with the DOM 

and SAX standards.

SAX

The Simple API for XML (SAX) was developed informally as an API to work with 

XML parsers. It does not create a document tree, but handles an XML document as 

a series of events, streaming through the XML syntax, parsing and processing 

events in turn and returning only the desired output. This provides for lightweight 

processing, but does not allow for random access or return through the document. 

As such it is suited to server-side and high performance applications which do not 

require an in-memory representation of the data (for example, data-filtering, Web 

servers producing output to HTTP clients or data repositories).

Document parsing via the DOM or SAX provide alternatives to XSLT 

transformations for extracting and filtering information from an XML document. It is 

possible to combine SAX and DOM within a single system. Many parsers can 

produce both SAX and DOM output and a SAX stream can be used as input to a 

DOM builder, or a DOM's content can be used to generate SAX events (Akif et al., 

2001).
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2.4.5 XML Metadata Interchange (XMI)

XMI integrates three key industry standards:

1. XML - eXtensible Markup Language, a W3C standard

2. UML - Unified Modelling Language, an OMG modelling standard

3. MOF - Meta Object Facility, an OMG metamodelling and metadata 

repository standard'

In essence any metamodel that conforms to the MOF meta-metamodel can be 

represented as an XML document through XMI. XMI is therefore applicable to a 

wide variety of objects: for analysis, software, components and databases. XMI 

solves the problem of tool interoperability by providing a flexible and easily parsed 

information interchange format. The XMI stream contains both the definitions of the 

information being transferred and the information itself.

A UML model is an instance of a UML metamodel, which is in turn an instance of 

the MOF model, and XMI allows for such a compliant model to be treated as the 

metamodel and represented by an XML DTD and document, produced according to 

XMI. In more simple terms, XMI provides a vocabulary specified by an UML.DTD 

for the description of the components (model elements, attributes, associations, 

etc.) of a UML model.

The XMI format was designed to be produced automatically and consistently from a 

UML model using an XMI processor. The documents produced are designed for 
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machine-readable XML data interchange, not compact, human readable documents 

(Carlson, 2001). A more complete description of the format XMI is given in Section 

2.4.7.

2.4.6 XMI and Software Development Tools

Software development tools can save the details of UML diagrams as an XMI 

document. 

A range of commercial object-oriented software development suites are capable of 

importing and exporting XMI representations of UML models. These include the 

proprietary Rational Rose (Rational 2002), Together ControlCenter (Together 

2002), Objecteering (Softeam 2002), Ideogramic UML (Ideogramic 2002) and 

Posiedon (Gentleware 2002). Poseidon is based upon the opensource CASE tool 

argoUML (ArgoUML 2002) which uniquely was developed from inception to use 

XMI to store the UML model, not merely to facilitate data interchange via importing 

and exporting. 

Several of the UML design suites have tools for measuring and analysing 

procedural and object-oriented software metrics. For example Together

ControlCenter reports on 47 different metrics (including object-oriented metrics) 

whilst Objecteering derives an exhaustive set of 80 low and high level metrics 

based on the work of Lorenz and Kidd (1994), which aim to check and maintain 

model quality.
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2.4.7 XMI Representation of UML Diagrams

Current XMI versions 1.0 to 1.2 do not support schemas, and use DTDs to specify 

the metamodel structures.  DTD are derived automatically from the MOF 

metamodels as described in the XMI standard: the UML1.1 DTD is described in the 

XMI standards (up to 1.2) but a current OMG UML1.3 DTD is available and can be 

used by several of the CASE tools including argoUML. There is no requirement for 

XMI to implement XML validation, so XMI documents are not required to specify 

their DTD, and indeed might not necessarily validate against a specified DTD.

The XMI representation of UML class diagrams is best illustrated by example. 

Figure 10 shows a simple class diagram created with argoUML, consisting of a 

single Class 'ClosedFigure' realizing (implementing) the Interface 'Figure'. 

XMI assigns each model element a unique xmi.id, and nests the elements within 

the root element Model 'Graphics', which is assigned  xmi.id = xmi.1. This also 

defines a namespace for each element in the model. These unique IDs allow 

elements to reference associated elements, as xmi.idref values and also provide an 

access method to the data structure when processing with XSLT. 

XMI (version 1.0) provides two further attributes which can act as identifiers for 

model elements xmi.label, for string descriptors, and xmi.uuid for a (globally) 

universally unique identifier. These attributes are used differently by the various 

model creation tools. Rational Rose optionally allows uuids to be generated, while
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argoUML uses them in a non-standard - but very useful - manner to identify 

elements that have been defined by the user, i.e. are not part of standard Java 

language packages etc. Therefore, in Figure 11 only the model namespace 

(Graphics), the two user-defined classes (Figure and ClosedFigure) and the 

dependency abstraction (xmi.3) are assigned an xmi.uuid. In contrast saving a 

similar class diagram produced with Rational Rose would have created xmi.uuids 

for many other model elements representing operations, arguments and attributes 

in addition to any Java language elements, whilst Together does not generate 

xmi.uuids in its implementation of XMI.

'Figure' and 'ClosedFigure' are nested within 'Graphics', and their operations and 

attributes are similarly nested within. The xmi.id of each element is illustrated on 

Figure 10. The dependency relationship between the Class and Interface is 

represented by an Abstraction element (xmi.3), and this is extended by the 

realization stereotype detailed by element xmi.31. The dependency client 

('ClosedFigure') and dependency supplier ('Figure') are recorded by referenced 

xmi.idref values in the Abstraction element. Each participating element also records 

the relationship.

Every element has a number of associated properties whose values are recorded 

within the element. For example, details of the signature of the 'display()' operation 

are recorded as  .visibility = "public" and .isAbstract = "true".  Parameters of an 
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operation, including return type, are represented by elements nested within the 

operation.

Datatypes are also represented by elements. argoUML defines simple (atomic) and 

common Class datatypes through java.lang library classes, which are recorded as 

part of the model. (For example, type float is recorded as element xmi.13, which is 

nested within java and lang elements).  Additional user defined datatypes can also 

be created, for example the datatype 'Color' (xmi.27).
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Figure 10: Annotated XMI representation of a simple class diagram
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Figure 11: Annotated XMI representation of a simple collaboration diagram

A simple collaboration diagram is shown in Figure 11. Arrows shows the messages 

that are passing through classes or interfaces. Xmi.29 is assigned to show classes 

or interfaces. Xmi.30 is assigned to show the message name and xmi.31 is 

assigned to show attributes of messages.

A simple state diagram is shown in Figure 12. Below is an example of a state 

diagram might look like for an Order object.  When the object enters the Checking 

state it performs the activity "check items."  After the activity is completed the object 

transitions to the next state based on the conditions [all items available] or [an item 

xmi.29

xmi.31

xmi.30
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is not available].  If an item is not available the order is canceled.  If all items are 

available then the order is dispatched.  When the object transitions to the 

Dispatching state the activity "initiate delivery" is performed.  After this activity is 

complete the object transitions again to the Delivered state. 

Figure 12: Annotated XMI representation of a simple state diagram

xmi.32
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4 ERROR PROPAGATION PROBABILITIES

The study of software architectures is emerging as an important discipline in 

software engineering, because not only software architectures emphasize large 

scale composition of software products but also they support many emerging 

paradigms of software development, such as product line engineering, 

components-based software engineering, COTS-based development, as well as 

software evolution. In this part, the attribute of Error Propagation Probability will be 

discussed, i.e. the probability that an error that arises at run time in one component 

will propagate to other components.  This effort is part of a larger project which 

investigates a wide range of attributes, including Change Propagation Probabilities, 

Requirements Propagation Probabilities, etc (Ammar et al. 2001).  The focus on the 

architectural level (rather than design or code level) has a profound impact on our 

work, affecting both its goals and its means, as we discuss in the sequel; first, we 

introduce our view of software architectures, for the purposes of this study.

4.1 A Working Model of Software Architectures

According to Bass et al, “The Software architecture of a program or computing 

system is the structure or structures of the system, which comprise software 

components, the externally visible properties of those components, and the 

relationships between them”.  It is common to distinguish between five broad 

classes of architectures, called architectural styles, where each style is defined/ 

characterized by:  component types; communication patterns/ protocols between 
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the components; semantic constraints; and a vocabulary of connectors.  The five 

architectural styles are:

 Independent Components.  The architecture is an aggregate of independent 

processes/ objects that communicate through data or control messages.

 Virtual Machines.  In this style, architecture is an aggregate of virtual 

machines arranged in layers, where each layer invokes the layer below it 

and provides the vocabulary to define the layer above it.

 Dataflow Architectures.  The architecture is an aggregate of processing 

nodes whose activation is driven by the flow of data streams.

 Data Centred Architectures.   The architecture is an aggregate of interacting 

components that communicate through a shared data repository.

 Call and Return Architectures.  In this style, an architecture is an aggregate 

of components that are defined in programming terms (procedures, functions 

routines) and whose interactions are restricted to programming language 

supported interactions (call and return, parameter passing, etc).

Perhaps with some loss of generality, we focus our attention in this study on the 

first architectural style, i.e. independent components. 

4.2 Architectural Goals

The focus of the study on software architectures has a direct impact on what 

attributes we may wish to define, characterize and quantify.  Traditional software 

metrics that characterize source code or depend on the executable/ operational 

nature of source code for their definition (e.g. reliability, dependability) are not too 
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much meaningful at the architectural level.  Architectural quality attributes can be 

divided into two distinct classes:

 Attributes that view the software architecture as an intrinsic product, and 

characterize it as such.

  Attributes that view the software architecture as a blueprint for operational 

software systems, and characterize it by the properties of these systems.

Main focus of our attention on the latter class, so that when we say that architecture 

has some attribute, we actually mean that operational software systems that are 

derived from this architecture have this attribute.

As a matter of separation of concerns, and in order to facilitate our discussions, we 

define a three-tier hierarchy of attributes:

 Qualitative Attributes, which represent relevant features of an architecture 

that we want to define and characterize.  

 Quantitative Functions, which represent formally defined functions that may 

be related to the qualitative attributes or may represent some aspect of a 

qualitative attribute.

 Computable Metrics, which represent quantitative functions that we can 

compute by analyzing the architecture.
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4.3 Architectural Means

Not only does the focus on architectures affect our goals, it also affects the means 

we have at our disposal to achieve these goals.  Within the architectural style that 

we have selected we cannot rely on the availability of source code-like structural or 

semantic information.  We resolve to consider that the only information we can 

count on, across the various representations of software architectures, is 

information on the data flow and control flow within components and between 

components.  In the absence of functional/ operational information, we rely on 

probabilistic arguments to quantify the information flow throughout the architecture.  

An intuitive approach is to model information flow by means of random variables 

and to quantify it by means of entropy functions; in the course of our study we will 

also use other functions when the need arises.

The focus on architectures limits not only the amount of information that we have 

access to, it also restricts the type of modeling we can make.  In order to define a 

fault model for a system, we need two types of information regarding the system:

 Structural information, whose level of detail is commensurate with the 

precision with which we want to identify faults.

 Operational information, which catalogs the set of abnormal behaviors that 

we want to consider for each identifiable unit (re: level of structural detail).

In the absence of detailed operational information, we cannot define a credible fault 

model on software architecture; hence we shift our attention away from faults and 

focus it on errors instead.  Furthermore, in keeping with our architectural model, we 
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let our identifiable units be components and connectors; we model an error in a 

component by an alteration of its state, and we model an error in a connector by an 

alteration of the message that it carries.

4.4 Error Propagation Probabilities

In this section, we first introduce and discuss the feature of error propagation in 

architecture. Then we review some derivatives of this feature.

4.4.1 Error Propagation: Definition

We consider two components, say A and B, of an architecture, and we let X be the 

connector that carries information from A to B; for the purposes of our current 

discussion, the specific form of connector X is not important, we will merely model it 

as a set (of values that A may transmit to B). Also, the specific form of components 

A and B is not important for the purposes of our discussion; we will merely model 

them as functions that map an internal state and an input stimulus into a new state 

and an output.

Definition 1. The Error Propagation Probability from component A to 

component B is denoted by EP(A,B) and defined by:

(1)

where [B] denotes the function of component B, and x is an element of the 

connector X from A to B. We interpret [B] to capture all the effects of 
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executing component B, including the effect on the state of B as well as 

the effect on any outputs produced by B.

We interpret EP(A,B) as the probability that an error in A is propagated by B (as 

opposed to being masked by B) because the outcome of executing B will be 

affected by the error in A. By extension of this definition, we let EP(A,A) be equal to 

1, which is the probability that an error in A causes an error in A. Given architecture 

with N components, we let EP be an NN matrix such that the entry at row A and 

column B be the error propagation probability from A to B (Nassar, 2002).

Note that nothing in our definition above indicates that x’ is an erroneous message; 

all the definition says is that x’ is different from x --- as far as this definition is 

concerned, both could be correct.  While this may seem to be an anomaly, all it 

means is that we are measuring error propagation probabilities by a wider property, 

which is the probability that different arguments are mapped by function [B] to 

different images (a measure of injectivity of [B]).

4.4.2 Error Propagation Derivatives

In this section we derive three measures of interest from the error propagation 

probability we defined.
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4.4.2.1 Unconditional Error Propagation

Note that the definition of the error propagation given above uses the concept of 

conditional probability, i.e. we calculate the probability that an error propagates from 

A to B under the condition that A actually transmits a message to B. It is often 

useful, however, to use the unconditional error propagation which we will denote 

simply as E(A,B), and define as the probability that an error propagates from A to B

not conditioned upon the event that A sends a message to B.  Function E(A,B) is 

clearly dependent on EP(A,B), but it further integrates the probability that A does 

send a message to B. In order to bridge the gap between the original (conditional) 

error propagation and the newly introduced unconditional error propagation, let us 

consider the transmission probability matrix T where the entry T(A, B) reflects the 

probability with which the connector gets activated during a typical/ canonical 

execution. T is the NxN matrix whose entry T(A, B) is the probability that the 

component A sends a message to component B given that the A is expected to 

transmit a message to some component.  Note that:

 It is reasonable to assume that T(A, A) = 0 for all components A,

The matrix T is used to distinguish between a connector that is invoked intensively 

in each execution and one that is invoked only occasionally, under exceptional 

circumstances. The matrix T reflects the variance in frequency of activations of 

different connectors during a typical execution.

By virtue of simple probabilistic identities, we find that the unconditional error 

propagation is obtained as the product of the conditional error propagation 
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probability with the probability that the connector over which the error propagates is 

activated, i.e.

(2)

The concept of unconditional error propagation is useful when we discuss 

cumulative error propagation probabilities, which we do in the next subsection.

4.4.2.1 Cumulative Error Propagation

So far we have focused our attention on single step error propagation from some 

component A to some component B, we want to consider, now, the probability that 

an error in some component A propagates to some component B in an arbitrary 

number of transmissions (steps) starting in A and ending in B. We call this the 

cumulative error propagation probability from A to B.  We submit two premises 

pertaining to the analysis of cumulative error propagation:

 Cumulative error propagation probabilities must be derived, not from matrix EP 

but rather from matrix E. Indeed, the probability that an error propagates along 

some path depends first and foremost on the probability that the path is actually 

taken, combined with the probability that the error is propagated through each 

arc of the path.

 Second, the matrix of cumulative error propagation probabilities cannot be 

derived as the traditional transitive closure of matrix E, because while matrix T is 

stochastic, matrix E is not. Hence we need to find a specific formula for this 

case, which we do in the sequel.
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Where Es is the s-step error propagation matrix, i.e. Es(A, B) is the probability that 

an error in A propagates to B via exactly s connectors. The s-step error propagation 

matrix Es is given by:

(3)

4.5 Estimating Error Propagation

We have found that analytically, the error propagation probability can be expressed 

in terms of the probabilities of the individual A-to-B messages and states, via the 

following formula: 

(4)

where , and we assume a probability distribution PB on 

the set of states SB of component B, and a probability distribution PA→B on the set 

of messages VA→B passed from A to B. 

The term in the denominator of (4) is an exponent of the 2nd order 

Renyi entropy, which according to the recent studies is closely related to the 

classical Shannon entropy. If we assume that the states of B, as well the messages 

passing through the connector from A to B are equi-probable, then the formula for

error propagation is simplified into 
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 (5) 

Since the software practitioner cannot always extract from the available artefact the 

detailed information on the transition table F for the architectural components, it

would be helpful to be able to estimate the right-hand side of (6) without using any 

knowledge of function F. The following inequality gives precisely such an estimate 

(upper bound) 

(6) 
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4.5.1 Examples

For the general metrics,

Diagram 1: The Object by Design Graphics Editor Model
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Diagram 2: The Objects by Design Graphics Editor Model Redrawn with 
argoUML



57

Table 7: OBD Class Metrics

Name ID nII nC DIT nAt +nAt %+At nM +nM %+M nAs

Circle xmi.28 0 0 2 0 0 - 1 1 100 0

ClosedFigure xmi.36 1 2 0 0 0 - 0 0 - 2

Color xmi.31 0 0 0 4 0 0 0 0 - 2

Ellipse xmi.11 0 1 1 2 0 0 4 4 100 0

Point xmi.2 0 0 0 2 0 0 1 1 100 1

Polygon xmi.59 0 2 1 0 0 - 4 4 100 1

Quadrangle xmi.82 0 1 2 0 0 - 0 0 - 0

Rectangle xmi.84 0 1 3 2 0 0 1 1 100 0

Square xmi.90 0 0 4 0 0 - 1 1 100 0

Triangle xmi.74 0 0 2 0 0 - 1 1 100 0

Table 8: Class Metrics

Name ID nII nC DIT nAt +nAt %+At nM +nM %+M nAs

Circle xmi.88 0 0 2 0 0 - 1 1 100 0

ClosedFigure xmi.21 1 2 0 2 0 0 0 0 - 2

Color xmi.105 0 0 0 4 0 0 0 0 - 2

Ellipse xmi.59 0 1 1 2 0 0 4 4 100 2

Point xmi.10 0 0 0 2 0 0 0 0 - 3

Polygon xmi.29 0 2 1 0 0 - 4 4 100 1

Quadrangle xmi.86 0 1 2 0 0 - 0 0 - 0

Rectangle xmi.92 0 1 3 2 2 100 1 1 100 0

Square xmi.101 0 0 4 0 0 - 1 1 100 0

Triangle xmi.82 0 0 2 0 0 - 1 1 100 0

Second example we use to illustrate our work is a large command and control 

system that is used in a life-critical, mission-critical application. This system was 

modeled using the Rational Rose Realtime CASE tool. It is a Computer Software 

Configuration Item (CSCI) that provides the following functions: 
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• Facilitating Communication, Control, Cautions and Warnings including subsystem 

Configuration Management, C&DH (Communication and Data Handling) 

Communications Control, Processing, Memory Transfer, C&DH Failure Detection, 

Isolation, and Recovery and Time Management, 

• Controlling a Secondary Electrical Power System, and 

• Environmental Control, which provides Temperature and Humidity Control. 

We concentrate on the Thermal Control part of the system, which is a rather 

complex system with operations setting controller, fault recovery procedures, and 

pump control functionalities. System is responsible for providing overall 

management of pumps as well as performing the necessary monitoring and 

response to sensors data. Also, it is responsible for performing automated start-up.

During each execution cycle, a check is performed for incoming commands. 

Received commands are validated in the same execution cycle. Mode change 

commands, which will reconfigure the Internal Thermal System, are also accepted 

from other components of Thermal System to compensate for system component 

failures or coolant leaks. A failure recovery system detects failure conditions and 

performs recovery operations in response to the detected failures. Failure 

conditions include combinations of Pump failures and Shutoff Valve failures. 

The system has a hierarchical architecture. Using these artifacts, one can identify 

the components and the connectors that describe the components-based system 
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architecture and label the EP matrix rows and columns with the components 

names. 

Figures show a sample message protocol between a pair of components in our 

system. This artefact provides us with the message set VA>B and VB>A that is 

going between the two components A and B. Similarly, using the Rose-RT tool we 

can get the whole sets of messages that are going on between each pair of 

components in the system. 

The state chart shown in Figure is a sample of state chart of a component in the 

system. This provides us with the state set SB for this sample component. Using 

the Rose-RT tool, we can easily identify the triggering messages from one state to 

another. In a similar way, one can get all the state sets for all the components. 
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Figure 13: General view of the System Command and Control System

Figure 14: Subsystem Z: Command and Control System
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Figure 15: Protocol Specification for Component 5

Figure 16: State Diagram of Component 5
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Considering the CSCI system discussed above, we get the set of states SB and 

messages VA>B from the artifacts of the system specification. We obtain the matrix 

EP of (conditional) error propagation probabilities of this system, using the 

approximation. We assume equi-probability of states and messages. 

As an example, we will demonstrate how to compute EP(1,5). Component 5 has SB 

= 2 from Figure 4.3, and VA>B =5 from Figure 4.4. So using the approximation, we 

get EP(1,5) =(1-0.5)/(1-0.2) = 0.625. Thus, the 1-to-5 error propagation cannot 

exceed 0.625. 

For this particular case study, we have derived the connector activation matrix T as 

a stochastic matrix of probabilities that contains for each entry (A,B), the probability 

that connector (A,B) is activated, given that component A is broadcasting a 

message. Using this connector activation matrix, we derive the unconditional error 

propagation matrix EA, also referred to as the 1-step error propagation matrix of the 

system. We get the matrix T through a simulation of the system representing the 

operational profile of the execution. Continuing our example, we got T(1,5) =0.023. 

So, the probability that connector (1,5) is activated, given that component 1 is 

broadcasting a message is 0.023. Then, the unconditional error propagation EA 

(1,5) = 0.625 *0.023= 0
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Error propagation matrix for this case study is:

Table 9: Conditional Error Propagation Matrix - Analytical Results

B

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 1.0000 0.1061 0.4210 0.3368 0.4472 0.4623

C2 0.2001 1.0000 0.5238

C3 0.0105 0.4722 1.0000

C4 0.0190 0.2332 1.0000

C5 0.2765 1.0000

C6 0.1265 1.0000

C7 0.3761 1.0000

C8 1.0000

C9 1.0000

A

C10 0.0014 1.0000

For this particular case study, we have derived the connector activation matrix T as 

a stochastic matrix of probabilities that contains for each entry (A,B), the probability 

that connector (A,B) is activated, given that component A is broadcasting a 

message. Using this connector activation matrix, we derive the unconditional error 

propagation matrix EA, also referred to as the 1-step error propagation matrix of the 

system; this is given in Table 10. We get the matrix T through a simulation of the 

system representing the operational profile of the execution. 
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Table 10: Unconditional Error Propagation Matrix - Analytical Results

B

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 0.0012 0.0132 0.0102 0.0146 0.0145

C2 0.1104 0.1264

C3 0.0060 0.2024

C4 0.0107 0.1026

C5 0.1005

C6 0.0506

C7 0.3761

C8

C9

A

C10 0.0014

Case Study 2:

The case study has 4 components; two of them have state machines. Component 

Facility has 2 states and component Parts has 3 states.

To >> Component Facility: Customer has 5 messages passing and the Parts has 7 

messages passing from them to the Facility.

To >> Component Parts: Customer has 4 messages passing and the Intern has 8 

messages passing from them to the Parts.

Result is given in the below.
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Figure 17: Case study output

Case Study 3:

In this example, a small software model, which enables to order commercial items 

from a web site, was developed. As for the calculation of Error Propagation Metrics 

only the collaboration diagram and state diagrams will be considered. In this 

example, total number of 5 classes and 25 messages are present with 4 methods 

(Figure 18, Table 11). Although there is a message from ‘Stock Item’ to ‘Reorder 
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Item’ due to miss-information in UML Specification, the message will be neglected 

(Table 11).

Figure 18: Collaboration Diagram of the Case Study 3

Table 11: Total number of Messages between components

Messages: TO (>)

From(v)

Order Stock Item Reorder Item State Diagram

Order Entry Window 7 0 0 No

Order Line 6 12 0 No

Stock Item 0 0 (?) Yes

Order 0 0 0 Yes
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Figure 19: State Diagram of the Order Component

The system has two state diagrams. First state diagram was built to show the 

behaviour of the Order component (Figure 19). Second state diagram is part of the 

‘Stock Item’ class to reflect the processes that is going inside of the particular 

component (Figure 20). 

Figure 20: State Diagram of the Stock Item

After exporting this diagrams to XMI format. The relevant information was obtained 

with XSLT to provide the Error Propagation Metrics. Both the empirical results of 

the system can be seen from Table 12 and the tool output from Figure 22.
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Table 12: Error Propagation Probabilities Between Components

C. Name Order Order Entry Window Order Line Reorder Item Stock Item

Order 1 0 0 0 0

Order Entry 

Window

0.93334 1 0 0 0

Order Line 0.96 0 1 0 0.87274

Reorder Item 0 0 0 1 0

Stock Item 0 0 0 0 1

Figure 21: Case study 3- Screenshot of the tool
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5 APPLICATION DESIGN AND IMPLEMENTATION 

The architecture of the system is based on XML and its family (XMI, XSLT) 

(Diagram 3). Although it may be possible to integrate database to the system, using 

database will increase the processing time of a particular case study. Moreover, it 

won’t solve the lack of capacity of XMI documents. Therefore, in this system the 

information is stored in XML files.

Diagram 3: System Architecture

UML Diagrams 

(Class, State_Transition and Sequence Diagrams

Export to XMI Format

(Class, Sequence, State

Diagrams Information)

Export to XML Format

(State Diagram Information)

XMI PARSER

XML to XMI 

Parser
XMI 

Information 

of the 

Diagrams

Global Metrics
Class Metrics and 

Error Propagation

Fully Qualified 

Class Names

Metrics XML

XSLT 

XSLT XSLT 

XSLT 
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A Java application was created to load, process and display the data extracted from 

XMI format file input. The underlying data processing for the application is 

performed by XSLT stylesheet transformations of XML files from one format to 

another. Use of XSLT technology allows for rapid extensions or alterations to the 

processing events, by purely textual editing of the stylesheets.

Each UML tool its own specification. Therefore provided XMI documents have their 

own structure, which means currently there is no common XMI specification for the 

UML diagrams. The designed system is built for work on Visual UML and Rational 

Rose RT programs. All the information for calculating the error propagation from 

Visual UML is gained from the XMI document and saved in an XML file with using 

XSLT stylesheet. Finally that information is presented in the tool. For Rational Rose 

RT, it is impossible to calculate the number of states per individual class. The only 

state diagram information can be get from Rational Rose RT’s XMI document is the 

total number of states in the whole system. To overcome this problem, Class 

diagram and Collaboration diagrams information are calculated from the XMI 

document that is supported by Rational Rose RT, and the number of states in one 

component is calculated by the XML document provided by Rational Rose RT. 

Then, the information acquired from both XMI and XML documents are represented 

as one common XMI document to provide the Error Propagation Metrics.

Several sources of variability mean that: a robust process cannot be fully 

automated; the various tools support and create output using various versions of 

the XMI and UML standards; there are subjective differences in the level of detail 
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and style of UML models produced using software design tools; and these tools do 

not reliably implement the same XMI standards to produce identical XMI files. 

5.1 XML Transformations

The underlying data processing for the application is performed by XSLT stylesheet 

transformations of XML files from one format to another.

These transformations are

 XMI input  to metrics XML 

 metrics XML to summary HTML

Ranked by:

 number of methods (nM)

 number of attributes (nAt)

 number of states (nS)

 number of messages passing each other (nMS)

 number of associations (nAs)

 number of children (nC)

 depth in inheritance tree (DIT)

 outlier status

In order to design the stylesheets to accomplish these transformations it is first 

necessary to consider which metrics are stored within the XMI format.
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5.1.1 Metrics available from XMI files

From the preceding discussions it is possible to list the metrics which should 

theoretically be extractable from a standard XMI representation of a projects UML 

diagrams.

For Individual Classes:

nM Number of Methods (locally defined or redefined)

+nM Number of Public Methods

nS Number of states

nMS Number of messages passing each other (nMS)

nAt Number of Attributes

+nAt Number of Public Attributes

nC Number of Children (direct subclasses)

DIT Depth in Inheritance Tree

nAs Number of Associations (non-inheritance dependencies)

nII Number of Implemented Interfaces

Dissection of the types of associations would be complex, but potentially possible 

from sufficiently detailed models, as would further information on inheritance 

encapsulation.
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5.1.2 Metrics available from XMI files using XSLT

An XSLT stylesheet, primaryProcess.xsl has been designed that is capable of 

enumerating basic class and global metrics from an XMI input file. This XSLT sheet 

uses a large number of template rules to extract the class metrics shown in Table 

11, each value being saved as a new XML element in the result tree. Some 

problems and limitations to the technology that came to light are discussed in the 

Evaluation Section 2. Due to space limitations no attempt is made to detail the 

entire XSLT template rules used to extract these metrics, but a number of examples 

are shown in the following section. 

Table 13: List of First Pass Metrics

GlobalMetrics ClassMetrics

DateLastModified (for each Class)

TimeLastModified Name

FileName implementedInterfaces

Title numberChildren

DateProcessed depthOfInheritance

TimeProcessed numberAttributes

NumberOfClasses publicAttributes

NumberOfUserClasses percentPublicAttributes

NumberOfPackages numberOperations

NumberOfUserPackages publicOperations

NumberOfInterfaces percentPublicOperations

NumberOfInheritanceTrees numberAssociations

NumberOfOrphanClasses ID

fullName

InterfaceMetrics numberofStates in a component

(for each Interface) Numberof Messages passing each other

IFName Operations

Implementations
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5.1.3 XSLT Template Rules for Metric Extraction

Some representative template rules are presented here to demonstrate the 

principles of the XSLT process (also refer to Sections 2-3).

5.1.3.1 Simple Value Copying

The template simply returns the value of element specified by the XPath 

expression, which is written to the result tree in the position from which the template 

is called:

this is called by:

<xsl:call-template name="Title" />

Causing a complete <Title> element to be written.

5.1.3.2 Simple Counting Functions

Standard XSLT functions can count the number of occurrences of nodes matching 

an XPath pattern. In this case the xmi.id of a class is passed to the template, to 

allow counting of all the associations referenced in this class. The counting is 

simplified by assigning the node set matching the pattern to a variable.

<xsl:template name="Title">
  <Title>
   <xsl:value-of select=  
    "//Model_Management.Model[@xmi.id]/

  Foundation.Core.ModelElement.name"/>
  </Title>
</xsl:template>
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In this case the template is called from within the definition of the new element 

<numberAssociations>, within the nested elements <ClassMetrics><Class>: 

5.1.3.3 Standard Java Extensions 

Used here to record the current date and time of metric extraction, using standard 

Java package functions to obtain and format Date instances. The stylesheet must 

define namespaces for these functions:

The template rule calls these functions to write a Date instance to the today 

variable, and a formatting object to the dateFormatter variable and then returns the 

xsl:template name="associations">
  <xsl:param name="source"/>
    <xsl:variable name="association_ends" select=

"//Foundation.Core.AssociationEnd[Foundation.Core.
AssociationEnd.type/*/@xmi.idref=$source]"/>

      <xsl:value-of select="count($association_ends)" />
</xsl:template>

<xsl:element name="numberAssociations">
<xsl:call-template name="associations">

<xsl:with-param name="source" select="@xmi.id"/>
</xsl:call-template>

</xsl:element>

<xsl:stylesheet.................
xmlns:Date="xalan://java.util.Date"
xmlns:Format="xalan://java.text.DateFormat"

.....>

xsl:template name="date">
  <xsl:variable name="today" select="Date:new()"/>
  <xsl:variable name="dateFormatter"       
             select="Format:getDateInstance(FULL)"/>
  <xsl:value-of select="Format:format($dateFormatter,$today)"/> 
  <xsl:fallback>

<xsl:text> Java Extension for Date is not 
available</xsl:text>

  </xsl:fallback>
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desired value by calling the format() method on these two arguments:

Thus when the template is called within the definition of the new element 

<DateProcessed> the current date is written to the result tree:

5.1.3.4 User Defined Extensions

User defined extensions can be called in a very similar fashion to standard 

extensions, but for this application it was more efficient to use the Xalan-specific 

extension mechanism has been used which bundles several methods to be called 

as an lxslt component:

These methods return the desired file name, creation date and time details from a 

temporary file written within the Java application before it invokes the XSLT 

processing.

<xsl:element name="DateProcessed">
<xsl:call-template name="date" />

</xsl:element>

<xsl:stylesheet.................
     xmlns:lxslt="http://xml.apache.org/xslt"

           xmlns:readData="metrics2.ReadFile"
           extension-element-prefixes="readData"

...........>
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By calling the init() method of the ReadFile class an instance of the class is created 

which has read the desired time, date and filename details from the temporary file, 

so that the values can then be returned simply by calling the appropriate method:

The information provided by these functions will be particularly important for 

keeping track of archived metrics from different versions of a given XMI project.

5.1.3.5 Recursive Templates 

Recursion is used heavily in XSLT processing, as template rules are repeated for 

each node matching an XPath pattern (for example each class is processed in turn 

when matching 

<xsl:for-each select="//Foundation.Core.Class[@xmi.id]">

As XSLT is a purely declarative language, a variable can only be assigned once, 

and not have its value modified. Limitations that this imposes can often be 

overcome by assigning the value of a recursive loop to a variable, so that the outer 

variable is only assigned after the inner recursion has terminated. This has been 

used to count how deep a class is in its inheritance tree (shown here), and also to 

<lxslt:component prefix="readData"
                  elements="init" 

functions="getAgeDate getAgeTime getFileName">
<lxslt:script lang="javaclass"

src="xalan://metrics2.ReadFile"/></lxslt:component>

<readData:init />
  <xsl:element name= "DateLastModified">

<xsl:value-of select="readData:getAgeDate()"/>
  </xsl:element>
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concatenate the names of a class's ancestors in order to generate a fully qualified 

class name. In the example below the template is called recursively, passing-in the 

xmi.id of the current class to step up the inheritance tree, incrementing the exported 

value by one at each level:

5.1.4 Derived Metrics by Chained XSLTs

In order to produce the error propagation metrics it is necessary to count, combine 

and obtain ratios of the various metrics obtained above. Whilst it should be possible 

to define complex template rules to derive these metrics within the single initial 

<xsl:template name="inheritance">

  <xsl:param name="refid"/>
  <xsl:variable name="generalizations" 

select="..//Foundation.Core.Class[@xmi.id=$refid]/
Foundation.Core.GeneralizableElement.generalization/
Foundation.Core.Generalization"/>

  <xsl:variable name="gen_ref" 
select="..//Foundation.Core.Class[@xmi.id=$refid]/

Foundation.Core.GeneralizableElement.generalization/*/
@xmi.idref"/> 

  <xsl:variable name="parent_id"
select="//Foundation.Core.Generalization[@xmi.id=$gen_ref]/

Foundation.Core.Generalization.parent/*/@xmi.idref"/>
  <xsl:choose>

<xsl:when test="count($generalizations) > 0 and 
boolean(//Foundation.Core.Class[@xmi.id=$parent_id])">

   <xsl:variable name="counter">
    <xsl:call-template name="inheritance">

<xsl:with-param name="refid" select="$parent_id"/>
</xsl:call-template>   

     </xsl:variable>
        <xsl:value-of select="1 + $counter" />
      </xsl:when>
      <xsl:otherwise >0</xsl:otherwise>
  </xsl:choose>
</xsl:template>
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stylesheet, by using the XML output of the first XSLT as input for a second 

transformation simpler template rules can be used. In addition this second 

stylesheet, secondaryProcess.xsl, can copy the entire primary output into the 

secondary output to combine the original and derived metrics in a single XML 

document.

The template rules for the chained processing event are much simpler, as they 

define simple recombinations of the elements created in the first transformation, 

and consequently have simpler XPath expressions. The only point of importance to 

note is that empty, nil and null values have to be allowed for in the calculations, and 

return ' 0 ' or ' - ' (undefined) if appropriate.

For example the following variable assignment to record the maximum number of 

methods (operations) per interface returns 0 if there are no Interface operations 

defined in the project:

<xsl:variable name ="numberofStates">
<xsl:if test="sum(//State_Machine/State)=0">0</xsl:if>
<xsl:for-each select="//State_Machine/State">
<xsl:sort data-type="number"/>

<xsl:if test="position()=last()">
<xsl:value-of select = "."/>

</xsl:if>
</xsl:for-each>

</xsl:variable>
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Table 12: List of Derived Metrics

Name of Component A B C D

A 1 Error Prop Error Prop Error Prop

B Error Prop 1 Error Prop Error Prop

C Error Prop Error Prop 1 Error Prop

D Error Prop Error Prop Error Prop 1

5.1.5 A Document Type Definition (DTD) for metrics XML

The allowed structure of an XML document can be defined in a declared Document 

Type Definition (DTD). Parsers may then validate a given XML document against its 

declared DTD. DTDs define the allowable elements, attributes, entities and 

notations for a document. They therefore define the tag and data structure followed 

by XML documents conforming to the DTD.

While not essential for creating and parsing 'well-formed' XML documents, defining 

a DTD provides a useful reference structure for the data. The simplest DTDs merely 

list the allowable elements, and their allowable contents (further elements or 

'parsed character data' (PCDATA)).

Defining attributes for elements allows more information to be stored, often 

metadata or data of secondary importance. Attributes can be more restrictively 

defined than elements, and may be of one of a limited number of given types, and 

can be given default and alternative values. However datatypes are not well 
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supported in DTDs, and require the more expressive XML Schema to describe 

document structure.

It is desirable to create a simple XML DTD to define the metrics XML document 

produced from XMI by the chained stylesheet transformations, primaryProcess.xsl 

followed by secondaryProcess.xsl. This will allow a parser to check the validity of 

the resultant XML, and provide a reference document for the metrics contained in 

the file.

As this XML format is a data repository, acting as an intermediary for further 

processing it was desirable to keep the structure as simple as possible, to facilitate 

downstream processing. For this reason all the extracted metrics are stored as the 

value of individual elements, and no attributes used. The file metric.dtd  therefore is 

merely a list of the allowable element tags, which contain other elements or 

PCDATA. The nested structure of a metric.dtd conformant document is shown.  

<?xml version="1.0" encoding="iso-8859-1" ?>
<!DOCTYPE Metrics SYSTEM "metric.dtd">

- <Metrics>
- <FirstPassMetrics>

+ <GlobalMetrics> contains elements holding Global Metrics
  - <InterfaceMetrics>

+ <Interface> contain elements holding Interface Metrics
      </InterfaceMetrics>

  -  <ClassandErrorPropMetrics>
+ <Class> contain elements holding Class Metrics
+ <Class> contain elements holding Error Propagation 

Metrics
</ClassMetrics>

   </FirstPassMetrics>
      + <DerivedMetrics> contain elements holding Derived Metrics
   </Metrics>
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metric.dtd fully describes the allowed elements, tags and structures for the XML 

structure shown above. Once written into the XML DOCTYPE definition this DTD 

must be present for the XML parser to create a DOM tree from the XML document. 

However, the parser will only check the document structure against the DTD if it 

has DTD validation enabled. (By default the XML processing performed by the 

Metrics from XMI application is non-validating, although it was felt useful to have a 

validation option provided so that any non-functional XMI or XML documents could 

be investigated.) 
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metric.dtd

<!ELEMENT Metrics (FirstPassMetrics, DerivedMetrics)>

<!ELEMENT FirstPassMetrics (GlobalMetrics,
InterfaceMetrics, ClassMetrics)>

<!ELEMENT GlobalMetrics (DateLastModified,
TimeLastModified, FileName, Title, XMI.exporter?, DateProcessed, TimeProcessed, 
NumberOfClasses, NumberOfUserClasses, NumberOfPackages, NumberOfUserPackages, 
NumberOfInterfaces, NumberOfInheritanceTrees, NumberOfOrphanClasses)>

<!ELEMENT DateLastModified (#PCDATA)>
<!ELEMENT TimeLastModified (#PCDATA)>
<!ELEMENT FileName (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT XMI.exporter (#PCDATA)>
<!ELEMENT DateProcessed (#PCDATA)>
<!ELEMENT TimeProcessed (#PCDATA)>
<!ELEMENT NumberOfClasses (#PCDATA)>
<!ELEMENT NumberOfUserClasses (#PCDATA)>
<!ELEMENT NumberOfPackages (#PCDATA)>
<!ELEMENT NumberOfUserPackages (#PCDATA)>
<!ELEMENT NumberOfInterfaces (#PCDATA)>
<!ELEMENT NumberOfInheritanceTrees (#PCDATA)>
<!ELEMENT NumberOfOrphanClasses (#PCDATA)>

<!ELEMENT InterfaceMetrics (Interface*)>
<!ELEMENT Interface (IFName, Implementations,
Operations, ID)>
<!ELEMENT IFName (#PCDATA)>
<!ELEMENT Implementations (#PCDATA)>
<!ELEMENT Operations (#PCDATA)>
<!ELEMENT ClassMetrics (Class*)>
<!ELEMENT Class (Name, implementedInterfaces,
numberChildren, depthOfInheritance, numberAttributes, publicAttributes, percentPublicAttributes, 
numberOperations, publicOperations, percentPublicOperations, numberAssociations, ID, fullName)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT implementedInterfaces (#PCDATA)>
<!ELEMENT numberChildren (#PCDATA)>
<!ELEMENT depthOfInheritance (#PCDATA)>
<!ELEMENT numberAttributes (#PCDATA)>
<!ELEMENT publicAttributes (#PCDATA)>
<!ELEMENT percentPublicAttributes (#PCDATA)>
<!ELEMENT numberOperations (#PCDATA)>
<!ELEMENT publicOperations (#PCDATA)>
<!ELEMENT percentPublicOperations (#PCDATA)>
<!ELEMENT numberAssociations (#PCDATA)>
<!ELEMENT  ID (#PCDATA)>
<!ELEMENT fullName (#PCDATA)><!ELEMENT DerivedMetrics (Total_Interfaces, Numberof 
Numberofmeesages, number of states,)>

<!ELEMENT  Number_of_States in a component  (#PCDATA)>
<!ELEMENT  Number of messages between components (#PCDATA)>
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5.1.6 HTML from XML

While the metrics XML data format is ideal for storing metrics derived from XMI 

representations of UML models, it does not allow easy inspection of the data. 

XSLT readily allows XML source documents to be converted to HTML or plain 

text format. It is therefore possible to present different views of the metrics XML 

data via separate stylesheet transformations.

Seven different views have initially been developed for display by the 'Metrics for 

XMI' application. 

The Global Metrics Summary view is created by summary_xml2html.xsl, which 

tabulates all of the global, class and interface metrics. Header information and up 

to four tables are created by mixing XSLT template calls within HTML tags. The 

header details name, file and last modification details for the XMI project. The 

first table ('GLOBAL METRICS') merely lists all of the global metrics, returned as 

the value of the metrics XML elements. No further calculations are necessary for 

this presentation, although a number of tests are performed to identify and skip 

null fields. The second table ('CLASS METRICS and ERROR PROPAGATION') 

lists all the classes alphabetically, with their metrics and error propagation 

values. 

In addition each stylesheet also reproduces the 'FULLY QUALIFIED CLASS 

NAMES' table described above. Tables of interface metrics are only presented 

when sorted by number of methods and number of children (implementations).
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6 CONCLUSION

In this thesis, first we look to the issue of general metrics and how will be 

extracted from UML class diagram then we have derived an analytical approach 

to estimate the probability of error propagation between components in software 

architecture. Further, we have illustrated our proposed formula by means of a 

fault injection experiment, applied on a large command and control system, and 

found a fairly meaningful correlation between our analytical estimates and our 

experimental observations. Given that our analytical approach is based on 

architecture specifications, and uses exclusively information that is typically 

available at an architectural level, we submit that our result can be used to 

estimate the error propagation behaviour of architecture, at a time when relatively 

little is known about the actual execution of products that instantiate the 

architecture. In addition to providing the basic conditional probability of error 

propagation over a given connector (conditioned on the activation of the 

connector), we have also provided analytical formulas for unconditional error 

propagation (which incorporate the probability of connector activation).  Then, we 

also considered automating our architectural analysis tool to support the 

automatic computation of error propagation probabilities. 
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