
Error Propagation Metrics from XMI

Cihan Varol

Problem Report submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Engineering

Bojan Cukic, Ph.D.
John, M. Atkins, Ph.D.

Brian D. Woerner, Ph.D.

Lane Department of Computer Science & Electrical
Engineering

Morgantown, West Virginia University
2005

Keywords: Error Propagation, Software Engineering

Copyright 2005 Cihan Varol

This work describes the production of an application Error Propagation Metrics

from XMI which can extract process and display software design metrics from

XMI files. The tool archives these design metrics in a standard XML format

defined by a metric document type definition.

XMI is a flavour of XML allowing the description of UML models. As such, the

XMI representation of a software design will include information from which a

variety of software design metrics can be extracted. These metrics are potentially

useful in improving the software design process, either throughout the early

stages of design if a suitable XMI-enabled modelling tool is deployed, or to

enable the comparison of completed software projects, by extracting design

metrics from UML models reverse engineered from the implemented source

code.

The tool is able to derive the error propagation of metrics from test XMI files

created from UML sequence and state diagrams and from reverse engineered

Java source code. However, variation was observed between the XMI

representations generated by different software design tools, limiting the ability of

the tool to process XMI from all sources. Furthermore, it was noted that subtle

differences between UML design representations might have a marked effect on

the quality of metrics derived.

iii

In conclusion in order to validate the usefulness of these metrics that can be

extracted from XMI files it would be useful to follow well-documented design

projects throughout the total design and implementation process. Alternatively,

the tool might be used to compare metrics from well-matched design

implementations. In either case design metrics will only be of true value to

software engineers if they can be associated empirically with a validated

measure of system quality.

iv

Acknowledgements

I would like to express my deepest gratitude and appreciation to my research

community and the department for giving me the opportunity to conduct research

under their supervision.

I am honored to dedicate this paper to all the members of my family, who have

encouraged me, and supported me throughout my life. I want to specifically

express my love and appreciation to my brother who always helped me to come

out from tough times.

v

Table of Contents

Abstract ii

Acknowledgement iv

Table of Contents v

1 INTRODUCTION 1

2 LITERATIRE REVIEW: SOFTWARE METRICS 2

2.1 Uses for Software Metrics 3

2.2 Types of Software Metrics 4

2.2.1 Direct versus Indirect 4

2.2.2 High Level versus Low Level 5

2.2.3 Predictive versus a Posteriori 6

2.2.4 Procedural versus Object-Oriented 6

2.3 “Traditional” Software Metrics 7

2.4 Object-Oriented Software Metrics 9

2.4.1 The Object-Oriented Paradigm 9

2.4.2 Metrics to assess the object-orientation of software 10

3 TECHNICAL BACKGROUND 20

3.1 The Unified Modeling Language (UML) 20

3.1.1 UML Diagrams 22

3.2 XML Representation of UML Diagrams 29

3.2.1 Extensible Markup Language (XML) 29

3.2.1.1 Extensible Stylesheet Language (XSL) 30

3.2.1.2 XSL for Transformation (XSLT) 32

3.2.1.3 XML Path Language (XPath) 33

3.2.1.4 Programming Interfaces with XML 35

3.2.2 XML Metadata Interchange (XMI) 37

3.2.3 XMI and Software Development Tools 38

3.2.4 XMI Representation of UML Diagrams 39

vi

4 ERROR PROPAGATION PROBABILITIES 45

4.1 A Working Model of Software Architectures 45

4.2 Architectural Goals 46

4.3 Architectural Means 48

4.4 Error Propagation Probabilities 49

4.4.1 Error Propagation: Definition 49

4.4.2 Error Propagation Derivatives 50

4.4.2.1 Unconditional Error Propagation 51

4.4.4.2 Cumulative Error Propagation 52

4.5 Estimating Error Propagation 53

4.5.1 Examples 55

5 APPLICATION AND DESIGN AND IMPLEMENTATION 69

5.1 XML Transformations 71

5.1.1 Metrics Available form XMI Files 72

5.1.2 Metrics Available form XMI Files using XSLT 73

5.1.3 XSLT Template Rules for Metric Extraction 74

5.1.3.1 Simple Value Copying 74

5.1.3.2 Simple Counting Functions 74

5.1.3.3 Standard Java Extensions 75

5.1.3.4 User Defined Extensions 76

5.1.3.5 Recursive Templates 77

5.1.4 Derived Metrics by Chained XSLTs 78

5.1.5 A Document Type Definition (DTD) for metrics XML 80

5.1.6 HTML from XML 84

6 CONCLUSION 85

7 REFERENCES 86

8 APPENDIX- List of Tables and Figures 91

1

1 INTRODUCTION

XMI provides a standard format for representing UML models of software design,

potentially allowing software engineers to archive and exchange models in a tool

independent fashion. If a current or future version of XMI becomes widely accepted,

and supported by commercial modelling tools, it will be highly desirable to develop

freely available tools which can use and manipulate these XMI files. The major

practical motivation for the work described in this dissertation was to develop such

a tool and demonstrate that it can process XMI files to access software design

parameters and calculate Error Propagation Probabilities. Further to this aim, it was

hoped to determine whether any such software metrics extracted from the XMI

representation would have any value in analysing and improving the software

design process.

The first major Section (2) of this report reviews the topic of software metrics, with

particular emphasis on definitions of object-oriented metrics and how it is hoped

that these metrics may be used to measure how well a system design meets the

accepted object-oriented design paradigm and hence to improve design quality.

This is followed by a Section (3) detailing the technical background for the work: the

salient features of UML notation, XML and XMI. Error Propagation term, the design,

implementation and testing of this tool Metrics from XMI is described in Sections 4

and 5, Final conclusions from the MSc project are presented in Section 6.

2

2 LITERATURE REVIEW: SOFTWARE METRICS

Software metrics measure attributes of a software system and may be used to

quantitatively express elements of a system model or of program code. A 'metric'

may be a direct measure of a particular attribute (for example Lines of Code or

Number of Classes) or, potentially more usefully, an indirect measure of a higher

level features of the system, such as Quality or Complexity. These indirect metrics

often express relationships both between the directly observable metrics, and also

with external attributes of the system, such as runtime failures or problems

(Bennatan, 1995; Fenton and Pfleeger, 1997).

Historically software metrics have been used to assist in both estimating the costs,

effort and timescale for the development and maintenance of a system, or

alternatively to provide a measure of the quality of the whole system and its

individual components. The most common fundamental use of software metrics is

to measure or predict system size, which is considered to be the major driver for

estimations of system cost or development effort. Size metrics are also used as

simplistic measures of a software engineer's productivity and to measure progress

of a developing system (reviewed by Hughes and Cotterell, 1999). Software metric

is valuable only if it can be shown empirically to be associated reliably with

important quantitative or qualitative attributes of the system (Fenton and Pfleeger,

1997).

3

2.1 Uses for Software Metrics

Software metrics can input into several areas of the software development life cycle

(Hughes and Cotterell, 1999):

 Effort or cost estimation: time and resource allocation: project planning

 Improving the design process

 Measuring ongoing project development in terms of specific outputs

 Evaluating the quality of the product, in terms of functionality, faults and

design

 Evolving and maintaining the product

These functions are implemented in the following processes

1. Project Management

Relatively simple metrics such as lines of code, or defect rates are widely used

in industry for managing software development projects. Predictive metrics are

used to estimate the effort, timescale and resource requirements of projects;

while assessment metrics track progression of a project, as a means of

assessing productivity (Fenton and Pfleeger, 1997).

Simple metrics are favoured for this because of their ease of collation,

application and comprehension, although limits to their usefulness are well

documented (Bennatan, 1995).

4

2. Quality Control and Assurance

Appropriate software metrics can also be used to measure the quality of the

software product throughout development and upon completion. These metrics

may be simple rates of fault detection, or be more abstract measures of system

function and complexity (Bennatan, 1995).

3. Design Process

Perhaps the greatest unrealized potential of software metrics is in the

evaluation and improvement of the design process (Reiing, 2001).

Particularly in an object-oriented design environment, the quality of the design

is critical for the implementation, structure and quality of the final product.

Mistakes and bad choices in the design stage can be difficult and expensive to

correct later in development.

Metrics which can be used to capture high level design concepts and measure

their quality have the potential to assist in the design of the overall system, and

in identifying potential problem areas during implementation.

2.2 Types of Software Metrics

2.2.1 Direct versus Indirect

Software metric may be a directly derived attribute of the system such as:

(thousand) Lines of Code (KLOC), number of errors per KLOC, Direct Source

Instructions (DSI) or other, low-level, code-based metrics. An indirect metric has

5

value as a measure of a higher level, abstract property of the system such as

quality or complexity (Bennatan, 1995).

Direct metrics can of course be used as indicators of higher level properties, for

example the average number of methods per class can be indirectly interpreted as

a measure of complexity or quality, when compared to a quality standard or model.

Alternatively, more complex metrics may be derived or calculated, often from low-

level, direct metrics, in order to capture measures of system complexity (for

example, function point analysis, Section 2.3) (Fenton and Pfleeger, 1997).

2.2.2 High Level versus Low Level

Low level metrics are recorded from direct inspection of the code, a process lending

itself to automation, but necessarily not available until code is being implemented.

High level metrics focus on the architecture of a design or program. They might be

defined on the basis of a design model and available early in the development

process, or they may be derived from underlying low level metrics, and dependent

on detailed design knowledge and code. Tools also exist to assist in the calculation

of certain high level metrics, for example the Together UML design tool can extract

design metrics from system models throughout development (Together 2002).

6

2.2.3 Predictive versus a Posteriori

A posteriori metrics (Nesi and Querci, 1998) are calculated from completed

software projects, where a full range of detailed parameters can be derived from the

fully implemented code and design. These metrics are useful for examining the

quality of the system, and relating its final properties to earlier, predictive models

and estimations. They can be used for the testing and evaluation of the system, and

contribute to ongoing evolution and maintenance.

Predictive metrics, derived in the early, pre-coding design phase, or during the

course of implementation, can be used both in project planning as effort estimators,

and as 'early quality indicators' (Basili et al., 1996; Chidamber and Kemerer, 1998).

Early prediction is a useful goal, allowing identification of high risk components

which will be 'expensive' to implement or error prone (Emam et al., 2001). As an

example, a metric indicator of poor design might be 'exceptional class complexity'.

2.2.4 Procedural versus Object-Oriented

During the previous 30 years, a range of software metrics have been evolved for

the assessment of software programs developed in functional programming

languages (reviewed for example in Hughes and Cotterell, 1999). The sequential

nature of 'traditional' software development lifecycle models has meant that these

metrics were considered usefully adequate, if not ideal, for project management

applications, and have also been useful for some quality control functions.

7

However, the introduction of object-oriented design and programming has lead to

marked changes in working practices. The old models of development lifecycles are

less relevant as design and implementation stages overlap and cycle, and as the

balance of developers’ time have shifted from the implementation of code to the

analysis of design. Novel aspects of the object-oriented paradigm such as

encapsulation, inheritance, abstraction, coupling and cohesion cannot be captured

by the standard existing metrics (Booch, 2000).

Whereas the main cost driver for non object-oriented systems is deemed to be

system size, measured by simple low level metrics or higher level estimates of

complexity (such as function point analysis) there is a belief that the further

structural properties of object-oriented systems will incur additional cost factors;

hence new metrics must be derived to represent these. Furthermore, controlling the

design complexity of object-oriented systems is considered to be of central

importance, and new metrics should be defined which assess the quality of the

design (Chidamber and Kemerer, 1994; Marchesi, 1998; Booch, 2000).

2.3 'Traditional' Software Metrics

The simplest code-based, software metrics have been used since the 1960s for

measuring productivity and for time, cost and effort estimations. These include

variants on (thousands) of Lines of Code (KLOC), delivered source instructions

(DSI) and rates of defects per KLOC as a measure of quality. These metrics can be

directly measured or statistically estimated. Several models for estimation of system

cost or effort prediction use these metrics as inputs including SLIM (Putnam, 1978)

8

and Constructive Cost Models (COCOMO: Boehm, 1981). Even such simple

metrics are difficult to count or estimate accurately, and indeed to use meaningfully,

requiring expertise and historical datasets with which to calibrate the models.

Metrics which try and estimate complexity are potentially better estimators of effort.

Function complexity can be estimated directly from code, for example McCabe's

cyclomatic complexity Mc (McCabe, 1976) and Halstead's measure Ha (Halstead,

1977). If these estimators measure complexity in a programming language neutral

form they can be more readily applied and compared across a wider range of

design projects.

More abstract measures of function size attempt to provide more useful predictors

of system size. Function Point Analysis (FPA: Albrecht and Gaffney, 1983; Symons,

1988) provides a complex method to measure size in terms of functional outputs.

System functions are enumerated and weighted according to complexity, and then

scaled relative to a system complexity factor. Whilst theoretical and practical

criticisms of FPA have been made (it is difficult to calculate, the weighting is

complex and somewhat arbitrary, and there is dispute over how to define relevant

independent functions and indeed whether weightings are necessary) it can be

implemented early in design, and is useful for predictive modelling. FPA has been

widely used in certain sectors of the industry (Heiat and Heiat, 1997).

These established metrics are well understood by practitioners and researchers,

and there is extensive empirical evidence to support their use in structural systems

9

albeit with limited accuracy. However, it is necessary to calibrate the metrics with

relevant historical data sets or to otherwise account for the specific system

environment (Kemerer, 1987; Subramanian and Corbin, 2001).

2.4 Object-Oriented Software Metrics

2.4.1 The Object-Oriented Paradigm

Object-orientation has become the predominant model for the analysis, design and

implementation of software projects and applications. Object -orientation seeks to

model the 'real world', as collections of objects which have attributes (state) and

operations (behaviour).

An object-oriented program is based on classes that describe collections of objects

and define the 'type' of an object, the properties and behaviour of objects. Object-

orientation seeks to provide

 Modularity: the program is assembled from components, which can allow

re-usability and pluggability

 Interfaces: public interfaces describe how components can be used by their

clients i.e. their publicly accessible attributes and operations

 Abstraction: publicly accessible interfaces of modules hide the complexities

of implementation from their clients, allowing pluggability

 Encapsulation: modules hide their information from clients, preventing its

misuse

10

 Minimal Coupling: the dependency between modules is minimized which

allows modules to be maintained and modified independently

 Optimized Cohesion: well designed modules provide related functionality,

realized by operations acting on shared attributes

 Inheritance: Allows components to be extended, so that hierarchies of

increasingly specialized components can be created from ancestors

(superclasses)

 Polymorphism: through inheritance and overriding, attributes and

operations have context dependent meaning and behaviour. This allows for

late binding. (References Stevens and Pooley, 2000; etc.)

Object-oriented development is claimed to provide competitive advantage

(facilitating faster development and more flexible products) and may be required for

increasingly complex applications (Rational, 2000).

2.4.2 Metrics to assess the object-orientation of software

In the past 10 years a number of groups have developed sets of metrics which seek

to capture and quantify the novel structural aspects of object-oriented design and

software projects, namely inheritance, abstraction and encapsulation. Metrics

defined for object-oriented applications can broadly be divided into system/package

level, class level and method level. Method level metrics correspond to the

traditional functional metrics discussed above (LOC, Mc, Ha, etc.), and to some

extent class level metrics may be considered as aggregations of these, with

additional parameters reflecting class architecture. However, the higher level

package and system metrics seek to represent the uniquely important features of

11

object-oriented design, and as such might be important aids to improving the

object-oriented design (Nesi and Querci, 1998).

The work of Chidamber and Kemerer (1991, 1994, 1998) has been seminal in

defining, theoretically validating, and to some extent empirically verifying a set of six

object-oriented metrics. Their metric set is listed in Table 1, summarizing how each

metric is derived, and which object-oriented features they seek to represent. These

metrics seek to quantify how well a system meets the object-oriented paradigm, in

terms of optimizing inheritance, ensuring encapsulation, minimizing coupling and

improving cohesion. The metrics can then be used to judge the quality of a system,

and to identify potential error prone elements, such as overly complex classes. To

this end the utility of the metrics has to a degree been empirically verified by several

studies (Li and Henry, 1993; Basili et al., 1996; Chidamber and Kemerer, 1998;

Briand et al., 2000).

It can be argued that the Chidamber and Kemerer metric set focuses on class level

metrics and that several of them are highly dependent on low level (i.e. code)

metrics for their derivation, and as such are not ideally suited to early stage design

analysis. Furthermore, the metric set may not capture overlapping properties of the

system nor are the metrics formally and unambiguously defined. Considering again

Table 1 while DIT and NOC can easily be formalized, WMC is somewhat vague in

its definition. Futhermore to determine CBO requires detailed design data and RFC

and LCOM would require code level analyses (Reiing, 2001). Never the less, the

12

value of refined versions of these metrics has been demonstrated by studies in

which they have accurately predicted poorly designed, error-prone classes (Briand

et al., 2000). The Chidamber and Kemerer metrics therefore give useful measures

of class complexity, however, some evidence suggests that class size is still the

most influential (and possibly useful) metric, and current measures of coupling and

cohesion fail to markedly improve the value of the metrics (Briand and Wüst, 2001).

Several alternative object-oriented metric sets have been proposed by other

workers, which tend to share many of the properties of the Chidamber and Kemerer

set, but may be focused at a higher or lower level of the design. Lorenz and Kidd

(1994) have defined an extensive set of metrics, which are relatively low level and

directly measurable, and hence may give a more limited architectural view

(Harrison et al., 1997).

Specifically in response to some of the criticisms of the Chidamber and Kemerer

metric set alternative, 'early definition' metrics have been proposed which should be

obtainable from early and incomplete program designs (Abreu et al., 1995; Martin,

1995; Marchesi, 1998, Table 2 and Table 3; Reiing, 2001, Table 4 Bansiya and

Davis, 2002). Operationally these metrics start by defining which direct metrics or

parameters are available at an early stage of development, in the absence of code

(see for example Table 2) and use these direct attributes to define higher level

measures of structural complexity (see Table 3). Marchesi (1998, Table 2 and

Table 3) defines sets of measures that are available at the very earliest design

13

stages, i.e. class design, whilst others use properties that will emerge as the design

is developed (Reiing, 2001;Table 4). Again these metrics seek to allow the

properties of a system to be compared to a quality model, i.e. against heuristic rules

which suggest that classes should not have public attributes, coupling should be

reduced, inheritance hierarchies have an optimal size, etc. As such this early-

definition, high-level metrics would possibly reflect the properties of inheritance,

encapsulation and coupling. The same metrics sets might then be applicable

throughout the development lifecycle and a posteriori to measure system and

component quality.

Marinescu (2001) has identified an important a posteriori use for metrics in the re-

engineering of object-oriented applications. He has described a simple set of

metrics that can be derived from implemented software projects, which might be

used to identify potentially poorly designed classes. He pinpoints these as 'outliers'

that conform badly to the object-oriented paradigm (see Table). These metrics are

derived by definition from the fully implemented source code, a process which can

be automated with parsing tools. Indeed some of Marinescu's metrics are

incorporated in the Together design package's metric module (Together 2002).

Our approach was a bit different from the perspective of others and our aim is to

calculate error propagation values from UML diagrams (see Table 6). We interpret

EP(A,B) as the probability that an error in A is propagated by B (as opposed to

being masked by B) because the outcome of executing B will be affected by the

error in A. By extension of this definition, we let EP(A,A) be equal to 1, which is the

14

probability that an error in A causes an error in A. Given architecture with N

components, we let EP be an NN matrix such that the entry at row A and column

B be the error propagation probability from A to B.

Table 1: Summary of Chidamber and Kemerer's Six Object-Oriented Metrics

METRIC
HIGH-LEVEL

ATTRIBUTE
 GENERAL SUMMARY

Weighted Methods

per Class (WMC)
size

Various weighting schemes can be used,

reflecting traditional low-level metrics

Depth of Inheritance

Tree (DIT)
inheritance

Maximum level of inheritance hierarchy for a

class, from its root superclass. An indicator

of re-use and complexity.

Number of Children

(NOC)
inheritance

Number of subclasses per class, indicates

extent of re-use.

Lack of Cohesion in

Methods (LCOM)
cohesion

Somewhat arbitrary definition of cohesion

calculated by determining how many

methods in a class share attributes.

Coupling Between

Objects (CBO)
coupling

The number of classes to which a class is

coupled, by using their methods or

attributes.

Response set for a

Class (RFC)
coupling

The number of methods that can be invoked

in response to a message to a class.

15

Table 2: List of Early-Definable System Parameters

(Marchesi, 1998)

Number of Classes

Number of Packages

Number of Root Classes

Number of Responsibilities for a Class

Number of Abstract Responsibilities for a Class

Number of Concrete Responsibilities for a Class

Number of Subclasses of a Class

Number of Dependencies of a Class

Number of Dependencies between a Pair of Classes

16

Table 3: Marchesi's Proposed 'Early Definition' Object-Oriented Metrics

Class Metrics

CL1 Weighted number of responsibilities for a class

CL2 Weighted number of dependencies for a class

CL3 Depth of inheritance tree

CL4 Number of immediate subclasses of a class

CL5 Number of distinct classes dependent on a class

Package Metrics

PK1 Number of dependencies outwith a package

PK2 Number of dependencies within a package

PK3 Average of PK1

Global Complexity Metrics

OA1 Number of classes

OA2 Number of inheritance hierarchies

OA3 Average weighted number of class responsibilities

OA4 Standard deviation of OA3

OA5 Average number of direct dependencies of a class

OA6 Standard deviation of OA5

OA7
Percentage of inherited responsibilities with respect to total number of

responsibilities

17

Table 4: Reiing's Proposed 'Early Definition' Object-Oriented Metrics

Class Metrics

NAP Number of public attributes in the public interface of a class

NAI Number of public attributes in the inheritance interface of a class

NIA Number of inherited associations of a class

NLA Number of local (non-inherited) associations of a class

NAA Number of all associations of a class

Package Metrics

DNH Depth in the nesting hierarchy

NCP Number of total classes in a package

NPP Number of nested packages in a package

System Metrics

NIH Number of inheritance hierarchies

aggregates

 total number of classes

 mean number of methods per class

 maximum depth of inheritance hierarchy

 etc.

18

Table 5: Marinescu's a Posteriori Metrics for Identification of Badly Designed
Classes

Data-Classes: define few methods other than accessor functions

Weight of Class

(WOC)

Ratio of non-accessor

methods to total number

of interface members

A low WOC value indicates low

functionality

Number of Public

Attributes (NOPA)

The number of non-

inherited attributes

belonging to the class

interface

 A high NOPA violates

encapsulation and couple clients to

the class

Number of Accessor

Methods (NOAM)

The number of non-

inherited methods

declared in the class

interface

High NOAM values may indicate

that the functionality of the class is

misplaced in other classes

God-Classes: over-centralize the functionality of the system

Access of Foreign

Data (AOFD)

The number of external

classes from which a

given class accesses

attributes

High AOFD indicates tendency to

Godliness

Weighted Method

Count (WMC)

A measurement of the

size and complexity of a

given classes methods

A high WMC may indicate a major

abstraction class or Godliness

Tight Class Cohesion

(TCC)

A relative index of the

number of connected

methods accessing

common instance

variables

Low TCC ratios indicate non-

communicative behaviour within a

class

19

Table 6: Our Metric Identification

Number of States

Number of Messages

Number of Classes

Number of Packages

Number of Abstract Responsibilities for a Class

Number of Concrete Responsibilities for a Class

Number of Subclasses of a Class

Number of Dependencies of a Class

Number of Dependencies between a Pair of Classes

20

3 TECHNICAL BACKGROUND

3.1The Unified Modelling Language (UML)

 (These sections reference the UML standards versions 1.3 and 1.4 - available from

OMG(2002), and Stevens and Pooley, 2000).

UML arose as a standard language for the specification of the artefacts of software

systems from the convergence of three object-oriented analysis and design

methodologies, initially defined by the Rational Software Development Company

(Rational 2002). Its standards and developments are now controlled by the

independent Object Management Group (OMG). Being both expressive and

extensible UML is also suitable for business and non-software object-oriented

modelling. While used by many software development tools, UML is not itself a

methodology, and is implementation independent. The language supports higher

level development concepts such as components, collaborations, frameworks and

patterns. As such it can be used to document reusable artefacts (components and

frameworks) as well as supporting system development.

The current version of UML is 1.4 (OMG 2001 UML1.4) Increasing numbers of

software development tools are compliant with (some of) the 1.3 standards, though

many still work from previous standards.

A model is a precise, abstract representation of the essential details of a design or

system, from a given view. UML represents a model by any number of various

21

graphical diagrams which provide multiple perspectives of the system under

analysis or development. The underlying model integrates these views, which are

represented to the modeller as a number of artefacts including:

• use case diagrams

• class diagrams

•behaviour diagrams (statechart, activity, interaction (sequence,

collaboration))

• implementation diagrams (component, deployment).

Architecturally the actual model is described by a UML meta-model and UML

metamodels are themselves loose instances of MOF (Meta-Object Facility) meta-

metamodels, which provides an architecture neutral format for the inter exchange of

model objects.

Three main types of modelling diagrams are supported:

 use case model (expressing system requirements from a users viewpoint)

 static model (describing the elements of a system and their relationships)

 dynamic model (describing the behaviour over time of a system).

For the purposes of this study we will restrict consideration to the UML class

diagram, sequence diagrams and state machines, which captures many of the

metrics of potential interest for the purposes described in Section 2.

22

2.4.3 UML Diagrams

Class diagrams document the static structure of a system: what classes (and

packages) there are and how they are related, without specifying how they

implement interactions to achieve behaviour. They can be created early in the

design process, and refined throughout development, and they are readily

obtainable from implemented application code. The classes provide all the

behaviour required by the system.

Some of the class diagram features from which software metrics can be derived of

are shown in Figure 3. These adapt examples in Stevens and Pooley (2000) or the

OMG UML 1.3 and 1.4 specifications (OMG 2002).

23

Figure 1: Class Notation

The attributes are the data contained in an object of a class, while operations define

how objects interact open receipt of a message. The operation signature, with

selector, return type and formal parameters, can be given (for example

getLength(b:Record): int).

c

Class Name

Properties

Attributes
 +public
 -private
 #protected
 ~package

Operations

Window

Window

size: Area
visibility: Boolean

display()
hide()

Window
{abstract,

 author = 'Trevor'}

+size: Area = (100,100)
#visibility: Boolean = true
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: Xwindow*

+display()
+hide()
+create()
-attachXWindow(xwin:Xwindow*)

a

b

Class Notation:
(a) Details suppressed (b) Anlaysis-level details
(c) Implementation level details (adapted from OMG UMLv1.4)

24

Figure 2: Relationships between Classes: Class Association and
Generalization

In Figure 2a generalization (inheritance) is represented by the open arrow joining a

subclass to the superclass it inherits from. The subclass should match the interface

Student Module

1..* 6
is taking

is taking

mark:int

getMark():int

Student Module

1..* 6
is taking

Mark

mark:int

getMark():int

1

6 1..*

6

Person
a

b

25

of the superclass, so that messages given to the superclass can also be given to

the subclass (and a subclass can be used in place of a superclass (polymorphism)).

The navigability of an association shows the direction in which messages can be

passed, where only one class knows of the other (as an instance variable for

example). However, introducing navigability increases coupling between classes.

Figure 3: Relationships between Classes: Aggregation and Composition

Aggregations (Figure 3a) and compositions (or composite aggregations) (Figure 3b)

are specialized (optional) forms of association where one class is part of an object

of another class. Composition defines a much stronger ownership than aggregation,

and for example deletion of the owning class deletes the associated classes.

HonoursCourse Module

Chessboard Square

64

1..*

1

6..*

a

b

26

Figure 4: Relationships between Classes: Dependency and Interfaces

UML defines a number of 'stereotypes' and allows additional ones to be defined

within a model - to provide extensibility. An <<interface>> stereotype defines a list

of operations that any class matching (or realising/ implementing) the interface must

provide. Classes may match more than one interface. Dependencies are

necessarily reflected in close coupling between the dependent classes, and should

<<interface>>
Printable

pixelate(): String

Document

pixelate(): String
...

Printer

<<interface>>

Printable

pixelate(): String

Document

pixelate(): String

...

Printer

<<use>>
prints

prints

Printable

a

b

27

be represented as explicitly as possible (for example generalisation is a form of

dependency).

Figure 5: Packages

Packages are collections of any of the model elements composing the UML model,

for example classes and the relationships between them. Package icons, illustrated

in , can be used in several types of UML diagrams. Packages might define a

design component, or may be used to divide a project up into workloads for the

design team.

Collaboration diagrams allow the designer to specify the sequence of messages

sent between objects in collaboration. The style of the diagram emphasizes the

relationships between the objects as opposed to the sequence of the messages. In

this column we will be discussing UML Sequence diagrams. Sequence diagrams

contain the same information as Collaboration diagrams, but emphasize the

sequence of the messages instead of the relationships between the objects.

Graphics

Draw

Refresh

Panels

28

Figure 6: Collaboration Diagrams

State diagrams are used to describe the behavior of a system. State diagrams

describe all of the possible states of an object as events occur. Each diagram

usually represents objects of a single class and track the different states of its

objects through the system.

Figure 7: State Diagram

29

3.2XML Representations of UML Diagrams

As described above many of the structural elements of a software application can

be represented at the design stage, or upon implementation, as a UML diagrams.

Class, collaboration and state diagrams presenting one of a number of views of a

development model can be created using commercial or open source software

development tools (for example Rational Rose (Rational 2002), Together (Together

2002) or argoUML (AroUML 2002)). The requirement for this model information to

be stored and transferable between different modelling tools, and other applications

and repositories, was one of the main drivers behind the development of the XMI

standard (XML Metadata Interchange). As XML (Extensible Markup Language) is

not object-oriented XMI provides a standard method for mapping object models to

XML to facilitate data exchange (Grose et al., 2002).

2.4.4 Extensible Markup Language (XML)

It is necessary to be familiar with the concepts of XML in order to use XMI, as XMI

implements XML DTDs (Document Type Definitions) and XML Documents. XML is

an open standard, currently version 1.0, second edition, maintained by the World

Wide Web Consortium, (WC3 2002 XML). (Additional references for this section:

Carlson, 2001; Goldfarb and Prescod, 2001).

XML was defined as a lightweight, extensible meta-language for the representation

of data and information about data (metadata) in the absence of details about its

presentation. One of its primary aims is to facilitate the exchange of information in

an application and architecture independent manner.

30

XML Parsers check that XML documents are 'well-formed', complying with a strictly

defined and meaningful syntax, and create a data-structure (tree) of the entire

document which can be accessed through the XML Document Object Model

(DOM). The markup tags of XML define the meaning of the document structure,

and can be extended through user defined tags. The allowable elements, tags,

attributes and nestings can be described in internal or external SGML-style DTD or

in more expressive, XML-compliant XML Schemas. Validating-Parsers can check

the validity of an XML document to a given (linked) DTD or Schema.

XML documents are plain text documents containing nested tags describing

element tags, attributes and data content. Stylesheets can be linked to XML

documents in order to add presentational information. Cascading Style Sheets

(CSS) can be used in a similar manner to their use with HTML, to enrich graphical

display in a browser. Alternatively XSL stylesheets can be used to apply layout style

in order to render an XML document for visual presentation.

3.2.1.1 Extensible Stylesheet Language (XSL)

W3C maintains the XSL standard, currently version 1.0 (W3C 2001 XSL).

Conceptually XSL consists of two parts, a language for transforming XML

documents, and an XML vocabulary for specifying how the (transformed) document

is formatted. The first function is provided by XSLT (see Section 3.2.1.2) which

transforms the source XML tree into another tree form, which may then be rendered

31

for display by the formatting syntax of the second function (XSL-FO "flow-object").

This is shown in Figure 8 (from the W3C XSL specification, 2001).

Figure 8: XSL Processing is Two-Stage

The XPath language provides the third necessary component: an addressing

mechanism that allows specification of a path to any element of the source tree,

allowing its manipulation.

Transformation converts from one XML vocabulary into another, or indeed into plain

text, HTML style or other formats and markups. The formatter adds abstract

formatting objects and attributes to the result tree produced by the transformation

(for example paragraph styles, table style, font and colours) so that target

applications (browsers, printers etc.) render the document as desired.

32

3.2.1.2 Extensible Stylesheet Language for Transformation (XSLT)

XSLT provides a rich, non-procedural language for the transformation of an XML

source document to one or more outputs, providing a lightweight alternative the

creation of bespoke parsing applications to access and modify the XML document

directly or through the DOM. (W3C XSLT version 1.0 specification, 1999). XSLT

functionally resembles a scripting language, where the transformation process

applies regular expressions to an input stream, transforming matched elements to

an output stream, and has similar elements of control flow. Whilst XSLT is highly

specialized for transforming XML trees, it is not very powerful at string or numeric

manipulation.

XSLT can be used to transform an XML document from one schema (or DTD) to

another, providing they have comparable semantics, and differ only in grammar.

This can allow documents to be translated between standard and non-standard

schemas.

An XSLT processor operates by applying order-independent template rules

(specified in an XSLT document) to pattern-matched elements of the source

document tree, returning the template results to the results tree, without altering the

source document (see Figure 9). Each rule specifies a pattern for elements or

attributes to match and a set of actions (template) of what to produce when a match

occurs. Each rule adds a new node to the result tree, and can reorder and duplicate

source elements, filter (delete) elements and attributes and add content to the

33

document. The stylesheet language provides powerful techniques to access and

rearrange all of the content (and tags) of an XML document by allowing conditional

operations and specification of variables, parameters and indexable keys. Powerful

pattern matching is performed using the XPath pattern matching language.

XSLT is highly suited to many XML processing applications, but cannot be used for

continuous data streams, nor for heavyweight computational analysis or very large

source documents (over a few megabytes) (Carlson, 2001).

Figure 9: XSL Processing Converts the Source Node Tree into the Result
Node Tree

3.2.1.3 XML Path Language (XPath)

XPath (W3C XPath version 1.0 specification, 1999) allows all the parts of an XML

document to be addressed by providing a hierarchical datamodel of the document

as a tree of element nodes. Under any given element node, there are further text

34

nodes, attribute nodes, element nodes, comment nodes, or processing instruction

nodes. Some node types have a name, and each node possesses an associated

string value. Text nodes represent the textual data content of the document.

In general, an XPath expression specifies a pattern that selects a set of XML

nodes. The location path resembles a filesystem naming hierarchy. An XPath

expression may include a wide range of operators, functions and wildcards to allow

accurate searching. Furthermore, XPath expressions can include predicates or

selection-criteria, which allow nodes to be filtered or selected by name or value.

The path can be searched along different axes: the default child axis, the attribute

axis, the content axis, the descendant axis, etc. Different axes allow a different set

of defined node tests to be applied, for example in any context:

node() returns all the child nodes

* returns nodes of the current principal type

@* matches any attribute node

or working within a content axis:

text() returns any text node

comment() returns any comment node.

XPath defines many functions. These can be used to return a set of nodes, or a

string, number or boolean value. The functions include node-set functions, string

35

functions, Boolean functions, positional functions, numeric functions and

namespace functions. The operation of many of these functions depends on the

context from which they are invoked.

XPath is used by XSLT and the XPointer language (which allows XPath

expressions to be appended to URIs to point to XML data distributed over the

Internet). It is also implemented in some applications of the DOM.

3.2.1.4 Programming Interfaces with XML

DOM

The Document Object Model (DOM) is the W3C platform- and language-neutral

standardized API for managing and manipulating XML (and HTML) documents by

building an object representation of the data (W3C (2002) DOM). The DOM allows

programs and scripts to dynamically access and updates the complete content,

structure and style of XML documents. DOM applications are well suited for

interactive applications because the entire object model is present in memory,

where it can be accessed and manipulated by the user. However, creation and

retention of the DOM tree can be resource heavy for large XML documents,

especially in a distributed environment.

The 'objects' held in the W3C standard DOM are in fact low level data-structures,

not rich objects. An alternative, fully object-oriented API, JDOM, has been

developed which represents XML documents in Java using an XML parser to build

the document (jdom.org 2002). The alternative JDOM data representation seeks to

36

provide a simpler programming environment, while integrating fully with the DOM

and SAX standards.

SAX

The Simple API for XML (SAX) was developed informally as an API to work with

XML parsers. It does not create a document tree, but handles an XML document as

a series of events, streaming through the XML syntax, parsing and processing

events in turn and returning only the desired output. This provides for lightweight

processing, but does not allow for random access or return through the document.

As such it is suited to server-side and high performance applications which do not

require an in-memory representation of the data (for example, data-filtering, Web

servers producing output to HTTP clients or data repositories).

Document parsing via the DOM or SAX provide alternatives to XSLT

transformations for extracting and filtering information from an XML document. It is

possible to combine SAX and DOM within a single system. Many parsers can

produce both SAX and DOM output and a SAX stream can be used as input to a

DOM builder, or a DOM's content can be used to generate SAX events (Akif et al.,

2001).

37

2.4.5 XML Metadata Interchange (XMI)

XMI integrates three key industry standards:

1. XML - eXtensible Markup Language, a W3C standard

2. UML - Unified Modelling Language, an OMG modelling standard

3. MOF - Meta Object Facility, an OMG metamodelling and metadata

repository standard'

In essence any metamodel that conforms to the MOF meta-metamodel can be

represented as an XML document through XMI. XMI is therefore applicable to a

wide variety of objects: for analysis, software, components and databases. XMI

solves the problem of tool interoperability by providing a flexible and easily parsed

information interchange format. The XMI stream contains both the definitions of the

information being transferred and the information itself.

A UML model is an instance of a UML metamodel, which is in turn an instance of

the MOF model, and XMI allows for such a compliant model to be treated as the

metamodel and represented by an XML DTD and document, produced according to

XMI. In more simple terms, XMI provides a vocabulary specified by an UML.DTD

for the description of the components (model elements, attributes, associations,

etc.) of a UML model.

The XMI format was designed to be produced automatically and consistently from a

UML model using an XMI processor. The documents produced are designed for

38

machine-readable XML data interchange, not compact, human readable documents

(Carlson, 2001). A more complete description of the format XMI is given in Section

2.4.7.

2.4.6 XMI and Software Development Tools

Software development tools can save the details of UML diagrams as an XMI

document.

A range of commercial object-oriented software development suites are capable of

importing and exporting XMI representations of UML models. These include the

proprietary Rational Rose (Rational 2002), Together ControlCenter (Together

2002), Objecteering (Softeam 2002), Ideogramic UML (Ideogramic 2002) and

Posiedon (Gentleware 2002). Poseidon is based upon the opensource CASE tool

argoUML (ArgoUML 2002) which uniquely was developed from inception to use

XMI to store the UML model, not merely to facilitate data interchange via importing

and exporting.

Several of the UML design suites have tools for measuring and analysing

procedural and object-oriented software metrics. For example Together

ControlCenter reports on 47 different metrics (including object-oriented metrics)

whilst Objecteering derives an exhaustive set of 80 low and high level metrics

based on the work of Lorenz and Kidd (1994), which aim to check and maintain

model quality.

39

2.4.7 XMI Representation of UML Diagrams

Current XMI versions 1.0 to 1.2 do not support schemas, and use DTDs to specify

the metamodel structures. DTD are derived automatically from the MOF

metamodels as described in the XMI standard: the UML1.1 DTD is described in the

XMI standards (up to 1.2) but a current OMG UML1.3 DTD is available and can be

used by several of the CASE tools including argoUML. There is no requirement for

XMI to implement XML validation, so XMI documents are not required to specify

their DTD, and indeed might not necessarily validate against a specified DTD.

The XMI representation of UML class diagrams is best illustrated by example.

Figure 10 shows a simple class diagram created with argoUML, consisting of a

single Class 'ClosedFigure' realizing (implementing) the Interface 'Figure'.

XMI assigns each model element a unique xmi.id, and nests the elements within

the root element Model 'Graphics', which is assigned xmi.id = xmi.1. This also

defines a namespace for each element in the model. These unique IDs allow

elements to reference associated elements, as xmi.idref values and also provide an

access method to the data structure when processing with XSLT.

XMI (version 1.0) provides two further attributes which can act as identifiers for

model elements xmi.label, for string descriptors, and xmi.uuid for a (globally)

universally unique identifier. These attributes are used differently by the various

model creation tools. Rational Rose optionally allows uuids to be generated, while

40

argoUML uses them in a non-standard - but very useful - manner to identify

elements that have been defined by the user, i.e. are not part of standard Java

language packages etc. Therefore, in Figure 11 only the model namespace

(Graphics), the two user-defined classes (Figure and ClosedFigure) and the

dependency abstraction (xmi.3) are assigned an xmi.uuid. In contrast saving a

similar class diagram produced with Rational Rose would have created xmi.uuids

for many other model elements representing operations, arguments and attributes

in addition to any Java language elements, whilst Together does not generate

xmi.uuids in its implementation of XMI.

'Figure' and 'ClosedFigure' are nested within 'Graphics', and their operations and

attributes are similarly nested within. The xmi.id of each element is illustrated on

Figure 10. The dependency relationship between the Class and Interface is

represented by an Abstraction element (xmi.3), and this is extended by the

realization stereotype detailed by element xmi.31. The dependency client

('ClosedFigure') and dependency supplier ('Figure') are recorded by referenced

xmi.idref values in the Abstraction element. Each participating element also records

the relationship.

Every element has a number of associated properties whose values are recorded

within the element. For example, details of the signature of the 'display()' operation

are recorded as .visibility = "public" and .isAbstract = "true". Parameters of an

41

operation, including return type, are represented by elements nested within the

operation.

Datatypes are also represented by elements. argoUML defines simple (atomic) and

common Class datatypes through java.lang library classes, which are recorded as

part of the model. (For example, type float is recorded as element xmi.13, which is

nested within java and lang elements). Additional user defined datatypes can also

be created, for example the datatype 'Color' (xmi.27).

42

Cihan-thesis.mdl

Figure 10: Annotated XMI representation of a simple class diagram

<<Interface>>

Figure

+display(): void

+rotate(centre: , angle: float): void

+translate(x:float, y:float): void

ClosedFigure

-lineColor: Color

-fillColor: Color

xmi.1

xmi.2

xmi.3

xmi.31

xmi.4

xmi.7

xmi.14
xmi.8

xmi.13

xmi.18

xmi.11

xmi.16

xmi.6

xmi.9

xmi.15

xmi.6

xmi.5

xmi.6

xmi.24

xmi.25

xmi.28
xmi.27

xmi.13

xmi.13

43

Figure 11: Annotated XMI representation of a simple collaboration diagram

A simple collaboration diagram is shown in Figure 11. Arrows shows the messages

that are passing through classes or interfaces. Xmi.29 is assigned to show classes

or interfaces. Xmi.30 is assigned to show the message name and xmi.31 is

assigned to show attributes of messages.

A simple state diagram is shown in Figure 12. Below is an example of a state

diagram might look like for an Order object. When the object enters the Checking

state it performs the activity "check items." After the activity is completed the object

transitions to the next state based on the conditions [all items available] or [an item

xmi.29

xmi.31

xmi.30

44

is not available]. If an item is not available the order is canceled. If all items are

available then the order is dispatched. When the object transitions to the

Dispatching state the activity "initiate delivery" is performed. After this activity is

complete the object transitions again to the Delivered state.

Figure 12: Annotated XMI representation of a simple state diagram

xmi.32

45

4 ERROR PROPAGATION PROBABILITIES

The study of software architectures is emerging as an important discipline in

software engineering, because not only software architectures emphasize large

scale composition of software products but also they support many emerging

paradigms of software development, such as product line engineering,

components-based software engineering, COTS-based development, as well as

software evolution. In this part, the attribute of Error Propagation Probability will be

discussed, i.e. the probability that an error that arises at run time in one component

will propagate to other components. This effort is part of a larger project which

investigates a wide range of attributes, including Change Propagation Probabilities,

Requirements Propagation Probabilities, etc (Ammar et al. 2001). The focus on the

architectural level (rather than design or code level) has a profound impact on our

work, affecting both its goals and its means, as we discuss in the sequel; first, we

introduce our view of software architectures, for the purposes of this study.

4.1 A Working Model of Software Architectures

According to Bass et al, “The Software architecture of a program or computing

system is the structure or structures of the system, which comprise software

components, the externally visible properties of those components, and the

relationships between them”. It is common to distinguish between five broad

classes of architectures, called architectural styles, where each style is defined/

characterized by: component types; communication patterns/ protocols between

46

the components; semantic constraints; and a vocabulary of connectors. The five

architectural styles are:

 Independent Components. The architecture is an aggregate of independent

processes/ objects that communicate through data or control messages.

 Virtual Machines. In this style, architecture is an aggregate of virtual

machines arranged in layers, where each layer invokes the layer below it

and provides the vocabulary to define the layer above it.

 Dataflow Architectures. The architecture is an aggregate of processing

nodes whose activation is driven by the flow of data streams.

 Data Centred Architectures. The architecture is an aggregate of interacting

components that communicate through a shared data repository.

 Call and Return Architectures. In this style, an architecture is an aggregate

of components that are defined in programming terms (procedures, functions

routines) and whose interactions are restricted to programming language

supported interactions (call and return, parameter passing, etc).

Perhaps with some loss of generality, we focus our attention in this study on the

first architectural style, i.e. independent components.

4.2 Architectural Goals

The focus of the study on software architectures has a direct impact on what

attributes we may wish to define, characterize and quantify. Traditional software

metrics that characterize source code or depend on the executable/ operational

nature of source code for their definition (e.g. reliability, dependability) are not too

47

much meaningful at the architectural level. Architectural quality attributes can be

divided into two distinct classes:

 Attributes that view the software architecture as an intrinsic product, and

characterize it as such.

 Attributes that view the software architecture as a blueprint for operational

software systems, and characterize it by the properties of these systems.

Main focus of our attention on the latter class, so that when we say that architecture

has some attribute, we actually mean that operational software systems that are

derived from this architecture have this attribute.

As a matter of separation of concerns, and in order to facilitate our discussions, we

define a three-tier hierarchy of attributes:

 Qualitative Attributes, which represent relevant features of an architecture

that we want to define and characterize.

 Quantitative Functions, which represent formally defined functions that may

be related to the qualitative attributes or may represent some aspect of a

qualitative attribute.

 Computable Metrics, which represent quantitative functions that we can

compute by analyzing the architecture.

48

4.3 Architectural Means

Not only does the focus on architectures affect our goals, it also affects the means

we have at our disposal to achieve these goals. Within the architectural style that

we have selected we cannot rely on the availability of source code-like structural or

semantic information. We resolve to consider that the only information we can

count on, across the various representations of software architectures, is

information on the data flow and control flow within components and between

components. In the absence of functional/ operational information, we rely on

probabilistic arguments to quantify the information flow throughout the architecture.

An intuitive approach is to model information flow by means of random variables

and to quantify it by means of entropy functions; in the course of our study we will

also use other functions when the need arises.

The focus on architectures limits not only the amount of information that we have

access to, it also restricts the type of modeling we can make. In order to define a

fault model for a system, we need two types of information regarding the system:

 Structural information, whose level of detail is commensurate with the

precision with which we want to identify faults.

 Operational information, which catalogs the set of abnormal behaviors that

we want to consider for each identifiable unit (re: level of structural detail).

In the absence of detailed operational information, we cannot define a credible fault

model on software architecture; hence we shift our attention away from faults and

focus it on errors instead. Furthermore, in keeping with our architectural model, we

49

let our identifiable units be components and connectors; we model an error in a

component by an alteration of its state, and we model an error in a connector by an

alteration of the message that it carries.

4.4 Error Propagation Probabilities

In this section, we first introduce and discuss the feature of error propagation in

architecture. Then we review some derivatives of this feature.

4.4.1 Error Propagation: Definition

We consider two components, say A and B, of an architecture, and we let X be the

connector that carries information from A to B; for the purposes of our current

discussion, the specific form of connector X is not important, we will merely model it

as a set (of values that A may transmit to B). Also, the specific form of components

A and B is not important for the purposes of our discussion; we will merely model

them as functions that map an internal state and an input stimulus into a new state

and an output.

Definition 1. The Error Propagation Probability from component A to

component B is denoted by EP(A,B) and defined by:

(1)

where [B] denotes the function of component B, and x is an element of the

connector X from A to B. We interpret [B] to capture all the effects of

50

executing component B, including the effect on the state of B as well as

the effect on any outputs produced by B.

We interpret EP(A,B) as the probability that an error in A is propagated by B (as

opposed to being masked by B) because the outcome of executing B will be

affected by the error in A. By extension of this definition, we let EP(A,A) be equal to

1, which is the probability that an error in A causes an error in A. Given architecture

with N components, we let EP be an NN matrix such that the entry at row A and

column B be the error propagation probability from A to B (Nassar, 2002).

Note that nothing in our definition above indicates that x’ is an erroneous message;

all the definition says is that x’ is different from x --- as far as this definition is

concerned, both could be correct. While this may seem to be an anomaly, all it

means is that we are measuring error propagation probabilities by a wider property,

which is the probability that different arguments are mapped by function [B] to

different images (a measure of injectivity of [B]).

4.4.2 Error Propagation Derivatives

In this section we derive three measures of interest from the error propagation

probability we defined.

51

4.4.2.1 Unconditional Error Propagation

Note that the definition of the error propagation given above uses the concept of

conditional probability, i.e. we calculate the probability that an error propagates from

A to B under the condition that A actually transmits a message to B. It is often

useful, however, to use the unconditional error propagation which we will denote

simply as E(A,B), and define as the probability that an error propagates from A to B

not conditioned upon the event that A sends a message to B. Function E(A,B) is

clearly dependent on EP(A,B), but it further integrates the probability that A does

send a message to B. In order to bridge the gap between the original (conditional)

error propagation and the newly introduced unconditional error propagation, let us

consider the transmission probability matrix T where the entry T(A, B) reflects the

probability with which the connector gets activated during a typical/ canonical

execution. T is the NxN matrix whose entry T(A, B) is the probability that the

component A sends a message to component B given that the A is expected to

transmit a message to some component. Note that:

 It is reasonable to assume that T(A, A) = 0 for all components A,

The matrix T is used to distinguish between a connector that is invoked intensively

in each execution and one that is invoked only occasionally, under exceptional

circumstances. The matrix T reflects the variance in frequency of activations of

different connectors during a typical execution.

By virtue of simple probabilistic identities, we find that the unconditional error

propagation is obtained as the product of the conditional error propagation

52

probability with the probability that the connector over which the error propagates is

activated, i.e.

(2)

The concept of unconditional error propagation is useful when we discuss

cumulative error propagation probabilities, which we do in the next subsection.

4.4.2.1 Cumulative Error Propagation

So far we have focused our attention on single step error propagation from some

component A to some component B, we want to consider, now, the probability that

an error in some component A propagates to some component B in an arbitrary

number of transmissions (steps) starting in A and ending in B. We call this the

cumulative error propagation probability from A to B. We submit two premises

pertaining to the analysis of cumulative error propagation:

 Cumulative error propagation probabilities must be derived, not from matrix EP

but rather from matrix E. Indeed, the probability that an error propagates along

some path depends first and foremost on the probability that the path is actually

taken, combined with the probability that the error is propagated through each

arc of the path.

 Second, the matrix of cumulative error propagation probabilities cannot be

derived as the traditional transitive closure of matrix E, because while matrix T is

stochastic, matrix E is not. Hence we need to find a specific formula for this

case, which we do in the sequel.

53

Where Es is the s-step error propagation matrix, i.e. Es(A, B) is the probability that

an error in A propagates to B via exactly s connectors. The s-step error propagation

matrix Es is given by:

(3)

4.5 Estimating Error Propagation

We have found that analytically, the error propagation probability can be expressed

in terms of the probabilities of the individual A-to-B messages and states, via the

following formula:

(4)

where , and we assume a probability distribution PB on

the set of states SB of component B, and a probability distribution PA→B on the set

of messages VA→B passed from A to B.

The term in the denominator of (4) is an exponent of the 2nd order

Renyi entropy, which according to the recent studies is closely related to the

classical Shannon entropy. If we assume that the states of B, as well the messages

passing through the connector from A to B are equi-probable, then the formula for

error propagation is simplified into

54

 (5)

Since the software practitioner cannot always extract from the available artefact the

detailed information on the transition table F for the architectural components, it

would be helpful to be able to estimate the right-hand side of (6) without using any

knowledge of function F. The following inequality gives precisely such an estimate

(upper bound)

(6)

55

4.5.1 Examples

For the general metrics,

Diagram 1: The Object by Design Graphics Editor Model

56

Diagram 2: The Objects by Design Graphics Editor Model Redrawn with
argoUML

57

Table 7: OBD Class Metrics

Name ID nII nC DIT nAt +nAt %+At nM +nM %+M nAs

Circle xmi.28 0 0 2 0 0 - 1 1 100 0

ClosedFigure xmi.36 1 2 0 0 0 - 0 0 - 2

Color xmi.31 0 0 0 4 0 0 0 0 - 2

Ellipse xmi.11 0 1 1 2 0 0 4 4 100 0

Point xmi.2 0 0 0 2 0 0 1 1 100 1

Polygon xmi.59 0 2 1 0 0 - 4 4 100 1

Quadrangle xmi.82 0 1 2 0 0 - 0 0 - 0

Rectangle xmi.84 0 1 3 2 0 0 1 1 100 0

Square xmi.90 0 0 4 0 0 - 1 1 100 0

Triangle xmi.74 0 0 2 0 0 - 1 1 100 0

Table 8: Class Metrics

Name ID nII nC DIT nAt +nAt %+At nM +nM %+M nAs

Circle xmi.88 0 0 2 0 0 - 1 1 100 0

ClosedFigure xmi.21 1 2 0 2 0 0 0 0 - 2

Color xmi.105 0 0 0 4 0 0 0 0 - 2

Ellipse xmi.59 0 1 1 2 0 0 4 4 100 2

Point xmi.10 0 0 0 2 0 0 0 0 - 3

Polygon xmi.29 0 2 1 0 0 - 4 4 100 1

Quadrangle xmi.86 0 1 2 0 0 - 0 0 - 0

Rectangle xmi.92 0 1 3 2 2 100 1 1 100 0

Square xmi.101 0 0 4 0 0 - 1 1 100 0

Triangle xmi.82 0 0 2 0 0 - 1 1 100 0

Second example we use to illustrate our work is a large command and control

system that is used in a life-critical, mission-critical application. This system was

modeled using the Rational Rose Realtime CASE tool. It is a Computer Software

Configuration Item (CSCI) that provides the following functions:

58

• Facilitating Communication, Control, Cautions and Warnings including subsystem

Configuration Management, C&DH (Communication and Data Handling)

Communications Control, Processing, Memory Transfer, C&DH Failure Detection,

Isolation, and Recovery and Time Management,

• Controlling a Secondary Electrical Power System, and

• Environmental Control, which provides Temperature and Humidity Control.

We concentrate on the Thermal Control part of the system, which is a rather

complex system with operations setting controller, fault recovery procedures, and

pump control functionalities. System is responsible for providing overall

management of pumps as well as performing the necessary monitoring and

response to sensors data. Also, it is responsible for performing automated start-up.

During each execution cycle, a check is performed for incoming commands.

Received commands are validated in the same execution cycle. Mode change

commands, which will reconfigure the Internal Thermal System, are also accepted

from other components of Thermal System to compensate for system component

failures or coolant leaks. A failure recovery system detects failure conditions and

performs recovery operations in response to the detected failures. Failure

conditions include combinations of Pump failures and Shutoff Valve failures.

The system has a hierarchical architecture. Using these artifacts, one can identify

the components and the connectors that describe the components-based system

59

architecture and label the EP matrix rows and columns with the components

names.

Figures show a sample message protocol between a pair of components in our

system. This artefact provides us with the message set VA>B and VB>A that is

going between the two components A and B. Similarly, using the Rose-RT tool we

can get the whole sets of messages that are going on between each pair of

components in the system.

The state chart shown in Figure is a sample of state chart of a component in the

system. This provides us with the state set SB for this sample component. Using

the Rose-RT tool, we can easily identify the triggering messages from one state to

another. In a similar way, one can get all the state sets for all the components.

60

Figure 13: General view of the System Command and Control System

Figure 14: Subsystem Z: Command and Control System

61

Figure 15: Protocol Specification for Component 5

Figure 16: State Diagram of Component 5

62

Considering the CSCI system discussed above, we get the set of states SB and

messages VA>B from the artifacts of the system specification. We obtain the matrix

EP of (conditional) error propagation probabilities of this system, using the

approximation. We assume equi-probability of states and messages.

As an example, we will demonstrate how to compute EP(1,5). Component 5 has SB

= 2 from Figure 4.3, and VA>B =5 from Figure 4.4. So using the approximation, we

get EP(1,5) =(1-0.5)/(1-0.2) = 0.625. Thus, the 1-to-5 error propagation cannot

exceed 0.625.

For this particular case study, we have derived the connector activation matrix T as

a stochastic matrix of probabilities that contains for each entry (A,B), the probability

that connector (A,B) is activated, given that component A is broadcasting a

message. Using this connector activation matrix, we derive the unconditional error

propagation matrix EA, also referred to as the 1-step error propagation matrix of the

system. We get the matrix T through a simulation of the system representing the

operational profile of the execution. Continuing our example, we got T(1,5) =0.023.

So, the probability that connector (1,5) is activated, given that component 1 is

broadcasting a message is 0.023. Then, the unconditional error propagation EA

(1,5) = 0.625 *0.023= 0

63

Error propagation matrix for this case study is:

Table 9: Conditional Error Propagation Matrix - Analytical Results

B

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 1.0000 0.1061 0.4210 0.3368 0.4472 0.4623

C2 0.2001 1.0000 0.5238

C3 0.0105 0.4722 1.0000

C4 0.0190 0.2332 1.0000

C5 0.2765 1.0000

C6 0.1265 1.0000

C7 0.3761 1.0000

C8 1.0000

C9 1.0000

A

C10 0.0014 1.0000

For this particular case study, we have derived the connector activation matrix T as

a stochastic matrix of probabilities that contains for each entry (A,B), the probability

that connector (A,B) is activated, given that component A is broadcasting a

message. Using this connector activation matrix, we derive the unconditional error

propagation matrix EA, also referred to as the 1-step error propagation matrix of the

system; this is given in Table 10. We get the matrix T through a simulation of the

system representing the operational profile of the execution.

64

Table 10: Unconditional Error Propagation Matrix - Analytical Results

B

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 0.0012 0.0132 0.0102 0.0146 0.0145

C2 0.1104 0.1264

C3 0.0060 0.2024

C4 0.0107 0.1026

C5 0.1005

C6 0.0506

C7 0.3761

C8

C9

A

C10 0.0014

Case Study 2:

The case study has 4 components; two of them have state machines. Component

Facility has 2 states and component Parts has 3 states.

To >> Component Facility: Customer has 5 messages passing and the Parts has 7

messages passing from them to the Facility.

To >> Component Parts: Customer has 4 messages passing and the Intern has 8

messages passing from them to the Parts.

Result is given in the below.

65

Figure 17: Case study output

Case Study 3:

In this example, a small software model, which enables to order commercial items

from a web site, was developed. As for the calculation of Error Propagation Metrics

only the collaboration diagram and state diagrams will be considered. In this

example, total number of 5 classes and 25 messages are present with 4 methods

(Figure 18, Table 11). Although there is a message from ‘Stock Item’ to ‘Reorder

66

Item’ due to miss-information in UML Specification, the message will be neglected

(Table 11).

Figure 18: Collaboration Diagram of the Case Study 3

Table 11: Total number of Messages between components

Messages: TO (>)

From(v)

Order Stock Item Reorder Item State Diagram

Order Entry Window 7 0 0 No

Order Line 6 12 0 No

Stock Item 0 0 (?) Yes

Order 0 0 0 Yes

67

Figure 19: State Diagram of the Order Component

The system has two state diagrams. First state diagram was built to show the

behaviour of the Order component (Figure 19). Second state diagram is part of the

‘Stock Item’ class to reflect the processes that is going inside of the particular

component (Figure 20).

Figure 20: State Diagram of the Stock Item

After exporting this diagrams to XMI format. The relevant information was obtained

with XSLT to provide the Error Propagation Metrics. Both the empirical results of

the system can be seen from Table 12 and the tool output from Figure 22.

68

Table 12: Error Propagation Probabilities Between Components

C. Name Order Order Entry Window Order Line Reorder Item Stock Item

Order 1 0 0 0 0

Order Entry

Window

0.93334 1 0 0 0

Order Line 0.96 0 1 0 0.87274

Reorder Item 0 0 0 1 0

Stock Item 0 0 0 0 1

Figure 21: Case study 3- Screenshot of the tool

69

5 APPLICATION DESIGN AND IMPLEMENTATION

The architecture of the system is based on XML and its family (XMI, XSLT)

(Diagram 3). Although it may be possible to integrate database to the system, using

database will increase the processing time of a particular case study. Moreover, it

won’t solve the lack of capacity of XMI documents. Therefore, in this system the

information is stored in XML files.

Diagram 3: System Architecture

UML Diagrams

(Class, State_Transition and Sequence Diagrams

Export to XMI Format

(Class, Sequence, State

Diagrams Information)

Export to XML Format

(State Diagram Information)

XMI PARSER

XML to XMI

Parser
XMI

Information

of the

Diagrams

Global Metrics
Class Metrics and

Error Propagation

Fully Qualified

Class Names

Metrics XML

XSLT

XSLT XSLT

XSLT

70

A Java application was created to load, process and display the data extracted from

XMI format file input. The underlying data processing for the application is

performed by XSLT stylesheet transformations of XML files from one format to

another. Use of XSLT technology allows for rapid extensions or alterations to the

processing events, by purely textual editing of the stylesheets.

Each UML tool its own specification. Therefore provided XMI documents have their

own structure, which means currently there is no common XMI specification for the

UML diagrams. The designed system is built for work on Visual UML and Rational

Rose RT programs. All the information for calculating the error propagation from

Visual UML is gained from the XMI document and saved in an XML file with using

XSLT stylesheet. Finally that information is presented in the tool. For Rational Rose

RT, it is impossible to calculate the number of states per individual class. The only

state diagram information can be get from Rational Rose RT’s XMI document is the

total number of states in the whole system. To overcome this problem, Class

diagram and Collaboration diagrams information are calculated from the XMI

document that is supported by Rational Rose RT, and the number of states in one

component is calculated by the XML document provided by Rational Rose RT.

Then, the information acquired from both XMI and XML documents are represented

as one common XMI document to provide the Error Propagation Metrics.

Several sources of variability mean that: a robust process cannot be fully

automated; the various tools support and create output using various versions of

the XMI and UML standards; there are subjective differences in the level of detail

71

and style of UML models produced using software design tools; and these tools do

not reliably implement the same XMI standards to produce identical XMI files.

5.1 XML Transformations

The underlying data processing for the application is performed by XSLT stylesheet

transformations of XML files from one format to another.

These transformations are

 XMI input to metrics XML

 metrics XML to summary HTML

Ranked by:

 number of methods (nM)

 number of attributes (nAt)

 number of states (nS)

 number of messages passing each other (nMS)

 number of associations (nAs)

 number of children (nC)

 depth in inheritance tree (DIT)

 outlier status

In order to design the stylesheets to accomplish these transformations it is first

necessary to consider which metrics are stored within the XMI format.

72

5.1.1 Metrics available from XMI files

From the preceding discussions it is possible to list the metrics which should

theoretically be extractable from a standard XMI representation of a projects UML

diagrams.

For Individual Classes:

nM Number of Methods (locally defined or redefined)

+nM Number of Public Methods

nS Number of states

nMS Number of messages passing each other (nMS)

nAt Number of Attributes

+nAt Number of Public Attributes

nC Number of Children (direct subclasses)

DIT Depth in Inheritance Tree

nAs Number of Associations (non-inheritance dependencies)

nII Number of Implemented Interfaces

Dissection of the types of associations would be complex, but potentially possible

from sufficiently detailed models, as would further information on inheritance

encapsulation.

73

5.1.2 Metrics available from XMI files using XSLT

An XSLT stylesheet, primaryProcess.xsl has been designed that is capable of

enumerating basic class and global metrics from an XMI input file. This XSLT sheet

uses a large number of template rules to extract the class metrics shown in Table

11, each value being saved as a new XML element in the result tree. Some

problems and limitations to the technology that came to light are discussed in the

Evaluation Section 2. Due to space limitations no attempt is made to detail the

entire XSLT template rules used to extract these metrics, but a number of examples

are shown in the following section.

Table 13: List of First Pass Metrics

GlobalMetrics ClassMetrics

DateLastModified (for each Class)

TimeLastModified Name

FileName implementedInterfaces

Title numberChildren

DateProcessed depthOfInheritance

TimeProcessed numberAttributes

NumberOfClasses publicAttributes

NumberOfUserClasses percentPublicAttributes

NumberOfPackages numberOperations

NumberOfUserPackages publicOperations

NumberOfInterfaces percentPublicOperations

NumberOfInheritanceTrees numberAssociations

NumberOfOrphanClasses ID

fullName

InterfaceMetrics numberofStates in a component

(for each Interface) Numberof Messages passing each other

IFName Operations

Implementations

74

5.1.3 XSLT Template Rules for Metric Extraction

Some representative template rules are presented here to demonstrate the

principles of the XSLT process (also refer to Sections 2-3).

5.1.3.1 Simple Value Copying

The template simply returns the value of element specified by the XPath

expression, which is written to the result tree in the position from which the template

is called:

this is called by:

<xsl:call-template name="Title" />

Causing a complete <Title> element to be written.

5.1.3.2 Simple Counting Functions

Standard XSLT functions can count the number of occurrences of nodes matching

an XPath pattern. In this case the xmi.id of a class is passed to the template, to

allow counting of all the associations referenced in this class. The counting is

simplified by assigning the node set matching the pattern to a variable.

<xsl:template name="Title">
 <Title>
 <xsl:value-of select=
 "//Model_Management.Model[@xmi.id]/

 Foundation.Core.ModelElement.name"/>
 </Title>
</xsl:template>

75

In this case the template is called from within the definition of the new element

<numberAssociations>, within the nested elements <ClassMetrics><Class>:

5.1.3.3 Standard Java Extensions

Used here to record the current date and time of metric extraction, using standard

Java package functions to obtain and format Date instances. The stylesheet must

define namespaces for these functions:

The template rule calls these functions to write a Date instance to the today

variable, and a formatting object to the dateFormatter variable and then returns the

xsl:template name="associations">
 <xsl:param name="source"/>
 <xsl:variable name="association_ends" select=

"//Foundation.Core.AssociationEnd[Foundation.Core.
AssociationEnd.type/*/@xmi.idref=$source]"/>

 <xsl:value-of select="count($association_ends)" />
</xsl:template>

<xsl:element name="numberAssociations">
<xsl:call-template name="associations">

<xsl:with-param name="source" select="@xmi.id"/>
</xsl:call-template>

</xsl:element>

<xsl:stylesheet.................
xmlns:Date="xalan://java.util.Date"
xmlns:Format="xalan://java.text.DateFormat"

.....>

xsl:template name="date">
 <xsl:variable name="today" select="Date:new()"/>
 <xsl:variable name="dateFormatter"
 select="Format:getDateInstance(FULL)"/>
 <xsl:value-of select="Format:format($dateFormatter,$today)"/>
 <xsl:fallback>

<xsl:text> Java Extension for Date is not
available</xsl:text>

 </xsl:fallback>

76

desired value by calling the format() method on these two arguments:

Thus when the template is called within the definition of the new element

<DateProcessed> the current date is written to the result tree:

5.1.3.4 User Defined Extensions

User defined extensions can be called in a very similar fashion to standard

extensions, but for this application it was more efficient to use the Xalan-specific

extension mechanism has been used which bundles several methods to be called

as an lxslt component:

These methods return the desired file name, creation date and time details from a

temporary file written within the Java application before it invokes the XSLT

processing.

<xsl:element name="DateProcessed">
<xsl:call-template name="date" />

</xsl:element>

<xsl:stylesheet.................
 xmlns:lxslt="http://xml.apache.org/xslt"

 xmlns:readData="metrics2.ReadFile"
 extension-element-prefixes="readData"

...........>

77

By calling the init() method of the ReadFile class an instance of the class is created

which has read the desired time, date and filename details from the temporary file,

so that the values can then be returned simply by calling the appropriate method:

The information provided by these functions will be particularly important for

keeping track of archived metrics from different versions of a given XMI project.

5.1.3.5 Recursive Templates

Recursion is used heavily in XSLT processing, as template rules are repeated for

each node matching an XPath pattern (for example each class is processed in turn

when matching

<xsl:for-each select="//Foundation.Core.Class[@xmi.id]">

As XSLT is a purely declarative language, a variable can only be assigned once,

and not have its value modified. Limitations that this imposes can often be

overcome by assigning the value of a recursive loop to a variable, so that the outer

variable is only assigned after the inner recursion has terminated. This has been

used to count how deep a class is in its inheritance tree (shown here), and also to

<lxslt:component prefix="readData"
 elements="init"

functions="getAgeDate getAgeTime getFileName">
<lxslt:script lang="javaclass"

src="xalan://metrics2.ReadFile"/></lxslt:component>

<readData:init />
 <xsl:element name= "DateLastModified">

<xsl:value-of select="readData:getAgeDate()"/>
 </xsl:element>

78

concatenate the names of a class's ancestors in order to generate a fully qualified

class name. In the example below the template is called recursively, passing-in the

xmi.id of the current class to step up the inheritance tree, incrementing the exported

value by one at each level:

5.1.4 Derived Metrics by Chained XSLTs

In order to produce the error propagation metrics it is necessary to count, combine

and obtain ratios of the various metrics obtained above. Whilst it should be possible

to define complex template rules to derive these metrics within the single initial

<xsl:template name="inheritance">

 <xsl:param name="refid"/>
 <xsl:variable name="generalizations"

select="..//Foundation.Core.Class[@xmi.id=$refid]/
Foundation.Core.GeneralizableElement.generalization/
Foundation.Core.Generalization"/>

 <xsl:variable name="gen_ref"
select="..//Foundation.Core.Class[@xmi.id=$refid]/

Foundation.Core.GeneralizableElement.generalization/*/
@xmi.idref"/>

 <xsl:variable name="parent_id"
select="//Foundation.Core.Generalization[@xmi.id=$gen_ref]/

Foundation.Core.Generalization.parent/*/@xmi.idref"/>
 <xsl:choose>

<xsl:when test="count($generalizations) > 0 and
boolean(//Foundation.Core.Class[@xmi.id=$parent_id])">

 <xsl:variable name="counter">
 <xsl:call-template name="inheritance">

<xsl:with-param name="refid" select="$parent_id"/>
</xsl:call-template>

 </xsl:variable>
 <xsl:value-of select="1 + $counter" />
 </xsl:when>
 <xsl:otherwise >0</xsl:otherwise>
 </xsl:choose>
</xsl:template>

79

stylesheet, by using the XML output of the first XSLT as input for a second

transformation simpler template rules can be used. In addition this second

stylesheet, secondaryProcess.xsl, can copy the entire primary output into the

secondary output to combine the original and derived metrics in a single XML

document.

The template rules for the chained processing event are much simpler, as they

define simple recombinations of the elements created in the first transformation,

and consequently have simpler XPath expressions. The only point of importance to

note is that empty, nil and null values have to be allowed for in the calculations, and

return ' 0 ' or ' - ' (undefined) if appropriate.

For example the following variable assignment to record the maximum number of

methods (operations) per interface returns 0 if there are no Interface operations

defined in the project:

<xsl:variable name ="numberofStates">
<xsl:if test="sum(//State_Machine/State)=0">0</xsl:if>
<xsl:for-each select="//State_Machine/State">
<xsl:sort data-type="number"/>

<xsl:if test="position()=last()">
<xsl:value-of select = "."/>

</xsl:if>
</xsl:for-each>

</xsl:variable>

80

Table 12: List of Derived Metrics

Name of Component A B C D

A 1 Error Prop Error Prop Error Prop

B Error Prop 1 Error Prop Error Prop

C Error Prop Error Prop 1 Error Prop

D Error Prop Error Prop Error Prop 1

5.1.5 A Document Type Definition (DTD) for metrics XML

The allowed structure of an XML document can be defined in a declared Document

Type Definition (DTD). Parsers may then validate a given XML document against its

declared DTD. DTDs define the allowable elements, attributes, entities and

notations for a document. They therefore define the tag and data structure followed

by XML documents conforming to the DTD.

While not essential for creating and parsing 'well-formed' XML documents, defining

a DTD provides a useful reference structure for the data. The simplest DTDs merely

list the allowable elements, and their allowable contents (further elements or

'parsed character data' (PCDATA)).

Defining attributes for elements allows more information to be stored, often

metadata or data of secondary importance. Attributes can be more restrictively

defined than elements, and may be of one of a limited number of given types, and

can be given default and alternative values. However datatypes are not well

81

supported in DTDs, and require the more expressive XML Schema to describe

document structure.

It is desirable to create a simple XML DTD to define the metrics XML document

produced from XMI by the chained stylesheet transformations, primaryProcess.xsl

followed by secondaryProcess.xsl. This will allow a parser to check the validity of

the resultant XML, and provide a reference document for the metrics contained in

the file.

As this XML format is a data repository, acting as an intermediary for further

processing it was desirable to keep the structure as simple as possible, to facilitate

downstream processing. For this reason all the extracted metrics are stored as the

value of individual elements, and no attributes used. The file metric.dtd therefore is

merely a list of the allowable element tags, which contain other elements or

PCDATA. The nested structure of a metric.dtd conformant document is shown.

<?xml version="1.0" encoding="iso-8859-1" ?>
<!DOCTYPE Metrics SYSTEM "metric.dtd">

- <Metrics>
- <FirstPassMetrics>

+ <GlobalMetrics> contains elements holding Global Metrics
 - <InterfaceMetrics>

+ <Interface> contain elements holding Interface Metrics
 </InterfaceMetrics>

 - <ClassandErrorPropMetrics>
+ <Class> contain elements holding Class Metrics
+ <Class> contain elements holding Error Propagation

Metrics
</ClassMetrics>

 </FirstPassMetrics>
 + <DerivedMetrics> contain elements holding Derived Metrics
 </Metrics>

82

metric.dtd fully describes the allowed elements, tags and structures for the XML

structure shown above. Once written into the XML DOCTYPE definition this DTD

must be present for the XML parser to create a DOM tree from the XML document.

However, the parser will only check the document structure against the DTD if it

has DTD validation enabled. (By default the XML processing performed by the

Metrics from XMI application is non-validating, although it was felt useful to have a

validation option provided so that any non-functional XMI or XML documents could

be investigated.)

83

metric.dtd

<!ELEMENT Metrics (FirstPassMetrics, DerivedMetrics)>

<!ELEMENT FirstPassMetrics (GlobalMetrics,
InterfaceMetrics, ClassMetrics)>

<!ELEMENT GlobalMetrics (DateLastModified,
TimeLastModified, FileName, Title, XMI.exporter?, DateProcessed, TimeProcessed,
NumberOfClasses, NumberOfUserClasses, NumberOfPackages, NumberOfUserPackages,
NumberOfInterfaces, NumberOfInheritanceTrees, NumberOfOrphanClasses)>

<!ELEMENT DateLastModified (#PCDATA)>
<!ELEMENT TimeLastModified (#PCDATA)>
<!ELEMENT FileName (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT XMI.exporter (#PCDATA)>
<!ELEMENT DateProcessed (#PCDATA)>
<!ELEMENT TimeProcessed (#PCDATA)>
<!ELEMENT NumberOfClasses (#PCDATA)>
<!ELEMENT NumberOfUserClasses (#PCDATA)>
<!ELEMENT NumberOfPackages (#PCDATA)>
<!ELEMENT NumberOfUserPackages (#PCDATA)>
<!ELEMENT NumberOfInterfaces (#PCDATA)>
<!ELEMENT NumberOfInheritanceTrees (#PCDATA)>
<!ELEMENT NumberOfOrphanClasses (#PCDATA)>

<!ELEMENT InterfaceMetrics (Interface*)>
<!ELEMENT Interface (IFName, Implementations,
Operations, ID)>
<!ELEMENT IFName (#PCDATA)>
<!ELEMENT Implementations (#PCDATA)>
<!ELEMENT Operations (#PCDATA)>
<!ELEMENT ClassMetrics (Class*)>
<!ELEMENT Class (Name, implementedInterfaces,
numberChildren, depthOfInheritance, numberAttributes, publicAttributes, percentPublicAttributes,
numberOperations, publicOperations, percentPublicOperations, numberAssociations, ID, fullName)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT implementedInterfaces (#PCDATA)>
<!ELEMENT numberChildren (#PCDATA)>
<!ELEMENT depthOfInheritance (#PCDATA)>
<!ELEMENT numberAttributes (#PCDATA)>
<!ELEMENT publicAttributes (#PCDATA)>
<!ELEMENT percentPublicAttributes (#PCDATA)>
<!ELEMENT numberOperations (#PCDATA)>
<!ELEMENT publicOperations (#PCDATA)>
<!ELEMENT percentPublicOperations (#PCDATA)>
<!ELEMENT numberAssociations (#PCDATA)>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT fullName (#PCDATA)><!ELEMENT DerivedMetrics (Total_Interfaces, Numberof
Numberofmeesages, number of states,)>

<!ELEMENT Number_of_States in a component (#PCDATA)>
<!ELEMENT Number of messages between components (#PCDATA)>

84

5.1.6 HTML from XML

While the metrics XML data format is ideal for storing metrics derived from XMI

representations of UML models, it does not allow easy inspection of the data.

XSLT readily allows XML source documents to be converted to HTML or plain

text format. It is therefore possible to present different views of the metrics XML

data via separate stylesheet transformations.

Seven different views have initially been developed for display by the 'Metrics for

XMI' application.

The Global Metrics Summary view is created by summary_xml2html.xsl, which

tabulates all of the global, class and interface metrics. Header information and up

to four tables are created by mixing XSLT template calls within HTML tags. The

header details name, file and last modification details for the XMI project. The

first table ('GLOBAL METRICS') merely lists all of the global metrics, returned as

the value of the metrics XML elements. No further calculations are necessary for

this presentation, although a number of tests are performed to identify and skip

null fields. The second table ('CLASS METRICS and ERROR PROPAGATION')

lists all the classes alphabetically, with their metrics and error propagation

values.

In addition each stylesheet also reproduces the 'FULLY QUALIFIED CLASS

NAMES' table described above. Tables of interface metrics are only presented

when sorted by number of methods and number of children (implementations).

85

6 CONCLUSION

In this thesis, first we look to the issue of general metrics and how will be

extracted from UML class diagram then we have derived an analytical approach

to estimate the probability of error propagation between components in software

architecture. Further, we have illustrated our proposed formula by means of a

fault injection experiment, applied on a large command and control system, and

found a fairly meaningful correlation between our analytical estimates and our

experimental observations. Given that our analytical approach is based on

architecture specifications, and uses exclusively information that is typically

available at an architectural level, we submit that our result can be used to

estimate the error propagation behaviour of architecture, at a time when relatively

little is known about the actual execution of products that instantiate the

architecture. In addition to providing the basic conditional probability of error

propagation over a given connector (conditioned on the activation of the

connector), we have also provided analytical formulas for unconditional error

propagation (which incorporate the probability of connector activation). Then, we

also considered automating our architectural analysis tool to support the

automatic computation of error propagation probabilities.

86

7 REFERENCES

Abreu, B.F., Goulao, M. and Esteve, R. (1995) Toward the design quality
evaluation of OO software systems. Fifth International Conference on Software
Quality.

Akif, M., Brodheas, S., Cioroianu, A., Hart, J., Jung, E. and Writz, D., (2001) Java
XML: Programmers's Reference. Wrox Press. ISBN 1-861005-20-2

Albrecht, A. J. and Gaffney, J. (1983) Software function, source lines of code,
and development effort prediction: A software science validation. IEEE
Transactions on Software Engineering 9, 639.

APACHE (2002) http://xml.apache.org/xalan-j/samples.html#appletxmltohtml

Ammar, H., Yacoub, S. M, Ibrahim, A., “A Fault Model for Fault Injection Analysis
of Dynamic UML Specifications,” International Symposium on Software Reliability
Engineering, IEEE Computer Society, November 2001.

ArgoUML (2002) http://argouml.tigris.org/

Badros, G.J. (2000) JavaMl: a markup language for Java source code. Computer
Networks 33, 159.

Bansiya, J. and Davis, C.G. (2002) A Hierarchical model for object-oriented
design quality assessment. IEEE Transactions on Software Engineering 28, 4.

Basili, V.R., Briand, L.C. and Melo, W.L. (1996) A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engineering
22, 751.

Bennatan, E.M. (1995) Software Project Management (Second Edition).McGraw-
Hill ISBN 007 707648 6

Boehm, B.W. (1981) Software Engineering Economics. Prentice Hall.

Booch, G (2000) Measures of Goodness. Whitepaper published 2000
http://www.rational.com/products/whitepapers/393.jsp

Briand, L.C., Wüst, J., Daly, J.W. and Porter, D.V. (2000) Exploring the
relationships between design measures and software quality in object-oriented
systems. Journal of Sytems and Software 51, 245.

Briand, L.C.and Wüst, J.(2001) Modeling development effort in object-oriented
systems using design properties. IEEE Transactions on Software Engineering
27, 963.

87

Carlson, D. (2002) Modeling XML aplications with UML: practical e-business
applications. Addison Wesley. ISBN 0201709155

Chidamber, S.R. and Kemerer, C.F. (1991) Towards a metric suite for object
oriented design. Sigplan Notices 26, 197.

Chidamber, S.R. and Kemerer, C.F. (1994) . A metrics suite for object oriented
design. IEEE Transactions on Software Engineering 20, 476.

Chidamber, S.R., Darcy, D.P. and Kemerer, C.F. (1998) Managerial use of
metrics for object-oriented software: and exploratory analysis. IEEE Transactions
on Software Engineering 24, 629.

Data Access Technologies (2002) http://umltool.d-a-t.com

Deitel, H.M., Deitel, P.J. and Nieto, T.R. (2001) e-Business and e-Commerce:
How to Program. Prentice Hall ISBN 0-13-028419-X

el Emam, K., Benlarbi, S., Goel, N. and Rai, S.N. (2001) The confounding effect
of class size on the validity of object-oriented metrics. IEEE Transactions on
Software Engineering 27, 630.

Fenton, N.E. and Neil, M. (1999) Software metrics: successes, failures and new
directions. Journal of Sytems and Software 47, 149.

Fenton, N.E. and Pfleeger, S.L. (1997) Software Metrics: a rigorous and practical
approach. PWS Publishing. ISBN 053495425-1

Fioravanti, F. and Nesi, P. (2000) A method and tool for assessing object-
oriented projects and metrics management. Journal of Systems and Software 53,
111.

Gentleware (2002) http://www.Gentleware.com

Goldfarb, C.F and Prescod, P. (2001) The XML Handbook (Third Edition)
Prentices Hall. ISBN 0-13-055068-X

Grose, T.J., Doney, G.C. and Brodsky, S.A. (2002) Mastering XMI: Java
Programming with XMI, XML and UML. OMG Press. ISBN 0-471-38429-1

Halstead, M. (1977) Elements of software science. North-Holland

Harrison, R., Counsell, S. and Nithi, R. (1997) An overview of object-oriented
design metrics. Proceedings of the Eighth IEEE International Workshop on
Software Technology and Engineering Practice, pp 230 -235

88

Heiat, A. and Heiat, N. (1997) A model for estimatingefforts requires for
developing small-scale business applications. Journal of Systems and Software
39, 7.

Hughes, B. and Cotterell, M. (1999) Software Project Management (Second
Edition).McGraw-Hill ISBN 007 709505 7

IBM alphaworks (2002) http://www.alphaworks.ibm.com/tech/xmitoolkit

Ideogramic (2002) http://www.Ideogramic.com

javaboutique.com (2002) http://www.javaboutique.com

jEdit (2002) http://www.jedit.org/

Kay, M. (2001a) IBMDeveloperWoks:XML Zone

Kay, M., (2001b) XSLT: Programmer's Reference (Second Edition). Wrox Press.
ISBN1-861005-06-7

Kemerer, C.F. (1987) Empirical validation of software cost estimation models.
Communications of the ACM 5, 416.

Li, W. and Henry, S. (1993) Object oriented metrics that predict maintainability.
Journal of Systems and Software 23, 111.

Lorenz, M. and Kidd, J. (1994) Object-oriented Software Metrics. Prentice-Hall
Object Oriented Series.

McCabe, T. (1976) A software complexity measure. IEEE Transactions on
Software Engineering 2, 308.

Marchesi, M. (1998) OOA metrics for the unified modelling language. Software
Maintenance and Reengineering, 1998. Proceedings of the Second Euromicro
Conference. pp 67-73.

Marinescu, R (2001) Detecting design flaws via metrics in object-oriented
systems. Technology of Object-Oriented Languages and Systems, 2001. TOOLS
39. 39th International Conference and Exhibition. p173 -182

Martin, R. (1995) Designing Object-Oriented C++ Applications Using the Booch
Method, Prentice Hall. ISBN 0132038374

MetaIntegration Technology Inc (2002) http://www.metaintegration.net/

89

Nassar, D. M., Rabie, W. A., Shereshevsky, M., Gradetsky, N., Ammar, H.H, Bo
Yu, Bogazzi, S., and Mili, A. Estimating Error Propagation Probabilities in
Software Architectures. Technical Report, College of Computer Science, New
Jersey Institute of Technology 2002. http://www.ccs.njit.edu/swarch/ep.pdf

Nesi, P. and Querci, T. (1998) Effort estimation and prediction of object-oriented
systems. Journal of Systems and Software 42, 89.

OBD (2002) www.objectsbydesign.com

OMG (2000) XMI1.1 http://www.omg.org/cgi-bin/doc?formal/00-06-01

OMG (2001) UML1.4 http://www.omg.org/technology/documents/formal/uml.htm

OMG (2002) http://www.omg.org

OMG (2002) XMI1.2 http://www.omg.org/technology/documents/formal/xmi.htm
Putnam, L.H. (1978) A general empirical solution to the macro software sizing
and estimating problem. IEEE Transactions on Software Engineering 4, 345.

OPHELIA (2002) http://www.cee.hw.ac.uk/ophelia/index.html

Rational (2000) The Rational Approach. Whitepaper published 2000
http://www.rational.com/products/whitepapers/333.jsp

Rational (2002) http://www.rational.com

Reissing, R (2001), Towards a Model for Object-Oriented Design Measurement.
5th International ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE 2001)
http://www.iro.umontreal.ca/~sahraouh/qaoose01/Reissing.pdf

Russell, C.R. (2002) RESCU Reverse engineering source code to UML. Honours
project report, Department of Computing and Electical Engineering, Heriot-Watt
University.

Softeam (2002) http://www.Softeam.fr

SourceForge.net (2002) http://sourceforge.net

Stevens P. and Pooley R.J. (2000) Using UML: software engineering with objects
and components. Addison-Wesley. ISBN 0-201-64860-1

Subramanian, G. and Corbin, W. (2001) An empirical study of certain object-
oriented software metrics. Journal of Systems and Software 59, 57.

90

Sun (2002) http://java.sun.com

Symons, C.R.(1988) Function point analysis: difficulties and improvements. IEEE
Transactions on Software Engineering 14, 2.

Together (2002) http://www.togethersoft.com/

W3C (1999) XSLT http://www.w3.org/TR/xslt.html

W3C (1999) XPath http://www.w3.org/TR/xpath

W3C (2000) XML http://www.w3.org/TR/2000/REC-xml-20001006

W3C (2001) XSL http://www.w3.org/TR/xsl/

W3C (2002) DOM http://www.w3.org/DOM/

91

8 APPENDIX

List of Tables:

Page 14: Table 1 Summary of Chidamber and Kemerer's Six Object-Oriented

Metrics

Page 15: Table 2 List of Early-Definable System Parameters

Page 16: Table 3 Marchesi's Proposed 'Early Definition' Object-Oriented Metrics

Page 17: Table 4 Reiing's Proposed 'Early Definition' Object-Oriented Metrics

Page 18: Table 5 Marinescu's a Posteriori Metrics for Identification of Badly

Designed Classes

Page 19: Table 6 Our Metric Identification

Page 57: Table 7 OBD Class Metrics

Page 57: Table 8 Class Metrics

Page 63: Table 9 Conditional Error Propagation Matrix - Analytical Results

Page 64: Table 10 Unconditional Error Propagation Matrix - Analytical Results

Page 66: Table 11 Total number of Messages between components

Page 68: Table 12 Error Propagation Probabilities Between Components

Page 73: Table 13 List of First Pass Metrics

Page 80: Table 14 List of Derived Metrics

List of Figures:

Page 23: Figure 1 Class Notation

Page 24: Figure 2 Relationships between Classes: Class Association and

Generalization

Page 25: Figure 3 Relationships between Classes: Aggregation and

Composition

Page 26: Figure 4 Relationships between Classes: Dependency and Interfaces

Page 27: Figure 5 Packages

Page 28: Figure 6 Collaboration Diagrams

Page 28: Figure 7 State Diagram

92

Page 31: Figure 8 XSL Processing is Two-Stage

Page 33: Figure 9 XSL Processing Converts the Source Node Tree into the

Result Node Tree

Page 42: Figure 10 Annotated XMI representation of a simple class diagram

Page 43: Figure 11 Annotated XMI representation of a simple collaboration

diagram

Page 44: Figure 12 Annotated XMI representation of a simple state diagram

Page 60: Figure 13 General view of the System Command and Control System

Page 60: Figure 14 Subsystem Z: Command and Control System

Page 61: Figure 15 Protocol Specification for Component 5

Page 61: Figure 16 State Diagram of Component 5

Page 65: Figure 17 Case study output

Page 66: Figure 18 Collaboration Diagram of the Case Study 3

Page 67: Figure 19 State Diagram of the Order Component

Page 67: Figure 20 State Diagram of the Stock Item

Page 68: Figure 21 Case study 3- Screenshot of the tool

List of Diagrams:

Page 55: Diagram 1 The Object by Design Graphics Editor Model

Page 56: Diagram 2 The Objects by Design Graphics Editor Model Redrawn

with argoUML

Page 69: Diagram 3 System Architecture

	Text1: ABSTRACT
	Text2: Error Propagation Metrics from XMI
	Text3: Cihan Varol
		2005-06-13T14:00:41-0400
	John H. Hagen
	I am approving this document

