
Evaluating Methods for Effort Estimation Algorithm
Ranking

Vincent Rogers, William Sica
CS, WVU, Morgantown, USA
vrogers@mix.wvu.edu,

wsica@mix.wvu.edu

Ekrem Kocaguneli, Tim Menzies
CS & EE, WVU, Morgantown, USA

ekocagun@mix.wvu.edu,
tim@menzies.us

ABSTRACT
Software project planning is a difficult task in which even small er-
rors can lead to large financial consequences. As a result, there has
been research conducted to assess new methods to perform soft-
ware project planning. In this research, there is not a standard error
measure or evaluation criteria. This paper seeks to test multiple
algorithms from the literature using a combination of algorithms
(COMBA) approach. Different error measures are tested on the
combined algorithms to see if single error measures are reliable.
The results indicate single error measures tend to be reliable, but
that the dataset the error was measured on matters greatly, coin-
ciding with a similar study done previously. Finally, future works
using a combination of algorithms approach are suggested.

Categories and Subject Descriptors
Software Engineering [Software Metrics]: Data Mining

General Terms
Software effort Estimation, Analogy, MMRE, Evaluation Criteria

Keywords
Software Effort Estimation, MMRE, Evaluation Criteria

1. INTRODUCTION
Effort estimation is a crucial part of software project planning.

Improper estimates can lead to over budgeting, delays, and project
cancellation. In order to address the need for better software project
effort estimates, the field of search based software engineering has
been developed. [2] Search based software engineering uses data
collected from previous projects to make inferences about new projects.
Search based software engineering has grown since its inception,
but there are still many open research questions. Harman suggests
that promising areas of future work include hybridizing existing
project planning methods, as well as analyzing the terrain of soft-
ware project data. [1] This paper seeks to address both concerns,
by employing a combination of algorithms. (COMBA)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE 2011 Waikiki, Honolulu, Hawaii USA
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

COMBA combines different data preprocessors and learners used
in search based software engineering, creating a set of combined al-
gorithms which are a hybridization of different techniques. COMBA’s
approach also generates many different algorithms, allowing the
data to be assessed from many view points at once. The behavior
of different algorithms on a dataset can give hints as to its appear-
ance and the terrain of the dataset.
Still, the search based software engineering research community
does not have a consistent reporting method for the many different
algorithms. In order to address this concern, this paper examines
frequently used measures to evaluate algorithms for search based
software engineering. It examines how different error measures
rank algorithms, and how algorithms tend to perform across dif-
ferent datasets. This is to test if a standard is necessary in the lit-
erature, or if the results from different error measures are approx-
imately equivalent. If a certain error measure is more indicative
of an algorithms ability to make proper estimates then others, this
could have implications on previously published research.
A previous study using COMBA indicated that error measures were
approximately equivalent, but that certain datasets were better in-
dicators of algorithm performance then others. This experiment is
performed on a subset of COMBA from the previous study, with
fewer algorithms and datasets. This is to see if the result is appli-
cable on a smaller scale.
In Section 2, the motivation for the experiment and similar projects
are discussed.
In Section 3, the experimental procedure is detailed, as well as the
different algorithms implemented in COMBA, the error measures
used, and the datasets used.
In Section 4, the results of the experiment are given and compared
to the previous study this work was based on.
In Section 5, suggestions for future uses of the combination of al-
gorithms approach are given.

2. RELATED WORK
For this section, the main focus is on the conclusion instability

problem. Though this project does present many results, there has
yet been sturdy evidence that it can give a definitive answer as to
which data miner/learner is better than all the rest or maybe even
tell what kind of situations. Our secondary source is the opposite of
algorithmic learners but more so on the knowledge from a human
exert in a field of study, and how the combination of the two yields
a higher accuracy then either on an individual basis.

2.1 Sturdy Conclusion Predicament
This program attempts to determine which prediction model would

be considered the best among all the others it’s compared against.

Finding the right way to use data retrieved from a prediction model
to acquire such a certain decision is a tough decision, and there
are many ways to try and go about doing such a feat. Shepperd
and Kododa [4] did such a study, stating that they think that as
the dependence on technology is ever increasing the data sets used
for data mining will, of course, also become bigger and thus more
complex. Their study only used the prediction systems: regression,
rule induction, nearest neighbor, and neural nets, but attempted on
synthetically enlarged data sets. From those they hoped to ascertain
the relationship of answer accuracy, the choice between prediction
models, and characteristics of data sets.
They used various error measures as well, such as MMRE, and
studied the information given to try and collect correlations. From
their studies they concluded that they couldn’t accurately pick a
"best" data miner, but they did see a dependency of an estimate’s
accuracy on the characteristic of a data set and data miner being
used.
Currently, a data set repository, called PROMISE, offers a large,
growing selection of actual data sets of varying size, complexity,
and subject. So, our project doesn’t have to worry about artificially
enlarging data sets.

2.2 Non-Algorithmic Method
Acquiring an estimate, used to be done only by humans with

a vast data base of knowledge and experience in a certain field.
But, now estimation over certain data sets is becoming increasingly
hard AND that computers have been becoming increasingly better
at "learning". A person by the name of Jorgensen [3] did a study
only how well the two prediction methods work together. It was
found that it was more likely to influence the accuracy of the esti-
mate when the two were used together.
The problem with that kind of human knowledge is that it’s not
easily passed on, and it’s hard to explain how some conclusions
are reached. Though, the same problem of sometimes not being to
explain how an answer was conjured is also a flaw of algorithmic
estimation solutions.

3. EXPERIMENT DESIGN
Numerous methods exist to make estimations on effort. While

this paper can not comprehensively assess all of them, it assesses a
subsection of algorithms using a combination of algorithms (COMBA)
approach. In this way, different data preprocessors are combined
with different learner algorithms, so that a larger number of algo-
rithms are generated with the addition of a new preprocessor or
learner. The combination done involves sending the data to the
preprocessor, and then sending that output to the learner to obtain
an estimate.
Multiple methods are used within the literature to assess the accu-
racy of estimation across a dataset. As this paper seeks to evaluate
these different measures, multiple measures of error will be used
and compared. In addition, error measures that are a synthesis of
multiple error measures will be assessed to see if a trend can be
uncovered.
These different error measures will be compared using paired Mann-
Whitney Wilcoxian statistical tests to determine which algorithms
perform better and have a significantly different distribution. Algo-
rithms can win, tie (if they have similar distributions), or lose with
each possible comparison. Algorithms will be ranked on win and
loss measures from the comparison.
The ranking will also be done across multiple datasets, to provide a
broader reference as well as potentially gaining information about
the datasets themselves. Which algorithms perform well on a given

dataset could be indicative of that datasets terrain.
This section will discuss the preprocessors, learners, and error mea-
sures used as well as the data sets which they were used upon.

3.1 Preprocessors
Before being passed to the learners, the data was run through a

preprocessor. Some preprocessors change the values of the data,
and others change the shape of the dataset by converting it in to
a representative model. The specific preprocessors used will be
discussed below.

3.1.1 None
The data is passed to the learner without any preprocessing per-

formed.
Abbreviation in results: none

3.1.2 Logarithmic
The features in the data are replaced with the natural log of their

value. This reduces the distance between features, effecting many
of the learners the data is sent to.
Abbreviation in results: log

3.1.3 Equal Frequency Discretization
The numeric data is discretized in to a number of bins, with each

bin having an equal number of items, or frequency. The data is put
in to bins based on numeric value. For example, a 2-bin frequency
discretization on the data
{1, 4, 2, 8, 3, 9}
Would produce a bin {1, 2, 3} and a bin {4, 8, 9}. Equal Frequency
Discretization is performed using 3-bins and 5-bins in this experi-
ment
Abbreviation in results: freq3bin, freq5bin

3.1.4 Equal Width Discretization
The numeric data is discretized in to a number of bins, with each

width having an equal width of starting and ending values con-
tained. The width of each bin is computed as:
MaxV alue−MinV alue

NumberofBins
To provide an example,
{1, 2, 3, 4, 8, 9}
passed through a 2-bin Equal Width Discretization would produce
a bin containing {1, 2, 3, 4} and a bin containing {8, 9}. Equal
Width Discretization is done in this experiment with 3 and 5 bins.
Abbreviation in results: width3bin, width5bin

3.1.5 Normalization
Each numeric entry in the data is replaced with a normalized

value, computed as:
V alue−MinV alue

MaxV alue−MinV alue
Abbreviation in results: norm

3.1.6 Stepwise Regression
A stepwise regression is performed on the data. This removes

values which do not fall with in a certain similarity tolerance in
order to remove noise in the data.
Abbreviation in results: SWReg

3.1.7 Principal Component Analysis
Principal Component Analysis reduces the data to a set of fea-

tures which are not correlated with one another.
Abbreviation in results: PCA

3.1.8 Sequential Filter Sampler

Sequential Filter Sampling filters the data in to a set of relevant
instances, by applying a filter to the data, testing the changes, and
applying a different filter to sample a subset of the overall data.
This sample is then passed on in place of the dataset.
Abbreviation in results: SFS

3.2 Learners
After the data has been preprocessed, it is passed to a learner

which makes an estimate on the effort required.

3.2.1 Stepwise Regression
Stepwise Regression is used as a learner as well as a data pre-

processor. After making a model, the given project is placed in that
model to predict for its effort value.
Abbreviation in results: SWReg

3.2.2 Simple Linear Regression
Simple Linear Regression applies n-dimensional linear regres-

sion on the data, attempting to determine a correlation of attributes
that generate a given effort value. The instance to be tested is then
placed along the regression, to estimate for its effort value.
Abbreviation in results: SLReg

3.2.3 Partial Least Squares Regression
Partial Least Squares Regression project the value being pre-

dicted for on to the known values to create a new hyperplane. The
project being tested for is then placed on this hyperplane, and the
predicted effort value observed.
Abbreviation in results: PlSR

3.2.4 Principal Component Regression
Instead of using all features besides effort to make predictions,

Principal Component Regression reduces the space to a set of fea-
tures with high variance. Regression is then performed on this
space, and the unknown project is placed on the new space to pre-
dict for its effort value.
Abbreviation in results: PCR

3.2.5 Single Nearest Neighbor
Single Nearest Neighbor finds the project in the dataset that has

the closest euclidean distance to the unknown project, and uses that
projects effort value for the estimate.
Abbreviation in results: 1NN

3.2.6 Analogy Based Estimation
Analogy Based Estimation finds historical instances similar to

the unknown instance. In the COMBA system used, Analogy Based
Estimation finds the five nearest neighbors of the unknown project
and uses their median as the estimated effort value.
Abbreviation in results: ABE0

3.3 Error Measures
For each dataset, leave one out analysis is performed. In this

way, each instance in the dataset is removed to be tested under all
preprocessor and learner combinations available, and the estimates
stored. Once all estimates have been found, collective error mea-
sures are gathered for each combination of preprocessor and learner
on each dataset. The error measures used are detailed below.

3.3.1 Mean Absolute Residual (MAR)
The absolute residual error of an estimate is computed as:
|actual − predicted|
After the absolute residuals have been calculated across a dataset,
their mean is taken and reported for the error value.

3.3.2 Mean Magnitude of Relative Error (MMRE)
The magnitude of relative error is calculated across a dataset,

computed as:
|actual−predicted|

actual
After the magnitude of relative error for each instance in the dataset
is computed, their mean is reported.

3.3.3 Mean Magnitude of Error Relative to the Esti-
mate (MMER)

The magnitude of relative error is computed, but in contrast to
MRE it is computed relative to the estimate, as follows:
|actual−predicted|

predicted
After the MER is computed for each instance in the dataset, their
mean is computed and reported.

3.3.4 Median Magnitude of Relative Error (MDMRE)
As MMRE, but the median of the MRE values across the dataset

is computed and reported.

3.3.5 Pred25
The number of instances in a dataset whose predicted value had

an MRE score of less than 25% are divided by the number of total
instances, and reported as the Pred25 score.

3.3.6 Mean Balanced Relative Error (MBRE)
Balanced relative error is computed as :

|actual−predicted|
dividing

Where the dividing term is the smaller of the actual or predicted
term. Once the BRE scores have been computed for each instance
in the dataset, their mean is computed and reported.

3.3.7 Mean Inverted Balanced Relative Error (MI-
BRE)

Inverted balanced relative error is computed as :
|actual−predicted|

dividing
Where the dividing term is the larger of the actual or predicted term.
Once the IBRE scores have been computed for each instance in the
dataset, their mean is computed and reported.

3.4 Data Sets
The datasets used in this experiment were obtained from the

PROMISE data repository, which provides freely available soft-
ware engineering data from real world projects. The COMBA soft-
ware platform used could not handle discrete elements in the data,
so discrete elements were removed from the data before being sent
to the data preprocessor. The information about each dataset, after
removing discrete elements, is provided.

Dataset Features Instances
Cocomo81o 17 21
Cocomo81s 17 11
Finnish 8 38
Miyazaki94 8 48
DesharnaisL2 11 25
DesharnaisL3 11 10
Nasa93_center_1 17 12
Albrecht 8 24
Telecom1 3 18

4. RESULTS
This experiment, as stated earlier, utilizes paired combinations of

10 preprocessors and 6 learners on various 10 data sets. To ensure

that we have data with conclusive answers to test on, the leave-one-
out method is used on each of its respective data set 7 times. Each
repetition represents a different error measure (AR, MRE, MER,
MdMRE, MRE, PRED(25), and MIBRE), each explained in the
experiment specification section. These measures are used to cal-
culate both wins and loss for both data sets and algorithms (pre-
processor, learner combinations). The summed measures are orga-
nized with the fewest losses and, inversely, the most wins.

Though the results extracted from this follow up do vary slightly
from the previous experiment that we have emulated, the results are
essentially the same. All the sorted algorithms’ performance can
be seen in Figure Figure 2. From our experiment, the SWReg/1NN
combination was ranked the best in the terms of fewest losses, and
the PCA/SLReg combination was ranked the worst. These corre-
spond to the previous study’s results.

Figure 1: All permutations of data miners and learner pairs,
ordered from least amount of loss measures to the most.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

kerm
erer

telecom
1

cocom
o81s

cocom
o81o

albrecht

desharnaisL3

desharniasL2

nasa93-center-1

finnish

m
iyazaki94

Data Set Loss Percentages

% Loss

Figure 2: The seventy two algorithms, sorted by their percent-
age of maximum possible losses (so 100% = 4970).

To get proper percentages of loss over the algorithms, the sum of
losses for one algorithm over all error measures is divided by the
total possible losses which is the counts of:

comparisonsmade ∗ errormeasures ∗ datasets =

71 ∗ 7 ∗ 10 = 4, 970

The results of such findings are located in Figure Figure 3. Which
resemble the figure of Algorithm Losses provided by the paper
ICSE paper.

As for the percentages of Loss over a Data Set, a very simi-
lar equation is used where all numbers gathered for a data set are
summed together with all data collected for each error measure.
That is then divided by the total possible amount of losses for that
data set which is the count of:

comparisonsmade ∗ errormeasures ∗ algorithms =

71 ∗ 7 ∗ 72 = 35, 784

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

Algorithm Loss Percentages

% Loss

Figure 3: The seventy two algorithms, sorted by their percent-
age of maximum possible losses (so 100% = 5040).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

kerm
erer

telecom
1

cocom
o81s

cocom
o81o

albrecht

desharnaisL3

desharniasL2

nasa93-center-1

finnish

m
iyazaki94

Data Set Win Percentages

% Wins

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70

Algorithm Win Percentages

% Wins

Figure 4: Algorithms and datasets, sorted as per but this time
showing their percentage of maximum wins over all perfor-
mance measures.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

kerm
erer

telecom
1

cocom
o81s

cocom
o81o

albrecht

desharnaisL3

desharniasL2

nasa93-center-1

finnish

m
iyazaki94

Data Set Win Percentages (pred25)

% Loss

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70

Algorithm Win Percentages (pred25)

% Loss

Figure 5: Algorithms and datasets, sorted as per Figure 2 and
Figure 3, but this time showing their percentage of maximum
wins over just the PRED(25) performance measures.

While the visible trend may seem convincing, it beckons for
more evidence. Unfortunately, when the opposite graph to the
Losses Figure 2 is constructed in the Wins Figure 4, the trend is
very jagged and hard to get an accurate reading. These graphs are
are similar to the Wins Figures in the Ekrem paper, and demon-
strate the same need for more empirical studies. The Wins Figure 5
demonstrates that there is correlation between the error measure
values gathered, if only one.

Figure 6: The 20 data sets and 72 methods are expressed on
this graph in percentages of maximum possible losses for one
algorithm for one data set = # of Error Measures * # of com-
parisons made. (100% = 497, 50% = 248, 25% = 124, 12.5% =
62) and based on these number both the columns and rows are
sorted by their sum.

5. CONCLUSION
The results in the experiment confirm the results found in the

previous study using COMBA, even on a smaller subset of the al-
gorithms and data. Certain data sets are better predictors for al-
gorithm success in effort estimation, and error measures tend to
produce approximately equal rankings.
Given the repeated success of COMBA, future works using a com-

bination of algorithms approach or improvements that could be
made to the existing system will compromise the remaining por-
tion of the paper.

5.1 Future Work
There are still many open questions about evaluation methods for

ranking search based software engineering algorithms. A few ways
in which the experiment could be expanded are provided below.

5.1.1 More Algorithms, More Datasets
The 72 algorithms covered in this paper are only a small subset

of the available algorithms for search based software engineering.
While data mining and artificial intelligence are relatively young
fields of computer science, they have already generated hundreds
of algorithms which can be combined in thousands of ways. The
Combination of Algorithms approach could be extended to include
a more diverse range of algorithms, and scalability of the results
could be assessed. Additionally, there are more datasets available
for effort estimation in the PROMISE data repository. These addi-
tional datasets could be included and tested, to see if initial results
hold across a larger range of datasets.

5.1.2 Open Source Implementation
The experiment was performed using software which referenced

proprietary Matlab libraries. It is not portable to machines without
Matlab, and Matlab is not freely available. There are many data
mining and statistics packages available which are open source,
such as R and Weka. An interface could be built which links the
available algorithms in the packages together and performs statisti-
cal analysis on the results.
R is similar to Matlab in that it is a language for statistical ma-
nipulation. A program could be written in R to perform the same
function as the current COMBA system.
Weka is an open source Java package with a visual and command
line interface. The Weka algorithms can be accessed either through
shell script on the command line or imported and accessed in Java
code. The advantage of shell script is that if algorithms outside of
Weka, possibly written in other languages, can also be accessed.
The statistical analysis available in the current Matlab COMBA
could be accessed through a shell script as well. The disadvan-
tage is that management becomes more difficult with shell script-
ing. A program which references several different programming
languages can be hard to make modifications for or fix if errors
occur.

5.1.3 Incremental Results
Currently, all methods must be run every time analysis is per-

formed. The code could be changed such that the raw results and
error measures are saved, and a program links multiple results files
and performs Mann-Whitney Wilcoxian tests on results. This has
the advantage of shorter turn-around time for each new algorithm.
A new algorithm need only run on a subset of the data available,
and then could be compared to a database of previous results im-
mediately. The program and results data could also be released as
a public resource, if the software was open source as the PROMISE
datasets are freely available. Users could create results in a COMBA
format, and pass them to the statistical comparison program.
This could even be done on a website, which has the advantage
that each set of results benchmarked would contribute to the over-
all amount of results stored in the system.

5.1.4 Other Fields of Search-Based Software Engi-
neering

This paper only examined the method of effort estimation, while
many algorithms exist for other aspects of project planning. The
combination of algorithms approach could be applied to tasks such
as defect prediction and cost optimization. On a broader scale, the
combination of algorithms method could be used to evaluate algo-
rithms from domains other than search based software engineering.
It could be assessed as a separate tool for revealing patterns in data.

5.1.5 Discrete Data is Not Handled
The current project did not handle discrete elements in the data,

so a different software package could be used which does handle
discrete elements in the data. It could be observed whether or not
the inclusion of discrete data effected the results or the rankings.
How algorithms deal with discrete elements is frequently omitted
in academic papers, so if it has a concrete effect this would be a
useful result to share.

5.1.6 Performance Analysis
No reason was given as to why the algorithms which performed

well did so. A further study could be done in which it was ob-
served for which type of datasets algorithms performed well, and
the properties of the data that effect their performance. This has
the benefit of not requiring domain specific software engineering
data. Any n-dimensional space could be analyzed, as many of the
algorithms used in search-based software engineering do not make
domain specific assumptions about the data. If COMBA is run on a
large number of algorithms and datasets, a large database of results
becomes available. This makes possible rapid testing and verifica-
tion by comparing to existing results stored from previous runs.
These results could be used for suggesting algorithms given a dataset.
Similarity measures between datasets could be evaluated, and high-
performing algorithms from similar datasets could be suggested
without having to test them on the dataset. The results of the rec-
ommendation system could then be compared to the actual results
of running the possible algorithms. While neural nets and other
stochastic optimization processes are typically associated with poor
runtimes, a large database provides a terrain for optimization in
which no complex algorithms need to be run. The results would
already be precomputed, so verification could be done within rea-
sonable time bounds. A study could also be done where results
are incrementally added to the database, and the optimization ef-
fectiveness is gaged on number of datasets. It would be interesting
to see if over fitting occurs with a few datasets, or if that too many
datasets could flood the optimizer so that results are too general to
be applicable.

5.1.7 Algorithm Tweaking
Many algorithms used within the COMBA system, such as Neu-

ral Nets and Stepwise Regression can be run using a variety of dif-
ferent settings. In addition to more algorithms, algorithms can be
run with different specifications. Many times, specifications for al-
gorithms are decided using ëngineering judgment ,̈ rather than em-
pirical methods. Sometimes this involves citing another paper in
which a particular setting was used, even if that paper did not test
other settings. The diverse range of data sets tested for might show
that certain settings tend to perform better, and provide a basis for
further research using those methods.

5.1.8 Algorithm Building
The results of the COMBA experiment could be used to build a

new algorithm whose only goal is to rank well compared to existing
algorithms. It could go through iterative optimization to maximize

its ranking, perhaps using a genetic programming approach with a
lambda calculus. Datasets could then be introduced that the algo-
rithm did not optimize on, to see if its performance over fitted to the
existing data or whether the optimized algorithm uncovered useful
information about estimation.

5.1.9 Real Time Readjustment
A combination learning approach could be applied in an incre-

mental fashion on data whose results depend on predictions made
by a given algorithm. For example, suppose a real-time simula-
tion of a company is performed using estimates produced by algo-
rithms which performed well on previous data. Changes in perfor-
mance can be taken in to account, so that multiple time steps are
available and can be treated as different datasets. This allows back
propagation for algorithm recommendation and evaluation, and for
certain applications can uncover more details about the underlying
assumptions of data generation.

5.1.10 Synthetic Data Production
While PROMISE provides a collection of software engineering

data, there is still a large portion of data which is company specific
and private. A problem in creating a synthetic database is whether
or not it is representative of the given domain. While data could
be randomly generated and algorithms scramble to try and find pat-
terns within that data, perhaps a smarter approach to data produc-
tion could be produced.
The advantage of doing this within the COMBA system is bench-
marking synthetic data with actual data. Synthetic data can be
ranked, and patterns seen in the other datasets, such as which algo-
rithms performed well, can be compared. It is possible that some
companies with private data have many more entries then the avail-
able datasets. Search based software engineering typically relies
on datasets with fewer than 100 instances. Synthetic data could be
created of a larger size that tries to extrapolate and expand patterns
seen in smaller datasets.

5.1.11 Rank On Other Dimensions
It should be noted that only the error measures provided were

used to assess the given algorithms. There are many other factors
on which an algorithm can be evaluated, such as Big-O notation or
empirical runtime results. Future tests could collect the time taken
to evaluate each dataset, and provide this along with error mea-
sures. This could also be used as a complexity measure, to assess if
complex and time-consuming algorithms increase performance or
not.

5.1.12 Combination of Data
This paper combined different learners and assessed the com-

bined results. Manipulations can also be performed on the datasets
themselves. For example, datasets from different companies could
be combined together, and the results of the algorithms on these
new combined datasets could be assessed.
Combining datasets introduces the problem that there is not a in-
dustrial standard for collecting information about software engi-
neering projects. Design decisions would come up such as how to
treat features which are represented in one dataset but not another
when combining datasets. Different approached for combination
could be evaluated.

5.1.13 Domain Specific Knowledge Acquisition
One aspect of the datasets has a real world value corresponding

to it. Other papers have proposed feature weighting, in which cer-
tain aspects of a project are more important than others for predict-

ing effort. Domain inspecific ways, such as genetic algorithm opti-
mization, have been proposed to find the best set of feature weights.
A broad approach could look at the application of certain features
across different datasets. For example, lines of code is generally re-
garded to be a good indicator of project effort, though it itself often
requires estimation to obtain. This null hypothesis could be tested,
by stripping lines of code from the dataset and viewing the results.
This approach could be made more general by removing features to
test their effects on estimation accuracy using different algorithms.

5.1.14 Data Visualization
The human heuristic is often a powerful one for quickly assess-

ing patterns in visual models. One idea would be to create a visual
representation of a dataset, and then present it to an expert. The ex-
pert could be asked to identify what types of algorithms they think
would perform well on a dataset given its shape and attributes. The
experts predictions can then be indexed with the actual rankings, to
score a visualization technique. There may be a simple visualiza-
tion that allows an expert to make complex decisions quickly. This
also allows new datasets to be visualized, and the expert to make
judgments on this new data without consulting all possible algo-
rithms.
This also has the benefit of potentially explaining why certain algo-
rithms or datasets performed well, discussed earlier in this section.

5.1.15 Experiment Verification and Validation
COMBA provides an environment to reproduce results published

in other papers. While no algorithm can be shown to be the abso-
lute best, as seen in the No Free Lunch theorem, an algorithm can
be shown to be reasonably good. Experiments which relied on a
limited number of datasets or algorithms to compare to could be
reproduced. A possibility would be reproducing multiple experi-
ments in one paper, and noting if the assumptions in the initially
published result held upon more intensive testing.
More ambitiously, if the COMBA system was freely available it
could be housed and recommended for use. In this way, researchers
in other areas could download COMBA and quickly validate their
results. There are more ways to expand this project then are feasible
given the time-scale, so this approach provides a system which will
build itself. The more people user, the stronger the results produced
from it become as new algorithms and datasets become contributed
to the COMBA system.

5.1.16 Pattern Matching Tested Algorithms
While this paper directly combined large-scale programming con-

structs together, the learns and preprocessors used could further be
broken down in to their components. There are some programming
languages, such as LISP, in which the components of a program
are highly transparent and thus modifiable. A potential experiment
could be to reprogram algorithms in a language which is transpar-
ent, and perform similarity analysis between high-performing algo-
rithms and low-performing algorithms.
This creates interesting problems, such as how to identify when
two constructs are doing the same thing but in different ways. This
can be solved by pattern matching, or extrapolating the function
of a code from a series of commands. The time complexity in
these scenarios can be a hindering factor, especially when itera-
tive development and optimization processes are required to obtain
a functioning system.

6. REFERENCES
[1] M. Harman. The current state and future of search based

software engineering. Future of Software Engineering,

0:342–357, 2007.
[2] M. Harman and B. F. Jones. Search-based software

engineering. Information and Software Technology,
43(14):833 – 839, 2001.

[3] M. Jorgensen and S. Grimstad. Over-optimism in software
development projects: The winner#146;s curse. pages
280–285, 2005.

[4] M. Shepperd and G. Kadoda. Comparing software prediction
techniques using simulation. Software Engineering, IEEE
Transactions on, 27(11):1014 –1022, nov 2001.

APPENDIX
The authors of this paper would like to note that it is a continuation
of an existing study by Jacky Keung, Ekrem Kocagunelli, and Tim
Menzies. The paper describing that study is not yet published or
publically available, so no link or reference can be provided at this
time.

