Optimizing Feature Weighting and Project Selection
for Analogy Based Estimation
of Software Development Effort

(Draft 1.0)

William Sica
West Virginia University
Morgantown, West Virginia
Email: w.t.Sica@gmail.com

Abstract—Estimating the effort required for software devel-
opment is crucial for project management. Analogy based esti-
mation (ABE) is a commonly used method for effort estimation
which compares the new project to similar historical projects.
ABE is criticized for low accuracy, and pruning the historical
dataset has been suggested to improve accuracy. Feature weight-
ing (FW) weights components of the project data, and project
selection (PS) reduces historical data to representative projects.
Optimizing FW and PS for ABE (FWPSABE) has been proposed
in previous works. In this paper, we continue a previous study on
FWPSABE and more extensively verify its utility in increasing
estimation accuracy.

I. INTRODUCTION

Software effort estimation is a nescesarry component of
proper software project management. It effects many phases of
management, from planning to budgeting. Improper estimates
can cause infeasible deadlines and overbudget projects that
may result in project cancellation and wasted funds.

Because of the importance of software effort estimation,
many methods have been proposed to create accurate esti-
mates.

A frequently used method for effort estimation is analogy
based estimation (ABE). ABE finds analogous projects in a
historical dataset, and estimates effort based on the effort
required for these similar historical projects. While ABE has a
widespread use, it is criticized for low prediction accuracy. As
such, there is a demand for increasing the accuracy of ABE,
and many methods have been proposed.

We focus particularly on the methods of feature weighting
(FW) and project selection (PS) to improve the accuracy of
ABE. Feature weighting supposes that certain features of a
project have more impact on the effort required to complete it,
and weights features relative to their impact. Project selection
creates a representative sample of the historical data, in an
effort to remove outliers.

In Section II, we give a more detailed explanation of
FWPSABE.

In Section III, an explanation of optimization technique used
is given.

In Section IV, the details of how the experiments were carried
out is given.

In Section V, the results are displayed.

In Section VI, we restate conclusions and propose avenues for
future work.

II. BACKGROUND
A. Analogy Based Estimation (ABE)

Analogy based estimation is a form of case based reasoning
which estimates a desired feature based on the value of that
feature in the historical dataset. ABE works as follows

1) Gather relevant features from the new project.

2) Find similar projects in the historical database using a
similarity function. (eg the k-nearest neighbors using
Euclidean distance)

3) Predict the target feature from its value in the similar
projects.

Different similarity functions and prediction methods exist for
ABE. In this paper, ABE is performed using the following
criteria:

5-nearest neighbors using Euclidean distance

Median of the effort feature of the 5-nearest neighbors
The Euclidean distance between two features is defined as
follows:

For numeric featutes:

For discrete features:

d=(f1—f2)
if fi=fo d=20
if f1 # f2 d=0
Where f; and f, are features in the projects whose distance
is being computed. The euclidean distance between projects is
the sum of the Euclidean distance between all component fea-
tures. The nearest-neighbors are the projects in the historical
dataset with the lowest Euclidean distance to the new project.
The median is used for effort calculations because outliers
with high or low effort can skew the mean dissproportionately
for a small sample of 5 values.

B. Feature Weighting and Project Selection (FW and PS)

Feature weighting multiplies the distance value of features by a
specified weight. In this way, features with a higher weight will
have a greater impact on the distance between two features.
This is useful when certain features have more impact on the
feature to be estimated than others.

Project selection prunes the historical database to a smaller
subset of representative examples. This has positive impacts

on estimation accuracy when examples exist in the historical
database which are excessive outliers or disproportionately
skewed relative to the rest of the data.

C. Magnitude of Relative Error

In order to evaluate the accuracy of an estimate, the magnitude
of relative error is used. Given an estimated effort £’ and the
actual effort of the project A, the magnitude of relative error
is

MRE = |45

Further, the mean magnitude of relative error (MMRE) is
the mean of the MRE values evaluated in the test space. The
median magnitude of relative error (MdAMRE) is the median
of the MRE values evaluated in the test space.

III. DESCRIPTION OF ALGORITHM

Different guided-search optimization techniques were applied
to the domain, but there was not a significant difference
between the optimization techniques. As such, a genetic algo-
rithm based on Li’s work was used such that the algorithm’s
execution could be examined at a particular generation and to
compare results gathered to previous work.
Optimization requires a fitness function with which to evaluate
the relative value of results. The optimization methods given
below assume the feature-weights and project selections are
used to evaluate a set of training data given a historical
dataset. The MMRE of the training data is given as the fitness,
and the optimization seeks to find the set of feature-weights
and project selection which produces the minimum MMRE.
Optimizing on MAMRE was attempted, but while the training
MdAMRE decreased it had no impact on the testing MAMRE.
Optimization of feature weighting and project selection is done
by evaluating the fitness of bit-strings representing feature
weights and selected projects. The bit-string used is divided
in to two parts, one representing the feature weights and two
representing the projects selected.

Part one stores two-bits for each feature, which corresponds
to a weighting. The weights used are given:

BitValues | Weight
00 0
01 1
10 2
11 4

The weights are exponential so that significant weight
differences can exist, but use only two-bits to reduce the length
of the bit-string.

Part two of the bit string is the length of the number of
projects, and stores a value of 1’ when the project is included
for consideration and 0’ when it is excluded.

Given a number of projects m each with a number of
features n (including effort), each bit-string is of length
m + 2n.

A. Genetic Algorithm

This paper uses a genetic algorithm with the following
procedure:

1. Create an initial population.
The function creates 10 bit-strings of size m + 2n, with each
bit being assigned a 1 or 0 with probability .5.

2. Evaluate the population
The popuation is evaluated, by finding the MMRE of the bit-
string on the training data. The fitness is the reciprocal of the
MMRE, such that higher fitness values represent lower MMRE
values. Maximum fitness value is sought.

3. Elitist Strategy
If the best fitness from the current generation is less than the
overall best, the best bit-string of this generation is replaced
by the best bit-string overall.

4. Select Bit-Strings to Mate
Roulette wheel selection is used to choose bit strings for mat-
ing. The cumulative fitness of the population is found, given
as the sum of all fitness values in the current population. Each
bit-string is then given a probability for selection, equal to its
fitness over the cumulative fitness. Bit-strings are randomly
chosen until a population for mating has been generated.

5. Crossover
Bit-strings selected for mating perform crossover with one
another. At any particular bit along the bit-string, there is
probability .7 of switching between the bit-strings. Such that,
given bit-strings

000

111
A result of crossover might be the bit-strings

101

010

6. Mutation
Bits are randomly flipped along the populations bit-strings
with probability .1. This is done to prevent the population
from converging on local optima.

7. Proceed to Next Generation
The algorithm is run for 100 generations, starting at Step 2
after the first generation.

IV. METHODOLOGY

A. Preparing Training and Testing Data

The datasets were prepared as follows:

1. Remove Discrete Attributes for Numeric Features
The Desharnais dataset had the discrete attribute ”?” for some
projects as a numeric feature. Projects with this combination
were removed from the dataset.

2. Normalize Features
Except for the target-feature of effort, other features were
normalized in the range O to 1.

3. Randomly Permutate the Data
The datasets were randomly shuffled with 2/3rds being divided
in to the Training Dataset and 1/3rd being divided in to the
Testing Dataset. This was done 20 times for each dataset, so
that 20 permutations existed for testing.

B. Information on Datasets Used

Dataset | Features | Projects
Albrecht 7 24
Cocomo ’81 17 63
Desharnais 12 77
Maxwell 27 62

C. Trials

Each permutated dataset was run for four trials for each

dataset. The percent improvement was calculated as:
FWPSABETestingM MRE—ABETestingM RE
] ABETestingM M RE] .
This value was averaged over the four trials. Negative values

denote a decrease in MMRE, and thus an increase n accuracy.

V. RESULTS

This needs to be horizontal + labled, which I assume is done
in ISIEX. I am not sure how to do that though.

Percent Inprovenent
8,6 T T

Quartiies —

Fig. 1. Column 1: Albrehct Dataset Column 2: Cocomo ’81 Dataset Column
3: Desharnais Datase Column 4: Maxwell Dataset

VI. CONCLUSION & FUTURE WORKS

Insufficient current data to make a conclusion. Data needs
to be obtained for: Nasa '93 All 5 datasets using FW alone
All 5 datasets using PS alone

As for "How long does this take’, 20,000 calls to FW-
PSABE/FWABE/PSABE/ABE per test, with calls taking time
based on dataset size. 3 hr/ test 44 tests. Given 1 Lab Compy
= 11 tests per processor, 33 hrs

Have been doing my tests previously by setting computers
on for weekend and leaving them running.

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to BIEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

