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ABSTRACT
Estimating the effort required for software projects is a difficult task
in software project planning. There are multiple algorithms to esti-
mate effort from previous projects, but not a standard criteria upon
which to evaluate the algorithms accuracy. This paper tests multiple
effort estimation algorithms using multiple error measures from the
literature, to see if different error measures provide a stable ranking
of algorithms. The results indicate instability in rankings between
different error method, suggesting a need for more robust ways of
algorithm comparison for effort estimation.

Categories and Subject Descriptors
[Software Engineering]: Software Metrics; [Data Mining]: Mis-
cellaneous

General Terms
Software effort Estimation, Analogy, MMRE, Evaluation Criteria

Keywords
Software Effort Estimation, MMRE, Evaluation Criteria

1. INTRODUCTION
Effort estimation is a crucial part of software project planning.

Improper estimates can lead to consequences ranging from delays
to project cancellation. In a survey of the field, it was found that
most projects (60-80%) encountered effort overruns, schedule over-
runs, or both. [7]
In order to address the need for better software project planning
methods, the field of search based software engineering has been
developed. [3] The field suggests stochastic search processes can
be applied to existing algorithms in order to improve performance
of algorithmic estimation techniques. Search based software engi-
neering has grown since its inception, but there are still many open
research questions. Harman suggests that a promising area of fu-
ture work is finding a stopping criteria that relies on comparison
between the similarity of proposed solutions. [2]
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This requires an effective way of comparing the solutions two al-
gorithms generate, to assess their similarity. There are numerous
ways to approach this, as there is no standard performance measure
for evaluating effort estimator performance. This has been a crit-
icism against the field of empirical software engineering [6] such
that better performance measures could also have an impact in the
larger software engineering community.
This paper seeks to address both concerns, by analyzing different
performance measures impact on algorithm rankings. This is done
using a combination of algorithms approach (COMBA), in which
a data preprocessor and learner and combined. This creates a large
number of test algorithms from a smaller number of preprocessors
and learners, creating a wide range of example solutions for testing
ranking methods. This approach has been applied to effort estima-
tion previously, in which it was found that certain datasets distin-
guish between algorithm performance more strongly and thus more
useful for optimizing effort estimator performance. [5] This paper
will additionally try to reproduce and verify the results of the pre-
vious study.
The paper is laid out as follows:
Section 2 will cover previous works regarding this subject.
Section 3 will describe the experimental procedure used.
Section 4 provides the results of the experiment.
Section 5 concludes and suggests future works using a combination
of algorithms approach.

2. RELATED WORK
For this section, the main focus is on the conclusion instability

problem. Though this project does present many results, there has
yet been sturdy evidence that it can give a definitive answer as to
which data miner/learner is better than all the rest or maybe even
tell what kind of situations. Our secondary source is the opposite of
algorithmic learners but more so on the knowledge from a human
exert in a field of study, and how the combination of the two yields
a higher accuracy then either on an individual basis.

2.1 Sturdy Conclusion Predicament
This program attempts to determine which prediction model would

be considered the best among all the others it’s compared against.
Finding the right way to use data retrieved from a prediction model
to acquire such a certain decision is a tough decision, and there
are many ways to try and go about doing such a feat. Shepperd
and Kododa [8] did such a study, stating that they think that as
the dependence on technology is ever increasing the data sets used
for data mining will, of course, also become bigger and thus more
complex. Their study only used the prediction systems: regression,



rule induction, nearest neighbor, and neural nets, but attempted on
synthetically enlarged data sets. From those they hoped to ascertain
the relationship of answer accuracy, the choice between prediction
models, and characteristics of data sets.
They used various error measures as well, such as MMRE, and
studied the information given to try and collect correlations. From
their studies they concluded that they couldn’t accurately pick a
"best" data miner, but they did see a dependency of an estimate’s
accuracy on the characteristic of a data set and data miner being
used.
Currently, a data set repository, called PROMISE, offers a large,
growing selection of actual data sets of varying size, complexity,
and subject. So, our project doesn’t have to worry about artificially
enlarging data sets.

2.2 Non-Algorithmic Method
Acquiring an estimate, used to be done only by humans with

a vast data base of knowledge and experience in a certain field.
But, now estimation over certain data sets is becoming increasingly
hard AND that computers have been becoming increasingly better
at "learning". A person by the name of Jorgensen [4] did a study
only how well the two prediction methods work together. It was
found that it was more likely to influence the accuracy of the esti-
mate when the two were used together.
The problem with that kind of human knowledge is that it’s not
easily passed on, and it’s hard to explain how some conclusions
are reached. Though, the same problem of sometimes not being to
explain how an answer was conjured is also a flaw of algorithmic
estimation solutions.

3. EXPERIMENT DESIGN
Numerous algorithmic methods exist to make estimations on ef-

fort. While this paper can not comprehensively assess all of them,
it assesses a subsection of algorithms using a combination of al-
gorithms approach. In this way, different data preprocessors are
combined with different learner algorithms, so that a larger number
of algorithms are generated with the addition of a new preproces-
sor or learner. The combination done involves sending the data to
the preprocessor, and then sending that output to the learner to ob-
tain an estimate. Both the preprocessors and learners are from the
WEKA [9] data mining toolkit.
Multiple methods are used within the literature to assess the accu-
racy of estimation across a dataset. As this paper seeks to evaluate
these different measures, multiple measures of error will be used
and compared. In addition, error measures that are a synthesis of
multiple error measures will be assessed to see if collective error
measures are more stable.
These different error measures will be compared using paired Mann-
Whitney Wilcoxon statistical tests to determine which algorithms
perform better and have a significantly different distribution. Algo-
rithms can win, tie (if they have similar distributions), or lose with
each possible comparison. Algorithms will be ranked on win and
loss measures from the comparison.
The ranking will also be done across multiple datasets, to provide a
broader reference as well as potentially gaining information about
the datasets themselves. Which algorithms perform well on a given
dataset could be indicative of that datasets terrain.
This section will discuss the preprocessors, learners, and error mea-
sures used as well as the data sets which they were used upon.

3.1 Preprocessors
Before being passed to the learners, the data was run through a

preprocessor. Some preprocessors change the values of the data,
and others change the shape of the dataset by converting it in to
a representative model. The specific preprocessors used will be
discussed below.

3.1.1 None (none)
The data is passed to the learner without any preprocessing per-

formed.

3.1.2 Logarithmic (log)
The features in the data are replaced with the natural log of their

value. This reduces the distance between features, effecting many
of the learners the data is sent to.

3.1.3 Equal Frequency Discretization (freq3bin, freq5bin)
The numeric data is discretized in to a number of bins, with each

bin having an equal number of items, or frequency. The data is put
in to bins based on numeric value. For example, a 2-bin frequency
discretization on the data
{1, 4, 2, 8, 3, 9}
Would produce a bin {1, 2, 3} and a bin {4, 8, 9}. Equal Frequency
Discretization is performed using 3-bins and 5-bins in this experi-
ment

3.1.4 Equal Width Discretization (width3bin, width5bin)
The numeric data is discretized in to a number of bins, with each

width having an equal width of starting and ending values con-
tained. The width of each bin is computed as:
MaxV alue−MinV alue

NumberofBins
To provide an example,
{1, 2, 3, 4, 8, 9}
passed through a 2-bin Equal Width Discretization would produce
a bin containing {1, 2, 3, 4} and a bin containing {8, 9}. Equal
Width Discretization is done in this experiment with 3 and 5 bins.

3.1.5 Normalization (norm)
Each numeric entry in the data is replaced with a normalized

value, computed as:
V alue−MinV alue

MaxV alue−MinV alue

3.1.6 Principal Component Analysis (pca)
Principal Component Analysis performs a transformation on the

features of a dataset. It selects a features with a large enough vari-
ance and adds them to the available features. Finally, when no
features meet the variance threshold, it creates an additional fea-
ture that is orthogonal to the area defined by the previous features
included.

3.1.7 BAMBOO
All numerics are logged, and the highest range of variance (stan-

dard deviation) for each column of data or attribute is found. Rows
are removed, that are part of the highest ranges until the number of
rows remaining is: 2

√
n Where n is the length of the rows.

3.2 Learners
After the data has been preprocessed, it is passed to a learner

which makes an estimate on the effort required.



3.2.1 Simple Linear Regression (SLReg)
Simple Linear Regression applies n-dimensional linear regres-

sion on the data, attempting to determine a correlation of attributes
that generate a given effort value. The instance to be tested is then
placed along the regression, to estimate for its effort value.

3.2.2 Partial Least Squares Regression (plsr)
Partial Least Squares Regression separates the predicting fea-

tures and the target feature of effort. It treats both as separate ma-
trices, and tries to find a direction in the space of the predicting
features that accounts for the target features. This direction serves
as a regression model, on which the unknown project can be placed
an an estimate obtained.

3.2.3 k-Nearest Neighbor (1NN, ABE0)
The k-Nearest Neighbor finds the k projects in the data that are

closest to the unknown projects, and then reports the mean of the
projects efforts as an estimate for the new projects effort. In this
experiment, k is set to 1 and 5 (ABE0) for two different runs.

3.2.4 Zero R (ZeroR)
ZeroR takes the mean of all effort values in the historical in-

stances and reports it as the estimate.

3.2.5 Neural Net (nnet)
A multilayer perceptron is applied on the historical instances,

which attempts to create a network of operations on the target fea-
ture values that produce an estimate for the target feature. This is
done by a stochastic search process in which an initial network is
creates, and then a change is made in that network. If error was re-
duced by the change, the new network is kept and a change is made
on it. Otherwise, the previous network is kept. After a number of
iterations, a stopping criteria is reached and a final network is pro-
duced. The unknown project is put in to the inputs of this network,
and the output is reported as the estimate.

3.2.6 Decision Stump (DecisionStump)
A decision stump is a decision tree with only a single level. A

single attribute is used to predict for the effort.

3.2.7 KStar (KStar)
Similar to K-Nearest Neighbors, KStar is another instance based

learner. It uses an entropic distance measure rather than euclidean
distance.

3.2.8 BAMBOO
BAMBOO can be used as a learner as well, hopefully under the

condition that it was also used as the preprocessor or some other
form of row reduction was used as a preprocessor because it would
be very time consuming otherwise. As a learner it takes a test in-
stance and arranges all points in a dataset by their distance to the
test data point using euclidian distance. It then takes the k nearest
neighbors, skipping over one with a 33

3.3 Error Measures
For each dataset, leave one out analysis is performed. In this

way, each instance in the dataset is removed to be tested under all
preprocessor and learner combinations available, and the estimates
stored. Once all estimates have been found, collective error mea-
sures are gathered for each combination of preprocessor and learner
on each dataset. The error measures used are detailed below.

3.3.1 Mean Absolute Residual (MAR)

The absolute residual error of an estimate is computed as:
|actual − predicted|
After the absolute residuals have been calculated across a dataset,
their mean is taken and reported for the error value.

3.3.2 Mean Magnitude of Relative Error (MMRE)
The magnitude of relative error is calculated across a dataset,

computed as:
|actual−predicted|

actual
After the magnitude of relative error for each instance in the dataset
is computed, their mean is reported.

3.3.3 Mean Magnitude of Error Relative to the Esti-
mate (MMER)

The magnitude of relative error is computed, but in contrast to
MRE it is computed relative to the estimate, as follows:
|actual−predicted|

predicted
After the MER is computed for each instance in the dataset, their
mean is computed and reported.

3.3.4 Median Magnitude of Relative Error (MDMRE)
As MMRE, but the median of the MRE values across the dataset

is computed and reported.

3.3.5 Pred25
The number of instances in a dataset whose predicted value had

an MRE score of less than 25% are divided by the number of total
instances, and reported as the Pred25 score.

3.3.6 Mean Balanced Relative Error (MBRE)
Balanced relative error is computed as :

|actual−predicted|
dividing

Where the dividing term is the smaller of the actual or predicted
term. Once the BRE scores have been computed for each instance
in the dataset, their mean is computed and reported.

3.3.7 Mean Inverted Balanced Relative Error (MI-
BRE)

Inverted balanced relative error is computed as :
|actual−predicted|

dividing
Where the dividing term is the larger of the actual or predicted term.
Once the IBRE scores have been computed for each instance in the
dataset, their mean is computed and reported.

3.4 Data Sets
The datasets used in this experiment were obtained from the

PROMISE data repository [1], which provides freely available soft-
ware engineering data from real world projects. The COMBA soft-
ware platform used could not handle discrete elements in the data,
so discrete elements were removed from the data before being sent
to the data preprocessor. The information about each dataset, after
removing discrete elements, is provided.



Dataset Features Instances
Albrecht 8 24
China 18 499
Cocomo81 17 63
Cocomo81e 17 28
Cocomo81o 17 21
Cocomo81s 17 11
Desharnais 11 81
DesharnaisL1 11 46
DesharnaisL2 11 25
DesharnaisL3 11 10
Finnish 8 38
Kemerer 7 15
Maxwell 27 62
Miyazaki94 8 48
Nasa93 17 88
Nasa93_center_1 17 12
Nasa93_center_2 17 37
Nasa93_center_5 17 39
SDR 24 24
Telecom1 3 18

4. RESULTS
The results here follow the procedure outlined in the experimen-

tal design, reporting the rankings of the different learner combi-
nations. The rankings are generated by first comparing a learner
with each other learner across the 7 different error measures using
a paired Wilcoxon ranked test for significance. If the test shows
significance, the descriptive statistic such as mean or median is
compared and the algorithm with closer predictions is marked a
winner while the other is marked a loser. If both methods are equal
or the test does not show significantly different distributions, a tie
is reported.

The percentage of possible losses is computed for each dataset
by comparing how many times an algorithm lost to how many times
it could have lost. With 96 algorithm combinations and 7 error
measures, an algorithm can lose up to 665 times on a given dataset.
The sum of the number of losses on each dataset is added up and
divided by the total number of possible losses across all datasets.
This measure is referred to as percentage of losses or loss percent-
age. Figure ??

Algorithms with a lower percentage of losses are ranked higher
for the sort order.Figure 1 In the ranks, none_SLReg is the best
performing algorithm while norm_PlSR is the worst performing.
These rankings are consistent with an earlier experiment performed
in a different simulation environment.

Figure 1: All permutations of data miners and learner pairs,
ordered from least amount of loss measures to the most.

Figure 2: The 96 algorithms sorted by percentage of losses.



Figure 3: The 20 datasets sorted by percentage of losses.

Figure 4: The 20 datasets and 96 algorithms, with order deter-
mined by rankings in previous figures.

5. CONCLUSION
The results in the experiment are different to the previous study

using COMBA. They suggest more homogeneity across the datasets,
and do not show data that is superior for learning.
This paper is part of an ongoing research, so future works involv-
ing COMBA will be provided. Not all of them are in the scope of
the final project implementation, so they will be listed in order of
priority to the current research project.

5.1 Future Work
There are still many open questions about evaluation methods for

ranking search based software engineering algorithms. A few ways
in which the experiment could be expanded are provided below.

5.1.1 More Algorithms, More Datasets

The 52 algorithms covered in this paper are only a small subset
of the available algorithms for search based software engineering.
While data mining and artificial intelligence are relatively young
fields of computer science, they have already generated hundreds
of algorithms which can be combined in thousands of ways. The
combination of algorithms approach could be extended to include
a more diverse range of algorithms, and scalability of the results
could be assessed. Additionally, there are more datasets available
for effort estimation in the PROMISE data repository. These addi-
tional datasets could be included and tested, to see if initial results
hold across a larger range of datasets.
The current COMBA coding system has an open-source implemen-
tation in which algorithms are called from shell scripts, allowing
algorithms to be collected from multiple languages across multiple
environments. This allows for the rapid expansion of the system by
adding already implemented and available methods.
This task is suggested primarily because of the difference in re-
sults between versions of COMBA. The MWW tests performed for
algorithm comparison are biased based on the performance of the
algorithms included in the COMBA system. It is possible that there
were not a large enough number of poor or high performance algo-
rithms, both of which could account for the difference in results.

5.1.2 Other Fields of Search-Based Software Engi-
neering

This paper only examined the method of effort estimation, while
many algorithms exist for other aspects of project planning. The
combination of algorithms approach could be applied to tasks such
as defect prediction and cost optimization. On a broader scale, the
combination of algorithms method could be used to evaluate algo-
rithms from domains other than search based software engineering.

5.1.3 Algorithm Optimization
Many algorithms used within the COMBA system, such as Neu-

ral Nets and Principle Component Analysis can be run using a vari-
ety of different settings. In addition to more algorithms, algorithms
can be run with different specifications. Many times, specifications
for algorithms are decided using ëngineering judgment ,̈ rather than
empirical methods. Sometimes this involves citing another paper in
which a particular setting was used, even if that paper did not test
other settings. The diverse range of data sets tested for might show
that certain settings tend to perform better, and provide a basis for
further research using those methods.
Additionally, the different specifications for algorithms can be tested
and compared to one another. In this paper, several algorithms
(CART, kNN, discretization) were tested with different values and
compared. The program can control setting optional values, and
use a search process to find optimal values for these settings through
repeated runs and comparisons.
This does not only need to be used on existing methods. COMBA
also serves as an environment for creating new algorithms. Suppos-
ing an algorithm is created as a baseline and run on the available
datasets, future runs of the algorithm with changes made can be
compared to the previous states, allowing tests to see if changes
have improved performance or not.

5.1.4 Rank On Other Dimensions
It should be noted that only the error measures provided were

used to assess the given algorithms. There are many other factors
on which an algorithm can be evaluated, such as Big-O notation or
empirical runtime results. Future tests could collect the time taken
to evaluate each dataset, and provide this along with error mea-
sures. This could also be used as a complexity measure, to assess if



complex and time-consuming algorithms increase performance or
not.

5.1.5 Real Time Readjustment
A combination learning approach could be applied in an incre-

mental fashion on data whose results depend on predictions made
by a given algorithm. For example, suppose a real-time simula-
tion of a company is performed using estimates produced by algo-
rithms which performed well on previous data. Changes in perfor-
mance can be taken in to account, so that multiple time steps are
available and can be treated as different datasets. This allows back
propagation for algorithm recommendation and evaluation, and for
certain applications can uncover more details about the underlying
assumptions of data generation.

5.1.6 Domain Specific Knowledge Acquisition
One aspect of the datasets has a real world value corresponding

to it. Other papers have proposed feature weighting, in which cer-
tain aspects of a project are more important than others for predict-
ing effort. Domain inspecific ways, such as genetic algorithm opti-
mization, have been proposed to find the best set of feature weights.
A broad approach could look at the application of certain features
across different datasets. For example, lines of code is generally re-
garded to be a good indicator of project effort, though it itself often
requires estimation to obtain. This null hypothesis could be tested,
by stripping lines of code from the dataset and viewing the results.
This approach could be made more general by removing features to
test their effects on estimation accuracy using different algorithms.

5.1.7 Experiment Verification and Validation
COMBA provides an environment to reproduce results published

in other papers. Experiments which relied on a limited number of
datasets or algorithms to compare to could be reproduced. A possi-
bility would be reproducing multiple experiments in one paper, and
noting if the assumptions in the initially published result held upon
more intensive testing.
More ambitiously, the COMBA system is freely available and could
be recommended for use. In this way, researchers in other areas
could download COMBA and quickly validate their results. There
are more ways to expand this project then are feasible given the
time-scale, so this approach provides a system which will build it-
self. The more people using the system, the stronger the results
produced from it become as new algorithms and datasets become
contributed to the COMBA system.

5.1.8 Performance Analysis
No reason was given as to why the algorithms which performed

well did so. A further study could be done in which it was ob-
served for which type of datasets algorithms performed well, and
the properties of the data that effect their performance. This has
the benefit of not requiring domain specific software engineering
data. Any n-dimensional space could be analyzed, as many of the
algorithms used in search-based software engineering do not make
domain specific assumptions about the data. If COMBA is run on a
large number of algorithms and datasets, a large database of results
becomes available. This makes possible rapid testing and verifica-
tion by comparing to existing results stored from previous runs.
These results could be used for suggesting algorithms given a dataset.
Similarity measures between datasets could be evaluated, and high-
performing algorithms from similar datasets could be suggested
without having to test them on the dataset. The results of the rec-
ommendation system could then be compared to the actual results
of running the possible algorithms. While neural nets and other

stochastic optimization processes are typically associated with poor
runtimes, a large database provides a terrain for optimization in
which no complex algorithms need to be run. The results would
already be precomputed, so verification could be done within rea-
sonable time bounds. A study could also be done where results
are incrementally added to the database, and the optimization ef-
fectiveness is based on number of datasets. It would be interesting
to see if over fitting occurs with a few datasets, or if that too many
datasets could flood the optimizer so that results are too general to
be applicable.
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APPENDIX
The authors of this paper would like to note that it is a continuation
of an existing study by Jacky Keung, Ekrem Kocagunelli, and Tim
Menzies. The paper describing that study is not yet published or
publicly available, so no link or reference can be provided at this
time.


