\begin{thebibliography}{50} \expandafter\ifx\csname natexlab\endcsname\relax\def\natexlab#1{#1}\fi \expandafter\ifx\csname url\endcsname\relax \def\url#1{{\tt #1}}\fi \expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi \bibitem[{{ACT}(2007)}]{ACT2007} {ACT} (2007). \newblock {ACT National Collegiate Retention and Persistence to Degree Rates}. \newblock \url{http://www.act.org/research/policymakers/reports/retain.html}. \bibitem[{Adam \& Gaither(2005)}]{Ada2005} Adam, A.~J., \& Gaither, G.~H. (2005). \newblock Retention in higher education: A selective resource guide. \newblock {\em New Directions for Institutional Research\/}, {\em 2005\/}(125), 107--122. \bibitem[{Atwell et~al.(2006)Atwell, Ding, Ehasz, Johnson, \& Wang}]{Atw2006} Atwell, R.~H., Ding, W., Ehasz, M., Johnson, S., \& Wang, M. (2006). \newblock Using data mining techniques to predict student development and retention. \newblock In {\em Proceedings of the National Symposium on Student Retention\/}. \bibitem[{Barker et~al.(2004)Barker, Trafalis, \& Rhoads}]{Bar2004} Barker, K., Trafalis, T., \& Rhoads, T.~R. (2004). \newblock Learning from student data. \newblock {\em Systems and Information Engineering Design Symposium\/}, (pp. 79--86). \bibitem[{Bean(1979)}]{Bea79} Bean, J.~P. (1979). \newblock {Path Analysis: The Development of a Suitable Methodology for the Study of Student Attrition}. \newblock Paper presented at the Annual Meeting of the American Educational Research Association,San Francisco, California. \bibitem[{Bean(1980)}]{Bea80} Bean, J.~P. (1980). \newblock Dropouts and turnover: The synthesis and test of a causal model of student attrition. \newblock {\em Research in Higher Education\/}, {\em 12\/}(2), 155--187. \bibitem[{Bors(2001)}]{rbfnIntroBors} Bors, A. (2001). \newblock {Introduction of the radial basis function (rbf) networks}. \newblock In {\em Online Symposium for Electronics Engineers\/}, vol.~1, (pp. 1--7). \bibitem[{Bresciani \& Carson(2002)}]{Bre2002} Bresciani, M.~J., \& Carson, L. (2002). \newblock A study of undergraduate persistence by unmet need and percentage of gift aid. \newblock {\em NASPA Journal\/}, {\em 40\/}(1), 104--123. \bibitem[{DeLong et~al.(2007)DeLong, Radcliffe, \& Gorny}]{Del2007} DeLong, C., Radcliffe, P.~M., \& Gorny, L.~S. (2007). \newblock Recruiting for retention: Using data mining and machine learning to leverage the admissions process for improved freshman retention. \newblock In {\em Proceedings of the National Symposium on Student Retention\/}. \bibitem[{Dey \& Astin(1993)}]{Dey93} Dey, E.~L., \& Astin, A.~W. (1993). \newblock Statistical alternatives for studying college student retention: A comparative analysis of logit, probit, and linear regression. \newblock {\em Research in Higher Education\/}, {\em 34\/}(5), 569--581. \bibitem[{Druzdzel \& Glymour(1994)}]{Dru94} Druzdzel, M.~J., \& Glymour, C. (1994). \newblock Application of the {TETRAD II} program to the study of student retention in u.s. colleges. \newblock In {\em Working notes of the AAAI-94 Workshop on Knowledge Discovery in Databases (KDD-94)\/}, (pp. 419--430). Seattle, WA. \bibitem[{Freund \& Mason(1999)}]{Freund99thealternating} Freund, Y., \& Mason, L. (1999). \newblock The alternating decision tree learning algorithm. \newblock In {\em In Machine Learning: Proceedings of the Sixteenth International Conference\/}, (pp. 124--133). Morgan Kaufmann. \bibitem[{Glynn et~al.(2003)Glynn, Sauer, \& Miller}]{glynn2003} Glynn, J., Sauer, P., \& Miller, T. (2003). \newblock {Signaling student retention with prematriculation data}. \newblock {\em NASPA Journal\/}, {\em 41\/}(1), 41--67. \bibitem[{Hall(2000)}]{Hall00correlation-basedfeature} Hall, M. (2000). \newblock {Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning}. \newblock In {\em Proceedings of the Seventeenth International Conference on Machine Learning (ICML-2000): June 29-July 2, 2000, Stanford University\/}, (p. 359). Morgan Kaufmann. \bibitem[{Heckerman(1996)}]{Heckerman96atutorial} Heckerman, D. (1996). \newblock A tutorial on learning with bayesian networks. \newblock Tech. rep., Learning in Graphical Models. \bibitem[{Herzog(2005)}]{Her2005} Herzog, S. (2005). \newblock Measuring determinants of student return vs. dropout/stopout vs. transfer: A first-to-second year analysis of new freshmen. \newblock {\em Research in Higher Education\/}, {\em 46\/}(8), 883--928. \bibitem[{Herzog(2006)}]{Her2006} Herzog, S. (2006). \newblock Estimating student retention and degree-completion time: Decision trees and neural networks vis-à-vis regression. \newblock {\em New Directions for Institutional Research\/}, {\em 131\/}(2006). \bibitem[{Holte(1993)}]{holte93} Holte, R. (1993). \newblock Very simple classification rules perform well on most commonly used datasets. \newblock {\em Machine Learning\/}, {\em 11\/}, 63. \bibitem[{Lau(2003)}]{Lau2003} Lau, L.~K. (2003). \newblock Institutional factors affecting student retention. \newblock {\em Education\/}, {\em 124\/}(1), 126--137. \bibitem[{Massa \& Puliafito(1999)}]{Mas99} Massa, S., \& Puliafito, P. (1999). \newblock An application of data mining to the problem of the university students' dropout using markov chains. \newblock In {\em Principles of Data Mining and Knowledge Discovery. Third European Conference, PKDD'99\/}, (pp. 51--60). Prague, Czech Republic. \bibitem[{Mitchell(1997{\natexlab{a}})}]{Mitchell97DescTree} Mitchell, T.~M. (1997{\natexlab{a}}). \newblock {\em Machine Learning\/}. \newblock New York: McGraw-Hill. \bibitem[{Mitchell(1997{\natexlab{b}})}]{Mitchell97} Mitchell, T.~M. (1997{\natexlab{b}}). \newblock {\em Machine Learning\/}. \newblock New York: McGraw-Hill. \bibitem[{Moore \& Notz(2006)}]{Moore06} Moore, D., \& Notz, W. (2006). \newblock {\em Statistics: concepts and controversies\/}. \newblock WH Freeman \& Co. \bibitem[{Murtaugh et~al.(1999)Murtaugh, Burns, \& Schuster}]{Mur99} Murtaugh, P.~A., Burns, L.~D., \& Schuster, J. (1999). \newblock Predicting the retention of university students. \newblock {\em Research in Higher Education\/}, {\em 40\/}(3), 355--371. \bibitem[{NCPPHE(2007)}]{NCP2007} NCPPHE (2007). \newblock Retention rates - first-time college freshmen returning their second year ({ACT}). \bibitem[{Pascarella \& Terenzini(1979)}]{Pas79} Pascarella, E.~T., \& Terenzini, P.~T. (1979). \newblock Interaction effects in spady and tinto's conceptual models of college attrition. \newblock {\em Sociology of Education\/}, {\em 52\/}(4), 197--210. \bibitem[{Pascarella \& Terenzini(1980)}]{Pas80} Pascarella, E.~T., \& Terenzini, P.~T. (1980). \newblock Predicting freshman persistence and voluntary dropout decisions from a theoretical model. \newblock {\em The Journal of Higher Education\/}, {\em 51\/}(1), 60--75. \bibitem[{Pittman(2008)}]{Pittman2008} Pittman, K. (2008). \newblock {\em Comparison of data mining techniques used to predict student retention\/}. \newblock Ph.D. thesis, Nova Southeastern University. \bibitem[{Quinlan(1986)}]{quinlanID3} Quinlan, J.~R. (1986). \newblock Induction of decision trees. \newblock {\em Machine Learning\/}, (pp. 81--106). \bibitem[{Quinlan(1993)}]{quinlanC4.5} Quinlan, J.~R. (1993). \newblock {\em C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning)\/}. \newblock Morgan Kaufmann, 1 ed. \bibitem[{Rish(2001)}]{NB-performance} Rish, I. (2001). \newblock An empirical study of the naive bayes classifier. \newblock In {\em IJCAI-01 workshop on "Empirical Methods in AI"\/}. \newline\urlprefix\url{http://www.intellektik.informatik.tu-darmstadt.de/~tom/% IJCAI01/Rish.pdf} \bibitem[{Salazar et~al.(2004)Salazar, Gosalbez, Bosch, Miralles, \& Vergara}]{Sal2004} Salazar, A., Gosalbez, J., Bosch, I., Miralles, R., \& Vergara, L. (2004). \newblock A case study of knowledge discovery on academic achievement, student desertion and student retention. \newblock {\em Information Technology: Research and Education, 2004. ITRE 2004. 2nd International Conference on\/}, (pp. 150--154). \bibitem[{Sanjeev \& Zytkow(1995)}]{San95} Sanjeev, A., \& Zytkow, J. (1995). \newblock Discovering enrolment knowledge in university databases. \newblock In {\em First International Conference on Knowledge Discovery and Data Mining\/}, (pp. 246--51). Montreal, Que., Canada. \bibitem[{Scalise et~al.(2000)Scalise, Besterfield-Sacre, Shuman, \& Wolfe}]{Sca2000} Scalise, A., Besterfield-Sacre, M., Shuman, L., \& Wolfe, H. (2000). \newblock First term probation: models for identifying high risk students. \newblock In {\em 30th Annual Frontiers in Education Conference\/}, (pp. F1F/11--16 vol.1). Kansas City, MO, USA: Stripes Publishing. \bibitem[{Spady(1970)}]{Spa70} Spady, W.~G. (1970). \newblock Dropouts from higher education: An interdisciplinary review and synthesis. \newblock {\em Interchange\/}, {\em 1\/}(1), 64--85. \bibitem[{Spady(1971)}]{Spa71} Spady, W.~G. (1971). \newblock Dropouts from higher education: Toward an empirical model. \newblock {\em Interchange\/}, {\em 2\/}(3), 38--62. \bibitem[{Stage(1989)}]{Sta89} Stage, F. (1989). \newblock {Motivation, Academic and Social Integration, and the Early Dropout}. \newblock {\em American Educational Research Journal\/}, {\em 26\/}(3), 385--402. \bibitem[{Stewart \& Levin(2001)}]{Ste2001} Stewart, D.~L., \& Levin, B.~H. (2001). \newblock A model to marry recruitment and retention: A case study of prototype development in the new administration of justice program at blue ridge community college. \bibitem[{Sujitparapitaya(2006)}]{Suj2006} Sujitparapitaya, S. (2006). \newblock Considering student mobility in retention outcomes. \newblock {\em New Directions for Institutional Research\/}, {\em 2006\/}(131). \bibitem[{Superby et~al.(2006)Superby, Vandamme, \& Meskens}]{Sup2006} Superby, J.~F., Vandamme, J.~P., \& Meskens, N. (2006). \newblock Determination of factors influencing the achievement of the first-year university students using data mining methods. \newblock In {\em 8th International Conference on Intelligent Tutoring Systems (ITS 2006)\/}, (pp. 37--44). Jhongli, Taiwan. \bibitem[{Terenzini \& Pascarella(1980)}]{Ter80} Terenzini, P.~T., \& Pascarella, E.~T. (1980). \newblock Toward the validation of tinto's model of college student attrition: A review of recent studies. \newblock {\em Research in Higher Education\/}, {\em 12\/}(3), 271--282. \bibitem[{Tillman \& Burns(2000)}]{Till} Tillman, C., \& Burns, P. (2000). \newblock {Presentation on First Year Experience}. \newblock \url{http://www.valdosta.edu/~cgtillma/powerpoint.ppt}. \bibitem[{Tinto(1975)}]{Tin75} Tinto, V. (1975). \newblock Dropout from higher education: A theoretical synthesis of recent research. \newblock {\em Review of Educational Research\/}, {\em 45\/}(1), 89--125. \bibitem[{Tinto(1982)}]{Tin82} Tinto, V. (1982). \newblock {Limits of Theory and Practice in Student Attrition}. \newblock {\em The Journal of Higher Education\/}, {\em 53\/}(6), 687--700. \bibitem[{Tinto(1988)}]{Tin88} Tinto, V. (1988). \newblock Stages of student departure: Reflections on the longitudinal character of student leaving. \newblock {\em Journal of Higher Education\/}, {\em 59\/}(4), 438--455. \bibitem[{Vandamme(2007)}]{Van07} Vandamme, J. (2007). \newblock {Predicting Academic Performance by Data Mining Methods}. \newblock {\em Education Economics\/}, {\em 15\/}(4), 405--419. \bibitem[{Veitch(2004)}]{Vei2004} Veitch, W.~R. (2004). \newblock Identifying characteristics of high school dropouts: Data mining with a decision tree model. \bibitem[{Waugh et~al.(1994)Waugh, Micceri, \& Takalkar}]{Wau94} Waugh, G., Micceri, T., \& Takalkar, P. (1994). \newblock Using ethnicity, {SAT/ACT} scores, and high school {GPA} to predict retention and graduation rates. \bibitem[{Yu et~al.(2007)Yu, DiGangi, Jannasch-Pennell, Lo, \& Kaprolet}]{YuD2007} Yu, C.~H., DiGangi, S., Jannasch-Pennell, A., Lo, W., \& Kaprolet, C. (2007). \newblock A data-mining approach to differentiate predictors of retention between online and traditional students. \bibitem[{{\.Z}ytkow \& Zembowicz(1993)}]{Zyt1993} {\.Z}ytkow, J., \& Zembowicz, R. (1993). \newblock Database exploration in search of regularities. \newblock {\em Journal of Intelligent Information Systems\/}, {\em 2\/}(1), 39--81. \end{thebibliography}