
Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Andrew Matheny

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Tim Menzies, Ph.D., Chair
Tim McGraw, Ph.D.

Andrian Marcus, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2009

Keywords: clustering, dimension reduction, kmeans, genic, canopy, pca, fastmap, tfidf,
text mining, 20newsgroups, bbc

Copyright c© 2009 Andrew Matheny

Abstract

Trade-offs of Heuristic Vs. Rigorous Algorithms in Text Mining

Andrew Matheny

This research assesses the cost of using heuristic methods in the field of text mining. Previous
research has shown many of the formal non-heuristic algorithms to be NP-hard with positive results
only in small domains. Given the massive scale when dealing with unstructured textual data, these
algorithms prove to be impossible with large datasets with many dimensions. Many heuristic
approximations have been proposed that drastically improve run-times, but give a result of less
accuracy than the rigorous methods.

Throughout the research, we evaluate the trade-offs of heuristic methods to their more computa-
tionally complex alternatives. We focus on algorithms for document clustering and dimensionality
reduction, and provide results detailing the run-times and cluster validity of each clusterer and re-
ducer on their own, in addition to the run-times and validity scores of each clusterer and reducer
combined. Our findings indicate that the cost of these approximations vary when dealing with
supervised vs unsupervised datasets, and provide recommended parameters and combinations for
optimization.

Dedication

To My Family, My Friends, and Jada

iii

Acknowledgments

People that I acknowledge

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of This Thesis . 2
1.3 Structure of This Document . 3

2 Background and Related Work 4
2.1 Text Mining . 4

2.1.1 Overview . 4
2.1.2 Fundamental Concepts . 5
2.1.3 Linear Preprocessing Tricks . 7

2.2 Technical Document Comprehension . 9
2.2.1 Overview . 9
2.2.2 HIPIKAT . 9
2.2.3 Dora the Program Explorer . 10
2.2.4 STEP/EXPRESS . 11

2.3 Term Reduction . 14
2.3.1 Overview . 14
2.3.2 Principal Component Analysis (PCA) . 14
2.3.3 Support Vector Machines (SVM) . 14
2.3.4 Latent Semantic Indexing (LSI) . 14
2.3.5 FastMap . 14
2.3.6 TF*IDF Term Ranking . 15
2.3.7 Information Gain . 16

2.4 Document Clustering . 16
2.4.1 Overview . 16
2.4.2 Hierarchical vs. Well-Separated . 16
2.4.3 K-Means (elementary) . 16
2.4.4 K-Means (canopied) . 18
2.4.5 Genic . 18
2.4.6 Computing the number of clusters . 21

2.5 Distance Metrics . 21
2.5.1 Euclidean . 21
2.5.2 Manhattan . 21

v

2.5.3 Cosine . 21
2.6 Opportunities for Improvements . 21

3 Tools 22
3.1 Hamlet . 22

3.1.1 Motivation . 22
3.1.2 Overview . 23
3.1.3 Parsing Framework . 25
3.1.4 Preprocessor . 26
3.1.5 User Interface . 28

3.2 Ourmine . 28
3.2.1 Motivation . 28
3.2.2 Overview . 28
3.2.3 Textmine . 28

3.3 The Attribute-Relation File Format (ARFF) . 28

4 Laboratory Studies 29
4.1 Basics . 29

4.1.1 Datasets . 29
4.1.2 Considered Algorithms . 31
4.1.3 Metrics (dependent variables) . 32
4.1.4 Variables (independent variables) . 35

4.2 Environment . 35
4.2.1 Textmine . 35
4.2.2 Experimental Design . 36
4.2.3 Workflow . 37

4.3 Reduction . 38
4.3.1 Run-times . 38
4.3.2 Validity . 39
4.3.3 Effect of Variables . 42
4.3.4 Trade-offs . 43

4.4 Clustering . 44
4.4.1 Run-times . 44
4.4.2 Validity . 44
4.4.3 Effect of Variables . 46
4.4.4 Trade-offs . 46

4.5 Combining Methods . 47
4.5.1 Run-times . 47
4.5.2 Validity . 47
4.5.3 Effect of Variables . 47
4.5.4 Trade-offs . 47

4.6 Summary of Findings . 47
4.6.1 Heuristics . 47

vi

4.6.2 Exhaustive . 47
4.6.3 Optimal Combinations . 47

5 Conclusions 53
5.1 Assessment of Goals . 53
5.2 Contributions . 53
5.3 Future Work . 53

vii

List of Figures

2.1 Stop words . 7
2.2 Some stemming rules. 8
2.3 STEP Application Protocols. 13
2.4 PCA: example . 14
2.5 Example of using the cosine law to find the position of Oi in the dimension k . . . 15
2.6 Projects of points Oi and O j onto the hyper-plane perpendicular to the line OaOb . 15
2.7 Key Terms . 15
2.8 The K-means algorithm . 16
2.9 Steps of KMeans Illustrated . 17
2.10 Canopies in 2-Dimensions . 18

3.1 HAMLET’s search for associations. 23
3.2 One vertice and the information associated with it. 25
3.3 Looking at data using HAMLET has several visualization advantages 27

4.1 Equation for internal similarity . 33
4.2 Equation for external similarity . 33
4.3 Equation for similarity loss . 34
4.4 What is lost by heuristic exploration. 41
4.5 Average number of clusters returned by GENIC for each K 47

viii

List of Tables

4.1 Statistics on our datasets. 30
4.2 Supervised datasets along with class values. 30
4.3 Supervised datasets along with class values. 32
4.4 Independent Variables . 36
4.5 Experimental factors . 37
4.6 Reduction MWU Results . 39
4.7 Reduction run-times relative to PCA . 39
4.8 AUC of Purity by Reduction Method . 39
4.9 Reduction MWU Results for Purity . 42
4.10 Reduction purities relative to PCA . 42
4.11 AUC of Purity by Reduction Method . 42
4.12 Reduction MWU Results for external similairty 43
4.13 Reduction external similarity relative to PCA . 43
4.14 AUC of External Similarity by Reduction Method 43
4.15 Reduction MWU Results for Internal Similarity 44
4.16 Reduction internal similarities relative to PCA . 44
4.17 AUC of internal similarity by Reduction Method 44
4.18 Clustering MWU Results for Run-Time . 45
4.19 Clustering Run-Time Relative to KMeans . 45
4.20 AUC of Run-Time by Clustering Method . 45
4.21 Clustering MWU Results for Cluster Purity . 46
4.22 Clustering Purity Relative to KMeans . 46
4.23 AUC of Cluster Purity by Clustering Method . 46
4.24 Clustering MWU Results for External Similarity 47
4.25 Clustering External Similarity Relative to KMeans 47
4.26 AUC of External Similarity by Clustering Method 47
4.27 Clustering MWU Results for Internal Similarity 48
4.28 Clustering Internal Similarity Relative to KMeans 48
4.29 AUC of Internal Similarity by Clustering Method 48
4.30 Overall MWU Results for Run-time . 49
4.31 Reducer-Clusterer Run-time Relative to KMeans-PCA 49
4.32 Overall AUC of Run-time . 49
4.33 Overall MWU Results for Purity . 50

ix

4.34 Reducer-Clusterer Purity Relative to KMeans-PCA 50
4.35 Overall AUC of Purity . 50
4.36 Overall MWU Results for External Similarity . 51
4.37 Reducer-Clusterer External Similarity Relative to KMeans-PCA 51
4.38 Overall AUC of External Similarity . 51
4.39 Overall MWU Results for Iternal Similarity . 52
4.40 Reducer-Clusterer Internal Similarity Relative to KMeans-PCA 52
4.41 Overall AUC of Internal Similarity . 52

x

Chapter 1

Introduction

1.1 Motivation

In the 21st century, the field of program comprehension research began focused on applying various

information retrieval (IR) techniques (e.g. text mining, LSI, knowledge-based NL understanding)

to software and its associated text collections (manuals, source, design documents, etc.) When

this happened, despite known problems with scalability, these exhaustive IR semantic approaches

became the standard. With the massive outbreak of the web, the amount of data needed to do

computation on has grown exponentially. For this reason, heuristic approaches acquired new im-

portance.

Today, while there have been a few looks into these heuristic algorithms, most of the research

is still focused on the original exhaustive methods which have been shown to be NP-complete.

Given that these heuristic methods have astounding benefits in terms of execution time due to their

heuristic nature, there has yet to be a comparative study looking at the cost-benefit (or run-time to

accuracy) ratio of heuristic algorithms vs their exhaustive ancestors.

The need for this analysis has arose out of a NARA (National Archives and Records Admin-

istration) funded project on the future of long-term data retention. Our toolkit and user inter-

1

face, Hamlet (see ??), was developed primarily for the area of technical document comprehension,

specifically the STEP/EXPRESS schema (see 2.2.4). The goal being to answer the question, ”What

other designs are similar to this one?”. Because of the massive search space of STEP designs

and their associated textual project information (documentation, web pages, documentation, etc.),

highly scalable algorithms were a must. Scalability however, must come at a reasonable price, that

is, the loss of accuracy. Determining the cost of this scalability is the primary motivation of this

research.

1.2 Contributions of This Thesis

This thesis has made the following contributions to both the literature and practice, with respect to

the corpora used in this study:

• Determined empirically, the loss of accuracy when using heuristic clustering and dimension-

ality reduction algorithms compared to the exhaustive alternatives

• Determined empirically, the benefits of scalability when using heuristic clustering and di-

mensionality reduction algorithms compared to the exhaustive alternatives

• Determined empirically, the effects of algorithm parameters to the trade-off of scalability and

clustering accuracy when using heuristic clustering and dimensionality reduction algorithms

compared to the exhaustive alternatives

• Provided recommended algorithms and parameters to optimize the scalability/accuracy trade-

off in various domains

The results of this study have shown that it is possible to greatly reduce the cost, in terms of run-

time, of the IR methods we have examined with only a relatively small loss in accuracy. Different

uses of these methods have varying tolerance for acceptable performance loss. We have found

2

that in order to optimize a solution for a specific domain, certain combinations of clusterers and

reduction methods work better than others. In addition to using different combinations of reduction

methods and clustering algorithms, using different values for the parameters of these algorithms

can also have drastic effects on both run-time and accuracy that will need to be considered for the

specific application of these methods. In general, we have found that the cost of the exhaustive

methods doesn’t always equal the benefits to accuracy.

1.3 Structure of This Document

The outline of the remaining chapters is as follows:

• Chapter 2 describes the necessary background information on the techniques used in this

research along with other standard techniques in the field.

• Chapter 3 details the tools created as part of this research.

• Chapter 4 explains the experimental methods used, the datasets the experiment was run on,

and includes an assessment of the outcomes.

• Lastly, chapter 5 summarizes the findings of this work and charters the path of future inves-

tigations.

3

Chapter 2

Background and Related Work

2.1 Text Mining

2.1.1 Overview

Generally speaking, text mining is the process of extracting interesting and usable information

from bodies of text, stored in an unstructured format. It has been estimated that approximately

80% of information is stored as unstructured text [8] which, if examined properly, could yield

new patterns of data previously unknown. The basic process typically calls for taking as input,

a collection of text documents, effectively processing these documents into a storage mechanism

(data structures, databases, file structures, etc.), examining the stored documents computationally,

and lastly outputting some new information previously unknown about the set of documents. The

field has a basis ranging from machine learning, data mining, artificial intelligence, information

retrieval, statistics, natural language processing and linguistics but does not necessarily have to

employ all of these sub-fields at once. Common tasks used construct this new information include

document clustering and term/dimensionality reduction which are examined in this thesis, but can

also include, concept location [23], text categorization [25], part-of-speech tagging [11], and text

summarization [1].

4

2.1.2 Fundamental Concepts

Documents and Terms

At the core of any text mining task is the notion of documents and their terms. Documents, in this

case, are the set of all term collections in a given corpus. A document can represent numerous types

of unstructured text such as company memos, emails, news articles, source code, legal documents,

etc. The terms are then the set of all unique words that appear in these documents. Heaps’ Law tells

us that the growth rate of the term space, or vocabulary, is approximately equivalent to the square

root of the total number of words in the document set [9]. While this does mean that vocabulary

grows a sub-linear rate with respect to the number of occurrences, the size of the vocabulary is still

large enough to cause scalability concerns.

The Vector Space Model

The vector space model (VSM) is a algebraic construct used for nearly every text mining algorithm.

It was first introduced by Gerald Salton at Cornell University in the 1960s [24] and has been a

cornerstone of IR in text (and later text mining) ever since. The VSM defines each document as a

vector in the space of all terms where each dimension refers to a specific term. Each value stored

in the document vector represents the rate of occurrence of the corresponding term, commonly

referred to as the term weight. While a number of computations can be used for the term weight

the most common is the term frequency-inverse document frequency model (see section 2.1.2

below).

This approach allows the ability to produce similarity scores of the likeness of one document to

another using common vector difference/similarity functions such as cosine similarity. Addition-

ally, it provides a framework for more advanced methods such as latent semantic indexing (LSI)

and principal component analysis (PCA). However, there are drawbacks to the VSM such as high

dimensionality of the term space, the loss of word ordering, and no representation of the similarity

5

between words with similar meanings but different words.

TF*IDF

In order to perform mathematical operations and algorithms on documents and the text that they

contain, we must first transform them into a representative mathematical object. The standard

representation of a document is a vector in the space of all available terms. For example, the

phrase:

T he quick brown dog was very

quick, very brown, and very dog like.
(2.1)

Will be turned into a vector which looks something like this:

Phrase = [1 2 2 2 1 3 1 1] (2.2)

with each index of the above vector corresponding the a dimension which comes from the term list

(in this case, the dimensions are the, quick, brown, dog, was, very, like)

Tf*Idf is shorthand for “term frequency times inverse document frequency.” This calculation

models the intuition that jargon usually contains technical words that appear a lot, but only in a

small number of paragraphs. For example, in a document describing a space craft, the terminology

relating to the power supply may appear frequently in the sections relating to power, but nowhere

else in the document.

Calculating Tf*Idf is a relatively simple matter:

• Let there be Words number of documents;

• Let some word I appear Word[I] number of times inside a set of Documents;

• Let Document[I] be the documents containing I.

6

Then:

T f ∗ Id = Word[i]/Words∗ log(Documents/Document[i])

2.1.3 Linear Preprocessing Tricks

Aside from the more intensive and complex reduction methods described later on, there are also

several known preprocessing tricks that can reduce the size of the set of all possible terms. Three

of these are listed below.

Tokenization

In HAMLET’s parser, words are reduced to simple tokens via (e.g.) removing all punctuation

remarks, then sending all upper case to lower.

Stop lists

Another way to reduce dimensionality is to remove “dull” words via a stop list of “dull” words.

Figure 2.1 shows a sample of the stop list used in HAMLET. Figure 2.1 shows code for a stop-list

function.

a about across again against
almost alone along already also
although always am among amongst
amongst amount an and another
any anyhow anyone anything anyway
anywhere are around as at
...

Figure 2.1: 24 of the 262 stop words used in this study.

Stemming

Terms with a common stem will usually have similar meanings. For example, all these words relate

to the same concept.

7

• CONNECT

• CONNECTED

• CONNECTING

• CONNECTION

• CONNECTIONS

Porter’s stemming algorithm [20] is the standard stemming tool. It repeatedly replies a set of

pruning rules to the end of words until the surviving words are unchanged. The pruning rules

ignore the semantics of a word and just perform syntactic pruning (e.g. Figure 2.2).

RULE EXAMPLE
---------------- -----------------------------
ATIONAL -> ATE relational -> relate
TIONAL -> TION conditional -> condition

rational -> ration
ENCY -> ENCE valency -> valence
ANCY -> ANCE hesitancy -> hesitance
IZER -> IZE digitizer -> digitize
ABLY -> ABLE conformably -> conformable
ALLY -> AL radically -> radical
ENTLY -> ENT differently -> different
ELY -> E vilely -> vile
OUSLY -> OUS analogously -> analogous
IZATION -> IZE vietnamization -> vietnamize
ATION -> ATE predication -> predicate
ATOR -> ATE operator -> operate
ALISM -> AL feudalism -> feudal
IVENESS -> IVE decisiveness -> decisive
FULNESS -> FUL hopefulness -> hopeful
OUSNESS -> OUS callousness -> callous
ALITY -> AL formality -> formal
IVITY -> IVE sensitivity -> sensitive
BILITY -> BLE sensibility -> sensible

Figure 2.2: Some stemming rules.

Porter’s stemming algorithm has been coded in any number of languages1 such as the Perl

stemming.pl used in this study.

1http://www.tartarus.org/martin/PorterStemmer

8

2.2 Technical Document Comprehension

2.2.1 Overview

Technical document comprehension (also referred to as program comprehension) focuses on learn-

ing patterns and hidden details in collections of technical documents. While the majority of work

being done in technical document comprehension is based on evaluating source code, other types

of documents can be explored as well. Legal documents [22], UML [12], and even HTML [18]

have all been explored using standard IR and text mining techniques. The potential benefit of

focusing on technical documents is utilizing the inherent structure that is found in them to build

previously unknown relationships. Ideally, once these new relationships are combined with exist-

ing knowledge gained through text mining, results can greatly improve. In the next few sections I

will examine a few existing tools for technical document comprehension in the realm of software

engineering.

2.2.2 HIPIKAT

Hipikat [4] by Cubranic and Murphy is an attempt at a collective project memory, developed as

plug-in for the Eclipse development environment. It works by bringing in textual information from

CVS repositories, change requests (issue reports, feature requests, etc), communication channels

(forum posts, emails, etc.), design documents, and other software engineering artifacts found on the

projects website. Hipikat analyses these documents and can infer links between artifacts pertaining

to a similar subject. For instance, if a bug was marked as fixed in the issue tracker and within a

given time-frame, a CVS check-in was submitted, a possible link can exist between these two

artifacts. As new artifacts are submitted to Hipikat, they are examined for potential links and

the entire collection is updated. What is created is a network of linked artifacts which, when

combined with a similarity analysis of the text in each node, can be used to provide fine-tuned

9

artifact recommendations. When using the tool, a developer can either perform a keyword search

through the Hipikat database or query Hipikat by selecting an artifact in the IDE, such as a source

code file, CVS submission, or bug report. In both instances, a list of suggested articles is presented

which can then be used for further Hipikat queries, or opened for viewing. While Hipikat has

been shown to aid newcomers to a project with grasping a general understanding of a codebase,

its downfall is the scalability issue. Hipikat uses LSI (section 2.3.4) to perform similarity tests

between documents which is costly in both space and time. In addition to performance issues when

working with larger collections, there are also concerns with the quality of the recommendations

as larger collections tend to be more heterogeneous in nature.

2.2.3 Dora the Program Explorer

Dora is, like Hipikat, also an Eclipse plug-in that tackles the same problem of finding similar code

artifacts based on an initial artifact. Unlike Hipikat which uses communication channels, issue

reports, etc. to build its searchable repository, Dora only uses Java methods. As a result of only

using methods, the relationships between nodes in Dora is of a more syntactic nature since they are

generated from call graphs, where a relationship exists between two methods if one calls the other.

Using only call graphs in large software projects is not the most effective approach given that there

are many neighboring functions and many of those that are of little reference to the seed method.

This is where the term similarity between methods is used to help trim down the neighborhood.

Dora uses a series of similarity comparisons including TFIDF 2.1.2 that is then combined using a

linear model to generate a similarity measure between methods that is then used to build a relevant

neighborhood. When computing a similarity measure between two methods, Dora will consider

if the method is a binary method taken from a library combined with TFIDF similarity between

method names, identifiers used in the method body, and the natural language in code comments. To

help reduce these term sets even further, Dora employs some of the preprocessing tricks mentioned

in section 2.1.3 such as stemming.

10

2.2.4 STEP/EXPRESS

STEP (Standard for the Exchange of Product model data) is an ISO specified [13] language used

to represent product manufacturing information. The goal a mechanism capable of describing

production data from the entire life-cycle of a product. independent of any specific system or

methods the product employs. This yields transferability between existing software and machine

systems. By nature, this makes it useful not only for a neutral file format, but also as a starting point

for creating and sharing product databases and archiving. All STEP files must conform to a schema

defined in the EXPRESS language. Essentially, EXPRESS is a data modeling language that defines

the structure of STEP documents and STEP documents are EXPRESS schemas instantiated. The

ISO has defined a number of these schemas, known as application protocols. See Figure 2.3 for

the list of currently defined APs.

In theory, there is nothing stopping STEP/EXPRESS from recording and storing all aspects of

a project. In many ways, STEP/EXPRESS is as expressive as other technical document standards

(e.g. UML). STEP/EXPRESS offers a generic method for storing part-of and is-a information,

constraints, types, and the rules associated with a technical document. However, in practice, the

theoretical potential of STEP/EXPRESS is not realized for the following reasons.

Heterogeneity

The reality of archival systems is that STEP/EXPRESS documents are stored along side a much

larger set of supporting documents in multiple formats. Given this, if we can learn how to under-

stand large heterogeneous collections that include STEP/EXPRESS knowledge as well as numer-

ous other products in a wide variety of formats, it would be possible to reason and learn from a

very wide range of data.

A majority of the work has focused on the creation of cached sets of EXPRESS schemas. Forty

such application protocols (AP) have been defined [14] including AP-203 (for geometry) and AP-

11

213 (for numerical control). The list of currently defined application protocols is very extensive

(see Figure 2.3). These APs are the cornerstone of STEP tools: the tools offer specialized support

and screen import/export facilities for the APs. While much effort went into their creation of these

APs, very few have been stress-tested in the information systems field. That is, the majority of

these APs have been written more than they have been read (exceptions: the above-mentioned

AP-203 and AP-213 are frequently used and reused in 21st century CAD/CAM manufacturing

processes),

Perhaps because of the relative immaturity of the APs, current CAD/CAM tools offer limited

support for the STEP APs. While most tools support geometry (AP-203), the support for the other

APs in Figure 2.3 is minimal.

Limited Historical Use

For all the above reasons, highly structured technical documents in formats like STEP/EXPRESS

are in the minority in the archival systems we have examined. We are aware of large STEP/EXPRESS

repositories but these are often inaccessible for a variety of reasons.

While this situation might change in the future (e.g. if all the above issues were suddenly fixed

and all organizations switch to using highly structured technical documentation), the historical

record would still be starved for large numbers of examples.

12

AP area
201 Explicit Drafting
202 Associative Drafting
203 Configuration Controlled Design
204 Mechanical Design Using Boundary Representation
205 Mechanical Design Using Surface Representation
206 Mechanical Design Using Wireframe Representation
207 Sheet Metal Dies and Blocks
208 Life Cycle Product Change Process
209 Design Through Analysis of Composite and Metallic Structures
210 Electronic Printed Circuit Assembly, Design and Manufacturing
211 Electronics Test Diagnostics and Remanufacture
212 Electrotechnical Plants
213 Numerical Control Process Plans for Machined Parts
214 Core Data for Automotive Mechanical Design Processes
215 Ship Arrangement
216 Ship Molded Forms
217 Ship Piping
218 Ship Structures
219 Dimensional Inspection Process Planning for CMMs
220 Printed Circuit Assembly Manufacturing Planning
221 Functional Data and Schematic Representation for Process Plans
222 Design Engineering to Manufacturing for Composite Structures
223 Exchange of Design and Manufacturing DPD for Composites
224 Mechanical Product Definition for Process Planning
225 Structural Building Elements Using Explicit Shape Rep
226 Shipbuilding Mechanical Systems
227 Plant Spatial Configuration
228 Building Services
229 Design and Manufacturing Information for Forged Parts
230 Building Structure frame steelwork
231 Process Engineering Data
232 Technical Data Packaging
233 Systems Engineering Data Representation
234 Ship Operational logs, records and messages
235 Materials Information for products
236 Furniture product and project
237 Computational Fluid Dynamics
238 Integrated CNC Machining
239 Product Life Cycle Support
240 Process Planning

Figure 2.3: STEP Application Protocols.

13

2.3 Term Reduction

2.3.1 Overview

2.3.2 Principal Component Analysis (PCA)

2.3.3 Support Vector Machines (SVM)

2.3.4 Latent Semantic Indexing (LSI)

Tang, Dwarkadas, and Xu [26] have demonstrated a method of improving scalability with LSI.

2.3.5 FastMap

The general goal of FASTMAP is to project items in a n dimensional to a d dimensional space,

with n > d. The basis of each reduction is using the cosine law on the triangle formed by an object

in the feature space and the two objects that are furthest apart in the current (pre-reduction) space

(see Figure 2.5). These two objects are referred to as the pivot objects of that step in the reduction

phase (n - d total pivot object sets). Finding the optimal solution of the problem of finding the two

furthest apart points is a N2 problem (where N is the total number of objects), but this is where the

heuristic nature of FASTMAP comes into play.

Instead of finding the absolute furthest apart points,

FASTMAP takes a shortcut by first randomly selecting an object from the set, and then finding the

object that is furthest from it and setting this object as the first pivot point. After the first pivot point

��
��
��
��
��
��

��
��

��
��
��

��
��

��
��

��
��
��
��
��
��
��

��
��

��
��
��

��
��

��
��

��

Figure 2.4: The two features in the left plot can be transferred to the right plot via one latent feature.

14

Figure 2.5: Example of using the cosine law to find the position of Oi in the dimension k

Figure 2.6: Projects of points Oi and O j onto the hyper-plane perpendicular to the line OaOb

is selected, FASTMAP finds the points farthest from this and uses it as the second pivot point. The

line formed by these two points becomes the line that all of the other points will be mapped to in

the new n - 1 dimension space.

2.3.6 TF*IDF Term Ranking

cartesian_point type oriented_edge subtype entity
label sizeof self query select
name direction edge_curve where wr1
text real set not description
for rule items typeof supertype
...

Figure 2.7: 30 of the 100 key terms found in a STEP dataset using TF*IDF ranking

15

2.3.7 Information Gain

2.4 Document Clustering

2.4.1 Overview

2.4.2 Hierarchical vs. Well-Separated

2.4.3 K-Means (elementary)

K-Means is a clustering algorithm that, when given a dataset of unidentified objects, it will group

those items into k groups based on some given similarity measure. The algorithm is described in

Figure 2.8. For an example of the algorithm in operation, see Figure ??.

• i=0

• Partitioning the input points into k initial sets, either at random or using some heuristic data.

• Repeat unitl (i≤ maxIterations or no point changes set membership)

– Calculates the mean point, or centroid, of each set or cluster.

– Constructs a new partition, by associating each point with the closest centroid.

– Recalculate the centroids for the newly partitioned cluster

– i = i + 1

Figure 2.8: K-Means algorithm. See Figure ?? for an example of this algorithm running in practice.

While k-means may be sufficiently accurate, there are significant drawbacks. Most notably is

the speed (or lack thereof). Due to the k-means algorithm having to compute distances from every

item to every cluster. In situations where the cosine similarity distance measure is used, computing

the distance between points can be an expensive operation (this is another place dimensionality

reduction helps out). In recent tests comparing clustering algorithm run-times, k-means was found

to be up to 500 times slower than another algorithm, GENIC, which we discuss further down.

16

(a) Randomly select cluster
centroids

(b) Assign each object to it’s
nearest centroid

(c) Compute new centroids by
using the mean value from the
centroids picked in step (b)

(d) Repeat steps (b) and (c) un-
til the convergence criteria has
been reached

Figure 2.9: Figures (a) through () above illustrate the major steps of the kmeans algorithm

17

Another problem with k-means is determining what value of k should be used. Note the us-

ability issues with requiring a user to pre-specify k: isn’t this the kind of tedious detail that the

computer should be telling us?

2.4.4 K-Means (canopied)

Figure 2.10: The darker circle represents all points in a given canopy, points in the smaller circles cannot be used as a new canopy center.

2.4.5 Genic

GENIC is a generalized incremental clustering algorithm developed by Gupta and Grossman [10]

that provides potentials for large improvements in scalability over K-Means. Since GENIC was

designed with streaming data in mind, it only has a single pass through the data to work with.

Because of this, it scales linearly, which is a requirement when dealing with large corpora. By

using stochastic methods, GENIC can be given an initial k equal to the number of items (each item

is its own clusters) and prune away unlikely clusters with each generation, giving a realistically

estimated value for k after the last generation. Here is how GENIC works:

1. Select parameters

18

• Fix the number of centers k.

• Fix the number of initial points m.

• Fix the size of a generation n.

2. Initialize

• Select m points, c1, ...,cm to be the initial candidate centers.

• Assign a weight of wi = 1 to each of these candidate centers.

3. Incremental Clustering For each subsequent data point p in the stream: do

• Count = Count + 1

• Find the nearest candidate center ci to the point p

• Move the nearest candidate center using the formula

ci =
(wi ∗ ci + p

wi +1
(2.3)

• Increment the corresponding weight

wi = wi +1 (2.4)

• When Count mod n = 0, goto Step 4

4. Generational Update of Candidate Centers

When Count equals n,2n,3n, ..., for every

center ci in the list L of centers, do:

• Calculate its probability of survival using the formula

pi =
wi

∑
n
i=1 wi

(2.5)

19

• Select a random number δ uniformly from [0,1]. If pi ¿ δ, retain the center ci in the

list L of centers and use it in the next generation to replace it as a center in the list L of

centers.

• Set the weight wi = 1 back to one. Although some of the points in the stream will be

implicitly assigned to other centers now, we do not use this information to update any

of the other existing weights.

• Goto step 3 and continue processing the input stream

5. Calculate Final Clusters The list L contains the m centers. These m centers can be grouped

into the final k centers based on their Euclidean distances.

GENIC is of specific interest to HAMLET for two primary reasons, low expected run-times on

large corpora and a potential ability at estimating the number of natural clusters in the collection.

• Scalability: Since GENIC was designed with streaming data in mind, it only has a single

pass through the data to work with. Because of this, it scales linearly, which is a requirement

if HAMLET is to scale to large corpora.

• An likely estimate for k: Because of GENIC’s stochastic based method of removing un-

wanted or non-useful clusters, it has potential for use in correctly estimating a good value

for k. By eliminating ”bad stuff”, GENIC can ideally identify the correct number of types of

”good stuff”.

20

2.4.6 Computing the number of clusters

2.5 Distance Metrics

2.5.1 Euclidean

2.5.2 Manhattan

2.5.3 Cosine

2.6 Opportunities for Improvements

21

Chapter 3

Tools

3.1 Hamlet

3.1.1 Motivation

A recent NSF-funded workshop1 highlighted current directions in long term technical document

retention. While much progress was reported on:

• systems issues of handling and sharing very large data collection (e.g. SLASH)

• scalable methods of building customization views (e.g. iRODS),

there was little mention of the cognitive issues of how users might browse and synthesize data from

massive data collections of technical documents.

For example, here at WVU, we are mid-way through a review of the use of STEP/EXPRESS

for long term technical document retention2. STEP/EXPRESS is commonly used as an inter-lingua

to transfer technical data between CAD/CAM packages. Strange to say, while STEP/EXPRESS
1Collaborative Expedition Workshop #74, June 10, 2008, at NSF. “Overcoming I/O Bottlenecks in Full Data Path

Processing: Intelligent, Scalable Data Management from Data Ingest to Computation Enabling Access and Discov-
ery”. http://colab.cim3.net/cgi-bin/wiki.pl?ExpeditionWorkshop/TowardScalableDataManagement_
2008_06_10

2See reports from Mucino.

22

Figure 3.1: HAMLET’s search for associations.

is useful for transferring and understanding technical documents today, it does not appear to be

suitable for understanding technical documents from yesterday.

3.1.2 Overview

HAMLET’s search for association has to two essential phases, and a third optional phase (see

Figure 3.1). All these stages have the same goal: from a large set of possible associations, extract

the small subset that (a) have occurred frequently in prior technical documents and which (b) the

user will approve. Before running any query:

• Archival artifacts must be parsed into a network of nodes and edges. Each node is repre-

sented as a set of terms referenced in that node. This set of terms can include every term in

23

the archive so we call these the wide vectors.

• The wide vectors are unwieldy to process. Hence, we run some linear time reduction meth-

ods to isolate the most informative columns. This produces the narrow vectors. Note that,

when we run a query, we only use the parts of the query that appear in these narrow vectors.

• HAMLET also clusters the narrow vectors into groups. These groups define cliches of re-

peated structures.

When running a query:

• We remove irrelevant detail from the query. Linear time methods remove white space and

spurious word endings. Then the query is pruned back to include just the terms seen in the

narrow vectors.

• The resulting tuned vector is then matched to the the groups of vectors found above. For

computational reasons, we run this match in two-stages. First, we find the N nearest clusters

(this generates the relevant groups). Second, searching just within those relevant groups, we

perform exact matches to find related terms.

• The candidate matches found from the exact match are then ranked (by the size of the overlap

of the query and the terms) then pruned using thresholding (find the neighboring items in th

sort with the biggest difference between them; prune the items below that largest cliff).

• The user assesses the matched queries and declares that some are “relevant” and some aren’t.

This builds up a session log for this user working these kinds of queries. Once this log grows

beyond a certain size, it is used to refine the tuned query such that the tuning favors nodes

that do not contain what the user has labeled “irrelevancies” and does contain what the user

has called “relevances”.

Optionally, we can visualize the results:

24

• The N-dimensions of the vectors are mapped down to 3 dimensions, then visualized on the

screen.

3.1.3 Parsing Framework

HAMLET’s language-specific subparsers comb through individual files and pull out important

bits of information (entities in STEP, methods in Java). While processing individual files, these

subparsers collect information about each document. Some of that information includes pointers

to the parsed information and information about what entities are used by others. The HAMLET

generic parsing framework provides several methods to utilize these data attributes.

The most important function of the API is the generation of the GraphXML file. This file is the

intermediary between the data set and HAMLET. It contains a list of each document (vertice) and

the relationships between them. Other pertinent information, such as file pointers and document

statistics, is stored in the form of attributes for each document vertice. From a higher level, the

collection of these pointers to files gives a view of the region of interconnected designs, giving

HAMLET the ability to make its decisions and provide suggestions based on what it has already

learned.

Figure 3.2: One vertice and the information associated with it.

25

For certain language imports, such as Java or STEP, HAMLET utilizes edge generation to

determine the relationship of one design to another. For instance, if a call graph is generated on a

set of Java source files, an edge can be placed between a multitude of methods and calls made to

and from them. The XML graph generated by the parsing API includes both the document vertices

and the edges that connect them. This is essential for visualization purposes and provides a wealth

of syntactical information.

Internally, HAMLET makes minimal assumptions about the form of the technical document:

• A document contains slots and slots can be atomic or point to other documents;.

• The network of pointers between documents presents the space of connected designs.

A generic parser class implements a standard access protocol for this internal model. By sub-

classing that parser, it is possible to quickly process new documents types. Currently, HAMLET’s

parsers can import:

• STEP/EXPRESS

• Florida Law (XML)

• Text documents structured as follows: sub-headings within headings, paragraphs within sub-

headings, sentences within paragraphs, words in sentences;

• JAVA: This JAVA import allows ready access to very large corpora of structured technical

information (i.e. every open source JAVA program on the web). Hence, in the sequel, we

will make extensive use of JAVA examples since that permits tests of scalability.

3.1.4 Preprocessor

HAMLET contains several components other than the UI shown below. One such com- ponent

is the pre-processor, a tool used by HAMLET to generate datasets which can then be loaded into

26

the UI allowing the user to query, rank, and visualize the documents found in the loaded dataset.

The majority of all machine learning takes place within the pre-processor. This is where tasks

like term frequency / document frequency gen- eration, term selection, clustering, and learner

training occurs. After being run through the pre-processor, each document within a collection is

assigned a vector representation which describes what terms are present in the document and at

what frequency.

Figure 3.3: Looking at data using HAMLET has several visualization advantages

27

3.1.5 User Interface

3.2 Ourmine

3.2.1 Motivation

3.2.2 Overview

3.2.3 Textmine

3.3 The Attribute-Relation File Format (ARFF)

28

Chapter 4

Laboratory Studies

This chapter describes the laboratory studies performed throughout this research. There are a total

of three main experiments that assess the run-time and accuracy in the following areas: term-space

reduction (section 4.3), document clustering (section 4.4), and document clustering using using all

pairs of reduction methods and clusterers (section 4.5). In each experiments section we discuss the

procedures used, run-time results, validity (accuracy) results, effects of variables, and a look at the

observed trade-offs.

Section 4.1 lists the basic setup of the experiments including the datasets and algorithms used,

evaluation metrics, parameters being varied and parameters held constant, and some initial expec-

tations. Section 4.2 details the testing environment and experimental design. Lastly, section 4.6

captures the summary of all relevant findings of our research.

4.1 Basics

4.1.1 Datasets

The datasets chosen for these experiments listed in figure 4.1, fall into two categories: supervised

and unsupervised. Consequently, all supervised datasets used are standard and freely available text

29

mining collections primarily in the form of news articles and newsgroup posts. Our unsupervised

datasets were created in-house from collections of two STEP/EXPRESS application protocols that

are highly syntactic in nature and help fulfill our primary motivations described in section 1.1. See

figure 4.1 for a listing of datasets and relevant statistics.

Documents AP203 AP214 BBC BBCSport ngBias3 ngBias8 ngBal3 ngBal8
D documents 484 1373 2224 737 1500 2395 1499 3999
T terms 1103 3050 9635 4613 8631 9826 8158 14984
Mean document length 143 164 130 104 116 87 91 90
Natural Classes N/A N/A 5 5 3 8 3 8
Stemming used - - x x x x x x
Stop-words removed - - x x x x x x

Table 4.1: Statistics on our datasets.

Dataset Natural classes
BBC business(509), entertainment(386), politics(417), sport(511),

tech(302)
BBCSport athletics(100), cricket(124), football(265), rugby(147), ten-

nis(57)
ngBias3 graphics(136), hockey(591), windows(587)
ngBias8 atheism(704), autos(202), crypt(204), hockey(205), mac(202),

mideast(202), space(204), xwindows(205)
ngBal3 graphics(463), hockey(459), mideast(453)
ngBal8 atheism(471), autos(463), crypt(467), hockey(461), mac(466),

mideast(470), space(461), xwindows(469)

Table 4.2: Supervised datasets along with class values.

All datasets other than AP203 and AP214 (both of which were generated for this project) were

found at the Machine Learning Group of University College Dublin website [2]. The BBC and

BBCSport datasets were first introduced in [7]. BBC is made up news articles taken from the BBC

website from 2004-2005, similarly BBCSport is made up of news articles from the BBCSport

website during the same time period. Each contains 5 natural classes that identify the articles

topical area. The remaining datasets are all subsets of the 20Newsgroups dataset introduced in [16]

and currently residing in the UCI KDD Archive [3]. Both ngBias3 and ngBias8 come datasets

30

with uneven class frequencies. In ngBias3, two classes each represent approximately 45% of

the documents, while the other only represents approximately 10%. In ngBias8, 7 classes each

represent approximately 9% of the documents, while the remaining class represents approximately

33%. In both ngBal3 and ngBal8 the distribution of class frequencies is approximately equal.

See figure 4.2 for exact distributions. All of the 20Newsgroups subsets used in this study have

well-separated classes, meaning they were chosen in such as way as to minimize overlap between

classes.

Both the 20Newsgroups and BBC datasets were chosen because of their previous use in the lit-

erature that allows us to draw a comparison to a known benchmark. As of May 2009, the 20News-

groups introductory paper [16] has been cited over 200 times according to CiteSeerX. While such

a large claim cannot be made by the BBC datasets, they have only been around a few years and

look promising for future collaboration. While the two STEP datasets cannot provide any external

validity to our findings, they do add an additional perspective due to their drastic differences in

content.

4.1.2 Considered Algorithms

Of the six different algorithms compared in this study, there are three dimensionality reduction

methods and there are three clusterers. Within each category (reduction and clustering), we have

one exhaustive method and two heuristic methods. The three reduction methods being studied

are: PCA [19] (exhaustive), FastMap [5] (heuristic), and TF*IDF Ranking (heuristic). The three

clustering algorithms are: K-Means [15] (exhaustive), Canopy [17] (heuristic), and GenIc [10]

(heuristic).

The two exhaustive algorithms (PCA and K-Means) were chosen as they provide a roughly

generic representation of non-scalable clustering and dimension reduction. The remaining four

were either chosen because of a mix of their astounding run-time advantages and non-existing

prior comparisons in the literature.

31

Exhaustive/Heuristic Clustering Dimensionality Reduction
Exhaustive K-Means PCA
Heuristic Canopy FastMap

GenIc TF*IDF Ranking

Table 4.3: Supervised datasets along with class values.

4.1.3 Metrics (dependent variables)

This section describes the metrics that are used to evaluate the algorithms listed above. These val-

ues can also be considered the dependent variables of the experiments. They were all chosen with

the goal of providing a method of evaluation that is applicable to both supervised and unsupervised

datasets since the ultimate working environment of hamlet (section ??) may be in either of these

domains. To eliminate bias from running on different hardware, all values will be listed as ratios to

the exhaustive methods. In addition to removing hardware bias, this will also focus on the relative

values; these will be of higher importance than the raw values since comparison between methods

is what we are most concerned with.

Run-times

For obvious reasons, run-time will be a primary metric for evaluating both the clustering and

dimension reduction algorithms. Run-times will be measured in seconds and then converted to a

ratio of the exhaustive methods.

Internal Similarity

Internal similarity (equation 4.1.3) will be used for measuring the validity of both clustering and

reduction. A benefit of this measure is that it can be applied to both unsupervised and supervised

datasets since no information about the correct classification is required. This allows this measure

to provide us with additional insight into our generated datasets (see STEP datasets in section

4.1.1), allowing us to see whether they are of any further value to the development of hamlet.

32

iSimi = ∑
d∈Ci

∑
d′∈Ci

cos(d,d′)
n2

i
iSim = ∑

i

ni

N
iSimi

Figure 4.1: Equation for internal similarity

eSimi j = ∑
d∈Ci

∑
d′∈C j

cos(d,d′)
nin j

eSim = ∑
i

ni

N
eSimi j

Figure 4.2: Equation for external similarity

Internal similarity is primarily used a means of assessing the results of a particular clustering.

We’ll use it for reduction by looking at the validity of the clusters generated using each of the

reduction methods. Essentially, internal similarity is the measure of how similar items that belong

to the same cluster are to each other. Since in a good clustering, we expect items in the same

cluster to very similar to each other, a good value for internal similarity is one that approaches that

maximum value of 1.0.

External Similarity

External similarity (equation 4.1.3) will be used for measuring the validity of both clustering and

reduction. A benefit of this measure is that it can be applied to both unsupervised and supervised

datasets since no information about the correct classification is required. This allows this mea-

sure to provide us with additional insight into our generated datasets (see STEP datasets in section

4.1.1), allowing us to see whether they are of any further value to the development of hamlet. Ex-

ternal similarity is primarily used a means of assessing the results of a particular clustering. We’ll

use it for reduction by looking at the validity of the clusters generated using each of the reduction

methods. Essentially, external similarity is the measure of how similar items that belong to differ-

ent clusters are to each other. Since in a good clustering, we expect items in different clusters to

not be very similar to each other, a good value for external similarity is one that approaches that

minimum value of 0.0.

33

Similarity Loss = External Similarity - Internal Similarity

Figure 4.3: Equation for similarity loss

Similarity Loss

SimilarityLoss is an original measure developed for the research. It is a way of combining the

results of relative ratios of internal and external similarity for different algorithms and datasets.

After the computing the exact values of internal and external similarity for each of the algorithms,

we express them each as a ratio of their value to the value of most exhaustive algorithm. The result

is a value which indicates the relative gain or loss of whatever measure the ratio is generated on.

When dealing with internal similarity, good values are those that have relative values greater than

one (meaning they out-preformed the exhaustive method). With external similarity, a good value is

one with a relative value less than one (also meaning a higher level of performance compared to the

exhaustive method). Our studies have shown that often times a method will show an improvement

in one of the similarities with a dis-improvement in the other. Similarity loss is a measure of how

much overall similarity (both internal and external) is lost or gained using a particular method. It

is defined below in equation 4.1.3 as simply the difference between external similarity and internal

similarity.

Cluster Purity

Cluster purity is a measure that can only be used on supervised datasets defined above in section

??. Intuitively, it is a measure of the homogeneity of class values within each cluster. Since purity

requires an initial pairing of each item with a class label (meaning it is a supervised measure), it

cannot be used on our STEP datasets (section 4.1.1). Using supervised datasets and not evalu-

ating the results using the added information of class labels would be overlooking an insightful

component of information. Values for purity range from 0.0 - 1.0 with higher values telling of a

morepure clustering. Like the other measures used in these experiments, purity for each dataset

34

and algorithm will be scaled by the purity value of the most exhaustive method for that dataset.

4.1.4 Variables (independent variables)

This sections describes the various variables that were either held constant, or varied with each

creating a new treatment. The table below (4.4) lists each of these variables, their values, and

rational for the values that were chosen with the exclusion of datasets and algorithms (see sections

4.1.1 and 4.1.2, respectively, for information on these.)

4.2 Environment

This section describes the general experimental environment including the testing harness (hamlet)

and overall experiment design.

4.2.1 Textmine

In an effort to provide a framework that better allows for full collaboration between researchers and

repeatability of experiments, Ourmine [6] was used to script the experiments. Further information

about Ourmine is available in section 3.2. To extend the capabilities of Ourmine into the domain

of text mining, a modified version, Textmine, was created that adds methods for term reduction,

document clustering, and evaluation of document clusters into Ourmine’s toolset. More specific

information on Textmine and the development of the tools included with it can be found in section

3.2.3.

35

Variable of Name Description Values Rational
General Reduction d The number of di-

mensions being re-
duced to

3, 15, 25, 50, 100, 200 We reduce all the way down
to 3 dimensions to exam-
ine 3-d visualizations of the
different treatments. values
greater than this are used to
test the run-time growth of
the treatments.

General Clustering k The number of clus-
ters requested

3, 5, 8, 15, 40, 75 The levels 3, 5, and 8 were
chosen because each corre-
sponds to the number of
classes in the various super-
vised datasets. The others
were chosen to fit our gen-
erated datasets and to show
run-time growth with larger
k.

KMeans Clustering max iterations The number of recur-
sive step KMeans will
take until it accepts
the current clustering

500 Set as recommended in the
literature [?]

GenIc Clustering c The number of cen-
ters or clusters

{set to the same values of k above} Used as a replacement for k
(listed above).

m The number of initial
points

{set to the same values of k above} Set to the value of c. To
keep consistency between all
of the clusterers, this value
was set to stay constant with
c and k.

n The number of gener-
ations

size(dataset)
15 Set to change with whatever

dataset is used. This keeps
the number of passes con-
stant among all treatments.

Canopy Clustering tight threshold Using the cheap dis-
tance metric of count
of similar terms. If
two items are more
similar than this they
must both be canopy
centers.

10 Using Early experimentation
showed the number docu-
ments that have more than
10 similar terms occur infre-
quently enough to provide an
efficient number of canopies.

loose threshold Using the cheap dis-
tance metric of count
of similar terms. If an
item is this similar or
more to a canopy cen-
ter, it is assigned to
that canopy.

4 Using Early experimentation
showed the number docu-
ments that have 4 or more
similar terms occur at a fre-
quency that provides an ef-
ficient distribution of canopy
sizes.

max iterations The number of re-
cursive steps KMeans
will take until it ac-
cepts the current clus-
tering

500 Set as recommended in the
literature [?]

Table 4.4: Listing of independent variables and their values that were used in this study.

4.2.2 Experimental Design

This section gives a quick high-level look at the experimental design methodology used in evaluat-

ing our algorithms and datasets. Strictly speaking, this experiment is of a factorial or fully-crossed

36

design (a 8x3x3x6x6 factorial design). The exact factors and their values are listed in table 4.5. The

product of the values in the last column is the total number of treatments (8x3x6x6 = 2,592). To

minimize artifacts from the random nature of some of the algorithms, each treatment was repeated

10 times bringing the total number of passes to 25,920 and creating a 10-fold-crossed, method of

evaluation.

Factor Levels Level count
dataset ap203, ap214, BBC, BBCSport, ngBias3, ngBias8, ngBal3, and ngBal8 8
clusterer KMeans, Canopy, and Genic 3
reduction method PCA, FastMap, and TF*IDF Ranking 3
k 3, 5, 8, 15, 40, and 75 6
d 3, 15, 25, 50, 100, 200 6

Table 4.5: Experimental factors and their levels used for the experiment. A total of 2,592 (8x3x3x6x6) different treatments or combination of factors
exist in this design

4.2.3 Workflow

This section lists the steps taken in the processing and evaluating the datasets in a chronological

order.

1. Conversion to ARFF

Convert the datasets into a congruent format. The ARFF format described in section 3.3

was used for this. The supervised datasets were converted from the matrix market format

(MTX) [21] while the unsupervised, STEP datasets were converted from an internal XML

representation used within Hamlet (section 3.1).

2. Dimensionality Reduction

At this point, each dataset was reduced 180 times (10 repeats times 3 reduction methods

times 6 values for dimensionality). These reduced datasets and a log of the time taken to

perform the reduction were archived to disk.

37

3. Clustering

Now that the data has been reduced and run-times for the reduction have been logged, cluster-

ing can take place. In this step, for each dataset, one sample from each reduction treatment

(or each combination of dimensionality and reduction method) is ran through a clustering

treatment (or each combination of number of clusters and clustering method) and repeated

10 times. This gives a total of 3,240 samples for each dataset, 25,920 in all. The resulting

clusterings and their run-times are then archived to disk for later use.

4. Analysis

This step can be performed at any time after a clustering has been achieved. This step in-

cludes gathering evaluation statistics on each of the 25,920 samples generated in the previous

step. Here is where the metrics described in section 4.1.3 are collected.

4.3 Reduction

This sections discusses the effects of the choice of reduction method to run-times and validity of

generated clusters.

4.3.1 Run-times

Unsurprisingly, run-times for dimensionality reduction were in line with each algorithm’s expecta-

tions. Looking at the Mann-Whitney U tests in figure 4.6, you can see that reduction using TfIdf-

Sort was by far the fastest as it wins in both comparisons. FastMap comes in behind TfIdf-Sort

while losing to it and beating PCA. Lastly PCA brings up the rear losing in all tests. The MWU

tests confirm that heuristic methods do have better run-times than PCA, but at what magnitude?

The results in figure 4.7 show the run-times of each dimension reduction methods relative to PCA.

These values were taken by summing the results from every trial and then normalizing to a scale

38

ranging from 0 to 100. TfIdf-Sort shows an amazing performance benefit over PCA with its trials

taking less than 1% of the time of PCA. FastMap also shows substantial performance relative to

PCA taking only 3% of the time. These results can also be noted in figure 4.8 where the run-times

have been sorted and plotted as a line.

Reduction Method ties wins losses wins-losses
TfIdf-Sort 0 2 0 2
FastMap 0 1 1 0
PCA 0 0 2 -2

Table 4.6: Mann-Whitney U tests at a 99% confidence level.
As expected, the quick linear time method T f Id f − Sort
performs better than both PCA and FastMap while PCA
performs the worst.

Reduction Method Run-time relative to PCA
TfIdf-Sort <1
FastMap 3
PCA 100

Table 4.7: The above table illustrates the drastic computa-
tional requirements of PCA compared to FastMap and TfIdf-
Sort. TfIdf-Sort runs in less than 1% of the time of PCA.

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

R
un

tim
e

AUC of Runtimes by Reduction Method

FastMap
PCA
Tf-Idf

Table 4.8: Long Description

4.3.2 Validity

As described in section 4.1.3, the three metrics being used to evaluate the validity of the results are

purity, internal similarity, and external similarity. This section will discuss each of the results of

each of these metrics. Additionally, we’ll be looking at plots of the data points in three dimensions

39

to get a graphical approximation of the types of structures generated by each of the reduction

methods.

Reduction to three dimensions (a visualization)

The plots in figure 4.3.2 show the visual representation of dimensionality reduction down to three

dimensions in the STEP datasets. One thing to remember here is the drastic change in dimen-

sionality this represents. The original dimensionality of these datasets can be as high as 15,000

(the datasets shown in figure 4.3.2 have around 1,000 and 3,000), so a drastic drop down to only

3 leaves plenty of room for data loss. Despite this caveat, PCA still provides a noticeable amount

of detail in its three dimensional reduction compared to FastMap and TfIdf-Sort. Notice the more

random distribution of points in PCA plots. The FastMap points are limited to only three lines

within the reduced space, while nearly all of the TfIdf-Sort points are located in the same exact

point. Realistically speaking, reduction to three dimensions is not practical for most IR tasks in

textual domains. This would only be possible in an extremely small dataset of trivial use. This

explains the results of the TfIdf-Sort plots where the data is being reduced to only three terms.

Any document that does not have those terms, will be placed at the same point. While this visual-

ization does provide insight into the types of geometric structures created by these algorithms, it is

still merely a visualization. Statistical tests are required before more concrete conclusions can be

reached.

Cluster Purity

As with the dimension reduction run-times, we also experienced the expected results with the

dimension reduction purity experiments.

External Similarity

esim

40

PCA (D∗T 2)

-0.1-0.08-0.06-0.04-0.02 0
-0.04

-0.02
 0
 0.02

 0.04
-0.6-0.4-0.2 0
 0.2 0.4 0.6 0.8

AP203 - PCA

-3 -2 -1 0 1 -1
 0

 1
 2

 3
-1
 0
 1
 2

AP214 - PCA

FASTMAP
(2N)

 0 0.2 0.4 0.6 0.8 1 1.2 0
 0.3

 0.6
 0.9

 1.2
 0

 0.3
 0.6
 0.9

AP203 - FastMap

 0 0.3 0.6 0.9 1.2 1.5 0
 0.4

 0.8
 1.2

 1.6
 0

 0.3
 0.6
 0.9
 1.2

AP214 - FastMap

Tf*IDF (t ∗N)

 0 0.02 0.04 0.06 0.08 0
 0.025

 0.05
 0.075

 0

 0.025

AP203 - TFIDF

 0 0.1 0.2 0.3 0.4 0.5 0
 0.2

 0.4
 0.6

 0
 0.1
 0.2
 0.3
 0.4

AP214 - TFIDF

Figure 4.4: What is lost by heuristic exploration.

Internal Similarity

isim

Similarity Loss

loss

41

Reduction Method ties wins losses wins-losses
PCA 0 2 0 2
FastMap 0 1 1 0
TfIdf-Sort 0 0 2 -2

Table 4.9: Mann-Whitney U tests at a 95% confidence level.

Reduction Method Purity relative to PCA
pca 100
fastmap 83
tfidf 83

Table 4.10:

 0.1

 1

 3000 3500 4000 4500 5000 5500 6000 6500 7000

C
lu

st
er

 P
ur

ity

AUC of Cluster Purity by Reduction Method

FastMap
PCA
Tf-Idf

Table 4.11: Long Description

4.3.3 Effect of Variables

effects of vars

42

Reduction Method ties wins losses wins-losses
pca 0 2 0 2
tfidf 1 0 1 -1
fastmap 1 0 1 -1

Table 4.12: Mann-Whitney U tests at a 95% confidence
level.

Reduction Method External similarity relative to PCA
fastmap 148
pca 100
tfidf 94

Table 4.13:

 0.1

 1

 0 1000 2000 3000 4000 5000 6000

E
xt

er
na

l S
im

ila
rit

y

AUC of External Similarity by Reduction Method

FastMap
PCA
Tf-Idf

Table 4.14: Long Description

Dataset Size vs. Run-time

Dataset Size vs. Validity

Number of Terms (d) vs. Run-time

Number of Terms (d) vs. Validity

Amount of Reduction (d) vs. Run-time

Amount of Reduction (d) vs. Validity

4.3.4 Trade-offs

tradeoffs

43

Reduction Method ties wins losses wins-losses
pca 0 2 0 -2
fastmap 0 1 1 0
tfidf 0 0 2 2

Table 4.15: Mann-Whitney U tests at a 95% confidence
level.

Reduction Method Internal similarity relative to PCA
fastmap 118
pca 100
tfidf 88

Table 4.16:

 0.1

 1

 0 1000 2000 3000 4000 5000 6000

In
te

rn
al

 S
im

ila
rit

y

AUC of Internal Similarity by Reduction Method

FastMap
PCA
Tf-Idf

Table 4.17: Long Description

4.4 Clustering

This sections discusses the effects of the choice of reduction method to run-times and validity of

generated clusters.

4.4.1 Run-times

runtimes

4.4.2 Validity

validity

44

Clustering Method ties wins losses wins-losses
genic 0 2 0 2
kmeans 1 0 1 -1
canopy 1 0 1 -1

Table 4.18: Mann-Whitney U tests at a 95% confidence
level.

Clustering Method Run-Time Relative To KMeans
canopy 52
genic 6
kmeans 100

Table 4.19:

 0.1

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000

R
un

tim
e

AUC of Runtimes by Clustering Method

Canopy
GenIc

KMeans

Table 4.20: Long Description

Cluster Purity

purity

External Similarity

esim

Internal Similarity

isim

45

Clustering Method ties wins losses wins-losses
kmeans 0 2 0 2
genic 0 1 1 0
canopy 0 0 2 -2

Table 4.21: Mann-Whitney U tests at a 95% confidence
level.

Clustering Method Cluster Purity Relative To KMeans
canopy 72
genic 64
kmeans 100

Table 4.22:

 0.1

 1

 3000 3500 4000 4500 5000 5500 6000 6500 7000

C
lu

st
er

 P
ur

ity

AUC of Cluster Purity by Clustering Method

Canopy
GenIc

KMeans

Table 4.23: Long Description

4.4.3 Effect of Variables

Dataset Size vs. Run-time

Dataset Size vs. Validity

Number of Terms (d) vs. Run-time

Number of Terms (d) vs. Validity

Number of Clusters (k) vs. Run-time

Number of Clusters (k) vs. Validity

4.4.4 Trade-offs

tradeoffs
46

Clustering Method ties wins losses wins-losses
genic 0 2 0 2
kmeans 0 1 1 0
canopy 0 0 2 -2

Table 4.24: Mann-Whitney U tests at a 95% confidence
level.

Clustering Method Cluster External Similarity Relative To
KMeans

canopy 91
genic 113
kmeans 100

Table 4.25:

 0.1

 1

 0 1000 2000 3000 4000 5000 6000 7000

E
xt

er
na

l S
im

ila
rit

y

AUC of External Similarity by Clustering Method

Canopy
GenIc

KMeans

Table 4.26: Long Description

Size Average k actually returned
1 1
4 3.9375

16 11.7875
32 20.275
64 35.5375

128 64.4375
256 114.013
512 189.15

1024 316.775

Figure 4.5: Average number of clusters returned by GENIC for each K

4.5 Combining Methods

4.5.1 Run-times

4.5.2 Validity

Cluster Purity

External Similarity

Internal Similarity

4.5.3 Effect of Variables

4.5.4 Trade-offs

4.6 Summary of Findings

4.6.1 Heuristics

4.6.2 Exhaustive

4.6.3 Optimal Combinations

47

Clustering Method ties wins losses wins-losses
kmeans 0 2 0 2
genic 0 1 1 0
canopy 0 0 2 -2

Table 4.27: Mann-Whitney U tests at a 95% confidence
level.

Clustering Method Cluster Internal Similarity Relative To
KMeans

canopy 83
genic 91
kmeans 100

Table 4.28:

 0.1

 1

 0 1000 2000 3000 4000 5000 6000 7000

In
te

rn
al

 S
im

ila
rit

y

AUC of Internal Similarity by Clustering Method

Canopy
GenIc

KMeans

Table 4.29: Long Description

48

Clusterer-Reducer ties wins losses wins-losses
genic-tfidf 0 8 0 8
kmeans-tfidf 0 7 1 6
genic-fastmap 0 6 2 4
kmeans-fastmap 0 5 3 2
canopy-tfidf 0 4 4 0
canopy-fastmap 0 3 5 -2
genic-pca 0 2 6 -4
canopy-pca 0 1 7 -6
kmeans-pca 0 0 8 -8

Table 4.30: Mann-Whitney U tests at a 95% confidence
level.

Clusterer-Reducer Run-time Relative To KMeans-PCA
canopy-fastmap 7
canopy-pca 76
canopy-tfidf 5
genic-fastmap 3
genic-pca 71
genic-tfidf 1
kmeans-fastmap 20
kmeans-pca 100
kmeans-tfidf 12

Table 4.31:

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500

R
un

tim
e

Overall AUC of Runtimes

Canopy-FastMap
Canopy-PCA
Canopy-TfIdf

Genic-FastMap
Genic-PCA
Genic-TfIdf

KMeans-FastMap
KMeans-PCA
KMeans-TfIdf

Table 4.32: Long Description

49

Clusterer-Reducer ties wins losses wins-losses
kmeans-pca 0 8 0 8
genic-pca 0 7 1 6
genic-fastmap 1 5 2 3
canopy-fastmap 1 5 2 3
kmeans-tfidf 1 3 4 -1
kmeans-fastmap 1 3 4 -1
canopy-tfidf 0 2 6 -4
genic-tfidf 0 1 7 -6
canopy-pca 0 0 8 -8

Table 4.33: Mann-Whitney U tests at a 95% confidence
level.

Clusterer-Reducer Purity Relative To KMeans-PCA
fastmap-canopy 50
fastmap-genic 68
fastmap-kmeans 73
pca-canopy 38
pca-genic 95
pca-kmeans 100
tfidf-canopy 50
tfidf-genic 67
tfidf-kmeans 73

Table 4.34:

 0.15

 0.2

 0.25

 0.3

 0.35

 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

C
lu

st
er

 P
ur

ity

Overall AUC of Cluster Purity

Canopy-FastMap
Canopy-PCA
Canopy-TfIdf

Genic-FastMap
Genic-PCA
Genic-TfIdf

KMeans-FastMap
KMeans-PCA
KMeans-TfIdf

Table 4.35: Long Description

50

Clusterer-Reducer ties wins losses wins-losses
genic-tfidf 1 7 0 7
kmeans-pca 0 7 1 6
genic-fastmap 1 6 1 5
genic-pca 0 5 3 2
canopy-pca 0 4 4 0
canopy-tfidf 1 2 5 -3
canopy-fastmap 1 2 5 -3
kmeans-tfidf 1 0 7 -7
kmeans-fastmap 1 0 7 -7

Table 4.36: Mann-Whitney U tests at a 95% confidence
level.

Clusterer-Reducer External Similarity Relative To
KMeans-PCA

fastmap-canopy 134
fastmap-genic 153
fastmap-kmeans 149
pca-canopy 80
pca-genic 101
pca-kmeans 100
tfidf-canopy 83
tfidf-genic 98
tfidf-kmeans 85

Table 4.37:

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 200 400 600 800 1000 1200 1400 1600 1800

E
xt

er
na

l S
im

ila
rit

y

Overall AUC of External Similarity

Canopy-FastMap
Canopy-PCA
Canopy-TfIdf

Genic-FastMap
Genic-PCA
Genic-TfIdf

KMeans-FastMap
KMeans-PCA
KMeans-TfIdf

Table 4.38: Long Description

51

Clusterer-Reducer ties wins losses wins-losses
kmeans-pca 0 8 0 8
genic-pca 0 7 1 6
genic-fastmap 1 5 2 3
canopy-fastmap 1 5 2 3
kmeans-tfidf 1 3 4 -1
kmeans-fastmap 1 3 4 -1
canopy-tfidf 0 2 6 -4
genic-tfidf 0 1 7 -6
canopy-pca 0 0 8 -8

Table 4.39: Mann-Whitney U tests at a 95% confidence
level.

Clusterer-Reducer Internal Similarity Relative To KMeans-
PCA

fastmap-canopy 101
fastmap-genic 102
fastmap-kmeans 106
pca-canopy 68
pca-genic 88
pca-kmeans 100
tfidf-canopy 72
tfidf-genic 73
tfidf-kmeans 80

Table 4.40:

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 200 400 600 800 1000 1200 1400 1600 1800

In
te

rn
al

 S
im

ila
rit

y

Overall AUC of Internal Similarity

Canopy-FastMap
Canopy-PCA
Canopy-TfIdf

Genic-FastMap
Genic-PCA
Genic-TfIdf

KMeans-FastMap
KMeans-PCA
KMeans-TfIdf

Table 4.41: Long Description

52

Chapter 5

Conclusions

5.1 Assessment of Goals

5.2 Contributions

5.3 Future Work

53

Bibliography

[1] Khurshid Ahmad, Bogdan Vrusias, and Paulo C. F. de Oliveira. Summary evaluation and text
categorization. In SIGIR2003, pages 443–444, 2003.

[2] Machine Learning Group at UCD. Mlg datasets, Jan 2009. http://mlg.ucd.ie/datasets.

[3] Stephen D. Bay, Dennis F. Kibler, Michael J. Pazzani, and Padhraic Smyth. The UCI KDD
archive of large data sets for data mining research and experimentation. SIGKDD Explo-
rations, 2(2):81–85, 2000.

[4] Davor Cubranic, Gail C. Murphy, Janice Singer, and Kellogg S. Booth. Hipikat: A project
memory for software development. IEEE Transactions on Software Engineering, 31(6):446–
465, 2005.

[5] Christos Faloutsos and King-Ip Lin. Fastmap: a fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In Mchael Carey and Donovan Schnei-
der, editors, Proceedings of the 1995 ACM SIGMOD International Conference on Manage-
ment of Data, pages 163–174. ACM Press, 1995.

[6] Gregory Gay, Tim Menzies, Bojan Cukic, and Burak Turhan. How to build repeatable ex-
periments. In PROMISE ’09: Proceedings of the 5th International Conference on Predictor
Models in Software Engineering, pages 1–9, New York, NY, USA, 2009. ACM.

[7] Derek Greene and Pádraig Cunningham. Practical solutions to the problem of diagonal dom-
inance in kernel document clustering. In Proc. 23rd International Conference on Machine
learning (ICML’06), pages 377–384. ACM Press, 2006.

[8] Seth Grimes. Unstructured data and the 80 percent rule. Experts Corner: Seth Grimes,
Clarabridge Bridgepoints, Issue 3, 2008, Q3 2008. White Paper.

[9] F.A. Grootjen, D.C. van Leijenhorst, and Th. P. van der Weide. A formal derivation of heaps’
law, 2003.

[10] Chetan Gupta and Robert Grossman. Genic: A single pass generalized incremental algorithm
for clustering. In In SIAM Int. Conf. on Data Mining. SIAM, 2004.

54

[11] Hans Van Halteren, Jakub Zavrel, and Walter Daelemans. Improving accuracy in word-
class tagging through combination of machine learning systems. Computational Linguistics,
27:2001, 2001.

[12] Jane Huffman Hayes, Alex Dekhtyar, and James Osborne. Improving requirements tracing
via information retrieval. In in Proceedings of the International Conference on Requirements
Engineering (RE, pages 151–161, 2003.

[13] ISO. ISO 10303-11:1994: Industrial automation systems and integration — Product data
representation and exchange — Part 11: Description methods: The EXPRESS language ref-
erence manual. pub-ISO, 1994.

[14] R. Jardim-Goncalves, N. Figay, and A. Steiger-Garcao. Enabling interoperability of step
application protocols at meta-data and knowledge level. International Journal of Technology
Management, pages 402–421, 2006.

[15] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y. Wu. The
analysis of a simple k-means clustering algorithm. In UMD, 2000.

[16] Ken Lang. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth Interna-
tional Conference on Machine Learning, pages 331–339, 1995.

[17] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In KDD ’00: Proceedings of
the sixth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 169–178, New York, NY, USA, 2000. ACM.

[18] Jian-Yun Nie, Michel Simard, Pierre Isabelle, and Richard Durand. Cross-language infor-
mation retrieval based on parallel texts and automatic mining of parallel texts from the web.
In SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 74–81, New York, NY, USA, 1999.
ACM.

[19] K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine, 2(6):559–572, 1901.

[20] Martin F. Porter. An Algorithm for Suffix Stripping. Program, 14(3):130–137, 1980.

[21] Karin A. Remington Ronald F. Boisvert, Roldan Pozo. The matrix market exchange formats:
Initial design. NISTIR, 1997.

[22] D. E. Rose and R. K. Belew. Legal information retrieval a hybrid approach. In ICAIL ’89:
Proceedings of the 2nd international conference on Artificial intelligence and law, pages
138–146, New York, NY, USA, 1989. ACM.

55

[23] Horacio Saggion and Guy Lapalme. Concept identification and presentation in the context of
technical text summarization. In NAACL-ANLP 2000 Workshop on Automatic summarization,
pages 1–10, Morristown, NJ, USA, 2000. Association for Computational Linguistics.

[24] Gerard Salton. The smart document retrieval project. In SIGIR ’91: Proceedings of the 14th
annual international ACM SIGIR conference on Research and development in information
retrieval, pages 356–358, New York, NY, USA, 1991. ACM.

[25] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Comput. Surv.,
34(1):1–47, 2002.

[26] Chunqiang Tang, Sandhya Dwarkadas, and Zhichen Xu. On scaling latent semantic indexing
for large peer-to-peer systems. In SIGIR ’04: Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information retrieval, pages 112–
121, New York, NY, USA, 2004. ACM.

56

