;%%-*- text -*- ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;% This is a PROMISE Software Engineering Repository data set made publicly ;% available in order to encourage repeatable, verifiable, refutable, and/or ;% improvable predictive models of software engineering. ;% ;% If you publish material based on PROMISE data sets then, please ;% follow the acknowledgment guidelines posted on the PROMISE repository ;% web page http://promise.site.uottawa.ca/SERepository . ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ;% 1. Title/Topic: CM1/software defect prediction ;% 2. Sources: ;% ;% -- Creators: NASA, then the NASA Metrics Data Program, ;% -- http://mdp.ivv.nasa.gov. Contacts: Mike Chapman, ;% Galaxy Global Corporation (Robert.Chapman@ivv.nasa.gov) ;% +1-304-367-8341; Pat Callis, NASA, NASA project manager ;% for MDP (Patrick.E.Callis@ivv.nasa.gov) +1-304-367-8309 ;% ;% -- Donor: Tim Menzies (tim@barmag.net) ;% ;% -- Date: December 2 2004 ;% 3. Past usage: ;% ;% 1. How Good is Your Blind Spot Sampling Policy?; 2003; Tim Menzies ;% and Justin S. Di Stefano; 2004 IEEE Conference on High Assurance ;% Software Engineering (http://menzies.us/pdf/03blind.pdf). ;% ;% -- Results: ;% ;% -- Very simple learners (ROCKY) perform as well in this domain ;% as more sophisticated methods (e.g. J48, model trees, model ;% trees) for predicting detects ;% ;% -- Many learners have very low false alarm rates. ;% ;% -- Probability of detection (PD) rises with effort and rarely ;% rises above it. ;% ;% -- High PDs are associated with high PFs (probability of ;% failure) ;% ;% -- PD, PF, effort can change significantly while accuracy ;% remains essentially stable ;% ;% -- With two notable exceptions, detectors learned from one ;% data set (e.g. KC2) have nearly they same properties when ;% applied to another (e.g. PC2, KC2). Exceptions: ;% -- LinesOfCode measures generate wider inter-data-set variances; ;% -- Precision's inter-data-set variances vary wildly ;% ;% 2. "Assessing Predictors of Software Defects", T. Menzies and ;% J. DiStefano and A. Orrego and R. Chapman, 2004, ;% Proceedings, workshop on Predictive Software Models, Chicago, ;% Available from http://menzies.us/pdf/04psm.pdf. ;% -- Results: ;% ;% -- From CM1, Naive Batrue generated PDs of 30% with PF of 10% ;% ;% -- Naive Batrue out-performs J48 for defect detection ;% ;% -- When learning on more and more data, little improvement is ;% seen after processing 300 examples. ;% ;% -- PDs are much higher from data collected below the sub-sub- ;% system level. ;% ;% -- Accuracy is a surprisingly uninformative measure of success ;% for a defect detector. Two detectors with the same accuracy ;% can have widely varying PDs and PFs. ;% 4. Relevant information: ;% ;% -- CM1 is a NASA spacecraft instrument written in "C". ;% ;% -- Data comes from McCabe and Halstead features extractors of ;% source code. These features were defined in the 70s in an attempt ;% to objectively characterize code features that are associated with ;% software quality. The nature of association is under dispute. ;% Notes on McCabe and Halstead follow. ;% ;% -- The McCabe and Halstead measures are "module"-based where a ;% "module" is the smallest unit of functionality. In C or Smalltalk, ;% "modules" would be called "function" or "method" respectively. ;% ;% -- Defect detectors can be assessed according to the following measures: ;% ;% module actually has defects ;% +-------------+------------+ ;% | no | true | ;% +-----+-------------+------------+ ;% classifier predicts no defects | no | a | b | ;% +-----+-------------+------------+ ;% classifier predicts some defects | true | c | d | ;% +-----+-------------+------------+ ;% ;% accuracy = acc = (a+d)/(a+b+c+d ;% probability of detection = pd = recall = d/(b+d) ;% probability of false alarm = pf = c/(a+c) ;% precision = prec = d/(c+d) ;% effort = amount of code selected by detector ;% = (c.LOC + d.LOC)/(Total LOC) ;% ;% Ideally, detectors have high PDs, low PFs, and low ;% effort. This ideal state rarely happens: ;% ;% -- PD and effort are linked. The more modules that trigger ;% the detector, the higher the PD. However, effort also gets ;% increases ;% ;% -- High PD or low PF comes at the cost of high PF or low PD ;% (respectively). This linkage can be seen in a standard ;% receiver operator curve (ROC). Suppose, for example, LOC> x ;% is used as the detector (i.e. we assume large modules have ;% more errors). LOC > x represents a family of detectors. At ;% x=0, EVERY module is predicted to have errors. This detector ;% has a high PD but also a high false alarm rate. At x=0, NO ;% module is predicted to have errors. This detector has a low ;% false alarm rate but won't detect anything at all. At 0 but does not reach it. ;% ;% -- The line pf=pd on the above graph represents the "no information" ;% line. If pf=pd then the detector is pretty useless. The better ;% the detector, the more it rises above PF=PD towards the "sweet spot". ;% ;% NOTES ON MCCABE/HALSTEAD ;% ======================== ;% McCabe argued that code with complicated pathways are more ;% error-prone. His metrics therefore reflect the pathways within a ;% code module. ;% @Article{mccabe76, ;% title = "A Complexity Measure", ;% author = "T.J. McCabe", ;% pages = "308--320", ;% journal = "IEEE Transactions on Software Engineering", ;% year = "1976", ;% volume = "2", ;% month = "December", ;% number = "4"} ;% ;% Halstead argued that code that is hard to read is more likely to be ;% fault prone. Halstead estimates reading complexity by counting the ;% number of concepts in a module; e.g. number of unique operators. ;% @Book{halstead77, ;% Author = "M.H. Halstead", ;% Title = "Elements of Software Science", ;% Publisher = "Elsevier ", ;% Year = 1977} ;% ;% We study these static code measures since they are useful, easy to ;% use, and widely used: ;% ;% -- USEFUL: E.g. this data set can generate highly accurate ;% predictors for defects ;% ;% -- EASY TO USE: Static code measures (e.g. lines of code, the ;% McCabe/Halstead measures) can be automatically and cheaply ;% collected. ;% ;% -- WIDELY USED: Many researchers use static measures to guide ;% software quality predictions (see the reference list in the above ;% "blind spot" paper. Verification and validation (V\&V) textbooks ;% advise using static code complexity measures to decide which ;% modules are worthy of manual inspections. Further, we know of ;% several large government software contractors that won't review ;% software modules _unless_ tools like McCabe predict that they are ;% fault prone. Hence, defect detectors have a major economic impact ;% when they may force programmers to rewrite code. ;% ;% Nevertheless, the merits of these metrics has been widely ;% criticized. Static code measures are hardly a complete ;% characterization of the internals of a function. Fenton offers an ;% insightful example where the same functionality is achieved using ;% different programming language constructs resulting in different ;% static measurements for that module. Fenton uses this example to ;% argue the uselessness of static code measures. ;% @book{fenton97, ;% author = "N.E. Fenton and S.L. Pfleeger", ;% title = {Software metrics: a Rigorous \& Practical Approach}, ;% publisher = {International Thompson Press}, ;% year = {1997}} ;% ;% An alternative interpretation of Fenton's example is that static ;% measures can never be a definite and certain indicator of the ;% presence of a fault. Rather, defect detectors based on static ;% measures are best viewed as probabilistic statements that the ;% frequency of faults tends to increase in code modules that trigger ;% the detector. By definition, such probabilistic statements will ;% are not categorical claims with some a non-zero false alarm ;% rate. The research challenge for data miners is to ensure that ;% these false alarms do not cripple their learned theories. ;% ;% The McCabe metrics are a collection of four software metrics: ;% essential complexity, cyclomatic complexity, design complexity and ;% LOC, Lines of Code. ;% ;% -- Cyclomatic Complexity, or "v(G)", measures the number of ;% "linearly independent paths". A set of paths is said to be ;% linearly independent if no path in the set is a linear combination ;% of any other paths in the set through a program's "flowgraph". A ;% flowgraph is a directed graph where each node corresponds to a ;% program statement, and each arc indicates the flow of control from ;% one statement to another. "v(G)" is calculated by "v(G) = e - n + 2" ;% where "G" is a program's flowgraph, "e" is the number of arcs in ;% the flowgraph, and "n" is the number of nodes in the ;% flowgraph. The standard McCabes rules ("v(G)">10), are used to ;% identify fault-prone module. ;% ;% -- Essential Complexity, or "ev(G)$" is the extent to which a ;% flowgraph can be "reduced" by decomposing all the subflowgraphs ;% of $G$ that are "D-structured primes". Such "D-structured ;% primes" are also sometimes referred to as "proper one-entry ;% one-exit subflowgraphs" (for a more thorough discussion of ;% D-primes, see the Fenton text referenced above). "ev(G)" is ;% calculated using "ev(G)= v(G) - m" where $m$ is the number of ;% subflowgraphs of "G" that are D-structured primes. ;% ;% -- Design Complexity, or "iv(G)", is the cyclomatic complexity of a ;% module's reduced flowgraph. The flowgraph, "G", of a module is ;% reduced to eliminate any complexity which does not influence the ;% interrelationship between design modules. According to McCabe, ;% this complexity measurement reflects the modules calling patterns ;% to its immediate subordinate modules. ;% ;% -- Lines of code is measured according to McCabe's line counting ;% conventions. ;% ;% The Halstead falls into three groups: the base measures, the ;% derived measures, and lines of code measures. ;% ;% -- Base measures: ;% -- mu1 = number of unique operators ;% -- mu2 = number of unique operands ;% -- N1 = total occurrences of operators ;% -- N2 = total occurrences of operands ;% -- length = N = N1 + N2 ;% -- vocabulary = mu = mu1 + mu2 ;% -- Constants set for each function: ;% -- mu1' = 2 = potential operator count (just the function ;% name and the "return" operator) ;% -- mu2' = potential operand count. (the number ;% of arguments to the module) ;% ;% For example, the expression "return max(w+x,x+y)" has "N1=4" ;% operators "return, max, +,+)", "N2=4" operands (w,x,x,y), ;% "mu1=3" unique operators (return, max,+), and "mu2=3" unique ;% operands (w,x,y). ;% ;% -- Derived measures: ;% -- P = volume = V = N * log2(mu) (the number of mental ;% comparisons needed to write ;% a program of length N) ;% -- V* = volume on minimal implementation ;% = (2 + mu2')*log2(2 + mu2') ;% -- L = program length = V*/N ;% -- D = difficulty = 1/L ;% -- L' = 1/D ;% -- I = intelligence = L'*V' ;% -- E = effort to write program = V/L ;% -- T = time to write program = E/18 seconds ;% 5. Number of instances: 498 ;% 6. Number of attributes: 22 (5 different lines of code measure, ;% 3 McCabe metrics, 4 base Halstead measures, 8 derived ;% Halstead measures, a branch-count, and 1 goal field) ;% 7. Attribute Information: ;% ;% 1. loc : numeric % McCabe's line count of code ;% 2. v(g) : numeric % McCabe "cyclomatic complexity" ;% 3. ev(g) : numeric % McCabe "essential complexity" ;% 4. iv(g) : numeric % McCabe "design complexity" ;% 5. n : numeric % Halstead total operators + operands ;% 6. v : numeric % Halstead "volume" ;% 7. l : numeric % Halstead "program length" ;% 8. d : numeric % Halstead "difficulty" ;% 9. i : numeric % Halstead "intelligence" ;% 10. e : numeric % Halstead "effort" ;% 11. b : numeric % Halstead ;% 12. t : numeric % Halstead's time estimator ;% 13. lOCode : numeric % Halstead's line count ;% 14. lOComment : numeric % Halstead's count of lines of comments ;% 15. lOBlank : numeric % Halstead's count of blank lines ;% 16. lOCodeAndComment: numeric ;% 17. uniq_Op : numeric % unique operators ;% 18. uniq_Opnd : numeric % unique operands ;% 19. total_Op : numeric % total operators ;% 20. total_Opnd : numeric % total operands ;% 21: branchCount : numeric % of the flow graph ;% 22. defects : {false,true} % module has/has not one or more ;% % reported defects ;% 8. Missing attributes: none ;% 9. Class Distribution: the class value (defects) is discrete ;% false: 449 = 90.16% ;% true: 49 = 9.83% ;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% (defun CM1 () (data :name 'CM1 :columns '($loc $v $ev $iv $n $v $l $d $i $e $b $t $lOCode $lOComment $lOBlank $lOCodeAndComment $uniq_Op $uniq_Opnd $total_Op $total_Opnd $branchCount defects) :egs '( (1.1 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 2 2 2 2 1.2 1.2 1.2 1.2 1.4 false) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 true) (24 5 1 3 63 309.13 0.11 9.5 32.54 2936.77 0.1 163.15 1 0 6 0 15 15 44 19 9 false) (20 4 4 2 47 215.49 0.06 16 13.47 3447.89 0.07 191.55 0 0 3 0 16 8 31 16 7 false) (24 6 6 2 72 346.13 0.06 17.33 19.97 5999.58 0.12 333.31 0 0 3 0 16 12 46 26 11 false) (24 6 6 2 72 346.13 0.06 17.33 19.97 5999.58 0.12 333.31 0 0 3 0 16 12 46 26 11 false) (7 1 1 1 11 34.87 0.5 2 17.43 69.74 0.01 3.87 0 0 1 0 4 5 6 5 1 false) (12 2 1 2 23 94.01 0.16 6.43 14.62 604.36 0.03 33.58 0 0 7 0 10 7 14 9 3 false) (25 5 5 5 107 548.83 0.07 14.25 38.51 7820.87 0.18 434.49 12 16 13 0 15 20 69 38 9 false) (46 15 3 1 239 1362.41 0.04 22.3 61.1 30377.95 0.45 1687.66 8 35 22 0 15 37 129 110 29 false) (34 5 5 1 155 856.15 0.05 20.76 41.24 17773.08 0.29 987.39 11 28 16 0 19 27 96 59 9 false) (10 2 1 1 35 143.06 0.11 9 15.9 1287.55 0.05 71.53 2 4 4 0 9 8 19 16 3 false) (23 7 5 1 157 770.38 0.04 28.12 27.4 21659.58 0.26 1203.31 10 17 23 0 17 13 114 43 13 false) (23 7 5 1 105 474.97 0.04 27.22 17.45 12929.85 0.16 718.32 10 17 23 0 14 9 70 35 13 false) (31 5 1 2 231 1303.73 0.04 27.5 47.41 35852.6 0.43 1991.81 2 15 40 0 22 28 161 70 9 false) (24 5 1 2 120 655.13 0.07 15.2 43.1 9958 0.22 553.22 3 20 23 0 19 25 80 40 9 false) (13 2 1 1 57 271.03 0.11 9.15 29.61 2480.95 0.09 137.83 6 5 8 0 14 13 40 17 3 false) (6 1 1 1 15 55.51 0.25 4 13.88 222.03 0.02 12.33 1 1 2 0 8 5 10 5 1 false) (33 2 1 2 135 745.68 0.09 11.65 64.01 8684.99 0.25 482.5 2 0 19 0 12 34 69 66 3 false) (6 1 1 1 15 55.51 0.25 4 13.88 222.03 0.02 12.33 1 1 0 0 8 5 10 5 1 false) (7 2 1 1 27 105.49 0.08 12 8.79 1265.83 0.04 70.32 0 0 1 0 10 5 15 12 3 false) (3 1 1 1 14 48.43 0.23 4.38 11.07 211.89 0.02 11.77 0 0 0 0 7 4 9 5 1 false) (7 1 1 1 29 110.41 0.21 4.88 22.65 538.26 0.04 29.9 0 0 0 0 6 8 16 13 1 false) (9 3 1 1 41 170.97 0.07 14.14 12.09 2417.96 0.06 134.33 0 0 1 0 11 7 23 18 5 false) (11 3 1 1 49 215.22 0.07 14.67 14.67 3156.61 0.07 175.37 0 0 1 0 12 9 27 22 5 false) (4 1 1 1 13 39 0.33 3 13 117 0.01 6.5 0 0 0 0 4 4 7 6 1 false) (3 1 1 1 7 19.65 0.4 2.5 7.86 49.13 0.01 2.73 0 0 0 0 5 2 5 2 1 false) (16 4 1 1 77 370.17 0.05 19.62 18.87 7260.95 0.12 403.39 11 30 7 0 15 13 43 34 7 false) (65 12 1 1 541 3327.01 0.02 42.02 79.18 139798.54 1.11 7766.59 5 95 33 0 19 52 311 230 23 false) (177 41 6 23 767 5580.79 0.02 54.82 101.81 305928.62 1.86 16996.03 63 31 134 0 45 110 499 268 60 false) (14 5 1 3 41 185.47 0.07 15 12.36 2781.99 0.06 154.56 4 5 9 0 15 8 25 16 8 false) (361 70 27 46 1844 15345.64 0.01 97.73 157.03 1499684.32 5.12 83315.8 37 191 164 0 69 251 1133 711 110 false) (76 13 7 10 298 1948.67 0.03 32.21 60.5 62767.66 0.65 3487.09 3 48 27 0 36 57 196 102 24 false) (31 1 1 1 461 2653 0.04 22.83 116.21 60566.12 0.88 3364.78 0 10 4 0 13 41 317 144 1 false) (20 3 1 3 71 351.75 0.1 10.29 34.17 3620.93 0.12 201.16 0 0 5 0 14 17 46 25 5 false) (27 5 3 3 108 540 0.05 21.86 24.71 11802.86 0.18 655.71 4 5 7 0 18 14 74 34 9 false) (15 3 1 3 52 260 0.14 7.18 36.19 1867.89 0.09 103.77 2 24 16 0 13 19 31 21 5 false) (13 4 1 4 59 295 0.09 11.03 26.75 3253.68 0.1 180.76 3 8 15 0 15 17 34 25 7 false) (32 6 1 6 123 686.95 0.08 12.89 53.31 8852.8 0.23 491.82 5 44 42 0 17 31 76 47 11 false) (25 3 1 3 120 684.05 0.07 14.11 48.49 9649.29 0.23 536.07 2 16 19 0 19 33 71 49 5 false) (22 4 4 4 75 381.56 0.07 13.42 28.43 5120.93 0.13 284.5 5 10 19 0 15 19 41 34 7 false) (28 6 1 4 128 707.02 0.04 23.1 30.61 16332.07 0.24 907.34 5 19 15 0 21 25 73 55 11 false) (18 2 1 2 122 625.77 0.04 24.42 25.62 15282.02 0.21 849 3 18 13 0 16 19 64 58 3 false) (24 5 1 3 197 1075.51 0.03 39.72 27.08 42716.37 0.36 2373.13 2 20 14 0 21 23 110 87 9 false) (62 9 4 6 310 2002.42 0.05 21.19 94.51 42426.35 0.67 2357.02 5 32 26 0 24 64 197 113 17 false) (65 12 3 8 263 1653.06 0.07 15.19 108.84 25107.55 0.55 1394.86 0 34 17 0 17 61 154 109 23 false) (8 1 1 1 49 181.32 0.14 7 25.9 1269.25 0.06 70.51 0 3 3 0 7 6 37 12 1 false) (18 4 1 4 80 428.6 0.13 7.89 54.3 3382.91 0.14 187.94 2 2 12 0 13 28 46 34 7 false) (6 1 1 1 11 30.88 0.38 2.67 11.58 82.35 0.01 4.57 1 2 0 0 4 3 7 4 1 false) (48 7 1 7 250 1626.95 0.07 14.23 114.37 23143.92 0.54 1285.77 4 28 39 0 20 71 149 101 13 false) (127 10 1 10 737 5334.7 0.04 24.9 214.24 132838.37 1.78 7379.91 4 31 77 0 25 126 486 251 19 false) (21 4 1 4 77 391.73 0.13 7.64 51.3 2991.43 0.13 166.19 0 23 55 0 12 22 49 28 7 false) (32 2 1 2 214 1284 0.05 18.78 68.36 24116.87 0.43 1339.83 1 8 12 0 18 46 118 96 3 false) (41 6 1 5 169 985.76 0.06 17.21 57.28 16963.26 0.33 942.4 3 47 40 0 21 36 110 59 11 false) (23 5 1 5 51 236.84 0.13 7.85 30.19 1858.26 0.08 103.24 1 20 13 0 12 13 34 17 9 false) (8 2 1 1 36 158.12 0.18 5.5 28.75 869.68 0.05 48.32 0 6 7 0 11 10 26 10 3 false) (25 4 1 1 95 475 0.07 15 31.67 7125 0.16 395.83 0 8 7 0 16 16 65 30 7 false) (8 2 1 1 12 39.86 0.27 3.75 10.63 149.49 0.01 8.3 1 6 3 0 6 4 7 5 3 false) (17 3 1 3 102 535.29 0.07 14.57 36.74 7799.92 0.18 433.33 2 2 9 0 17 21 66 36 5 false) (38 5 1 5 176 1047.94 0.05 19.25 54.44 20172.82 0.35 1120.71 2 12 12 0 22 40 106 70 9 false) (31 5 5 5 140 809.39 0.07 14.84 54.55 12009.6 0.27 667.2 10 9 23 0 18 37 79 61 9 false) (21 4 1 3 61 310.34 0.1 10.26 30.24 3185.02 0.1 176.95 0 3 3 0 15 19 35 26 7 false) (21 4 1 3 61 310.34 0.1 10.26 30.24 3185.02 0.1 176.95 0 3 3 0 15 19 35 26 7 false) (14 2 1 1 25 97.67 0.09 11 8.88 1074.39 0.03 59.69 0 0 3 0 10 5 14 11 3 false) (6 1 1 1 16 57.36 0.29 3.5 16.39 200.76 0.02 11.15 0 4 0 0 7 5 11 5 1 false) (29 5 1 2 111 569.35 0.05 20.78 27.4 11829.84 0.19 657.21 0 17 6 0 17 18 67 44 9 false) (18 3 1 1 91 459.04 0.08 12.89 35.6 5919.2 0.15 328.84 1 11 8 0 14 19 56 35 5 false) (55 11 5 8 217 1311.63 0.04 26.83 48.89 35190.17 0.44 1955.01 0 8 17 0 25 41 129 88 21 false) (47 3 1 1 150 937.19 0.06 15.65 59.87 14671.27 0.31 815.07 0 39 14 0 21 55 68 82 5 false) (32 6 4 2 95 498.55 0.04 22.85 21.82 11393.4 0.17 632.97 2 14 10 0 21 17 58 37 11 false) (32 3 1 1 538 3124.36 0.02 53.2 58.73 166215.79 1.04 9234.21 3 13 22 0 16 40 272 266 5 false) (38 4 1 1 165 911.39 0.04 24.28 37.54 22126.47 0.3 1229.25 0 11 10 0 19 27 96 69 6 false) (14 2 1 1 56 260.06 0.14 7.07 36.78 1838.97 0.09 102.16 0 0 0 0 11 14 38 18 3 false) (60 5 1 5 331 2164.46 0.05 22.12 97.85 47876.6 0.72 2659.81 9 14 39 0 26 67 217 114 9 false) (10 1 1 1 32 125.02 0.16 6.13 20.41 765.75 0.04 42.54 0 2 5 0 7 8 18 14 1 false) (16 3 1 3 73 358.2 0.11 9 39.8 3223.83 0.12 179.1 10 6 9 0 12 18 46 27 5 false) (12 2 1 2 33 142.62 0.16 6.11 23.34 871.59 0.05 48.42 0 4 4 0 11 9 23 10 3 false) (13 2 1 1 41 174.17 0.1 9.63 18.1 1676.34 0.06 93.13 0 0 3 0 11 8 27 14 3 false) (16 2 1 2 42 192.57 0.11 9.1 21.16 1752.37 0.06 97.35 0 13 5 0 14 10 29 13 3 false) (27 4 3 3 95 521.73 0.06 18.12 28.78 9456.28 0.17 525.35 3 5 22 0 25 20 66 29 7 false) (31 5 4 4 110 604.1 0.06 17.25 35.02 10420.79 0.2 578.93 3 15 19 0 23 22 77 33 9 false) (10 1 1 1 10 28.07 0.5 2 14.04 56.15 0.01 3.12 0 1 5 0 4 3 7 3 1 false) (37 5 1 3 93 494.94 0.06 16 30.93 7919.03 0.16 439.95 2 28 12 0 20 20 61 32 9 false) (8 1 1 1 9 27 0.4 2.5 10.8 67.5 0.01 3.75 0 1 2 0 5 3 6 3 1 false) (8 1 1 1 33 134.89 0.16 6.19 21.8 834.61 0.04 46.37 0 2 6 0 9 8 22 11 1 false) (9 1 1 1 44 183.48 0.14 7 26.21 1284.34 0.06 71.35 1 5 5 0 9 9 30 14 1 false) (9 1 1 1 36 140.65 0.12 8.25 17.05 1160.35 0.05 64.45 0 5 3 0 9 6 25 11 1 false) (7 1 1 1 8 22.46 0.4 2.5 8.98 56.15 0.01 3.12 0 1 2 0 5 2 6 2 1 false) (26 4 3 2 99 511.82 0.08 13.2 38.77 6756.06 0.17 375.34 0 6 5 0 16 20 66 33 7 false) (7 1 1 1 25 97.67 0.17 6 16.28 586.03 0.03 32.56 0 2 5 0 9 6 17 8 1 false) (14 1 1 1 86 365.32 0.08 13.05 27.99 4767.45 0.12 264.86 0 6 5 0 9 10 57 29 1 false) (9 1 1 1 14 46.51 0.21 4.67 9.97 217.03 0.02 12.06 0 0 4 0 7 3 10 4 1 false) (11 1 1 1 23 82.45 0.14 7 11.78 577.18 0.03 32.07 0 0 5 0 8 4 16 7 1 false) (34 6 1 3 135 745.68 0.08 12.6 59.16 9398.15 0.25 522.12 0 8 6 0 17 29 92 43 11 false) (7 1 1 1 11 34.87 0.29 3.5 9.96 122.04 0.01 6.78 0 1 4 0 7 2 9 2 1 false) (31 7 1 5 126 618.27 0.04 23.5 26.31 14529.3 0.21 807.18 2 30 21 0 15 15 79 47 13 false) (8 1 1 1 9 27 0.4 2.5 10.8 67.5 0.01 3.75 0 1 2 0 5 3 6 3 1 false) (6 1 1 1 10 30 0.33 3 10 90 0.01 5 0 0 2 0 6 2 8 2 1 false) (7 1 1 1 10 33.22 0.29 3.5 9.49 116.27 0.01 6.46 0 0 2 0 7 3 7 3 1 false) (15 2 1 1 60 285.29 0.13 7.6 37.54 2168.23 0.1 120.46 0 0 7 0 12 15 41 19 3 false) (16 1 1 1 64 289.51 0.12 8.36 34.64 2419.46 0.1 134.41 0 0 7 0 9 14 38 26 1 false) (19 1 1 1 64 293.44 0.1 9.73 30.16 2855.37 0.1 158.63 0 1 13 0 11 13 41 23 1 false) (130 29 7 27 729 5103 0.02 55.88 91.32 285170.84 1.7 15842.82 45 13 53 0 34 94 420 309 57 false) (30 4 1 4 122 630.73 0.05 20.71 30.45 13065.14 0.21 725.84 3 3 12 0 15 21 64 58 7 false) (34 6 1 6 146 771.67 0.08 12 64.31 9260.02 0.26 514.45 4 0 10 0 12 27 92 54 11 false) (20 6 6 2 241 1299.55 0.02 46 28.25 59779.23 0.43 3321.07 1 6 6 0 23 19 165 76 11 false) (17 2 1 1 53 252.01 0.07 14.38 17.53 3622.63 0.08 201.26 0 0 7 0 15 12 30 23 3 false) (17 2 1 1 53 252.01 0.07 14.38 17.53 3622.63 0.08 201.26 0 0 6 0 15 12 30 23 3 false) (26 8 8 1 210 1125.09 0.04 23.02 48.87 25900.42 0.38 1438.91 0 5 3 0 17 24 145 65 15 false) (10 1 1 1 22 69.74 0.18 5.63 12.4 392.28 0.02 21.79 0 0 0 0 5 4 13 9 1 false) (6 1 1 1 11 36.54 0.33 3 12.18 109.62 0.01 6.09 0 0 0 0 6 4 7 4 1 false) (8 1 1 1 11 30.88 0.38 2.67 11.58 82.35 0.01 4.57 0 0 3 0 4 3 7 4 1 false) (93 17 7 6 407 2692.19 0.02 48.06 56.02 129374.54 0.9 7187.47 13 55 24 0 35 63 234 173 33 false) (128 25 12 9 790 5664.24 0.02 54.33 104.25 307757.08 1.89 17097.62 33 58 2 0 36 108 464 326 49 false) (28 3 1 3 103 551.83 0.09 11.69 47.22 6449.49 0.18 358.3 0 11 1 0 17 24 70 33 5 false) (19 2 1 2 62 312.75 0.11 9.41 33.23 2943.55 0.1 163.53 0 3 1 0 16 17 42 20 3 false) (19 2 1 2 57 282.39 0.11 8.91 31.71 2515.03 0.09 139.72 0 3 2 0 15 16 38 19 3 false) (21 3 1 3 62 298.06 0.12 8.63 34.56 2570.73 0.1 142.82 0 2 2 0 12 16 39 23 5 false) (154 17 10 13 695 5143.61 0.03 38.57 133.35 198396.43 1.71 11022.02 20 119 26 0 36 133 410 285 28 false) (125 18 1 13 438 3131.59 0.02 40.25 77.8 126046.47 1.04 7002.58 13 50 21 0 46 96 270 168 31 false) (14 2 1 1 24 100.08 0.13 7.86 12.74 786.33 0.03 43.68 0 1 4 0 11 7 14 10 3 false) (127 30 8 5 690 4697.07 0.03 36.21 129.72 170066.5 1.57 9448.14 7 39 5 0 25 87 438 252 59 false) (12 1 1 1 29 110.41 0.3 3.33 33.12 368.04 0.04 20.45 0 0 0 0 5 9 17 12 1 false) (18 2 1 2 72 372.23 0.09 11.63 32 4329.68 0.12 240.54 0 9 2 0 17 19 46 26 3 false) (20 3 1 3 89 452.78 0.09 11.56 39.18 5232.17 0.15 290.68 0 3 5 0 16 18 63 26 5 false) (36 4 1 4 156 851.67 0.06 17.63 48.31 15014.65 0.28 834.15 2 13 3 0 17 27 100 56 6 false) (160 32 7 20 488 3442.98 0.04 22.73 151.5 78244.98 1.15 4346.94 12 33 22 0 29 104 325 163 58 false) (47 10 9 7 318 1980.76 0.05 18.86 105.02 37359.42 0.66 2075.52 6 7 8 0 21 54 221 97 19 false) (6 1 1 1 6 15.51 0.5 2 7.75 31.02 0.01 1.72 0 0 0 0 4 2 4 2 1 false) (6 1 1 1 6 15.51 0.5 2 7.75 31.02 0.01 1.72 0 0 0 0 4 2 4 2 1 false) (38 4 3 1 153 892.43 0.07 14.75 60.5 13163.37 0.3 731.3 3 35 2 0 19 38 94 59 7 false) (6 1 1 1 6 15.51 0.5 2 7.75 31.02 0.01 1.72 0 0 0 0 4 2 4 2 1 false) (12 1 1 1 21 75.28 0.5 2 37.64 150.57 0.03 8.36 0 0 0 0 4 8 13 8 1 false) (12 1 1 1 25 92.51 0.38 2.67 34.69 246.7 0.03 13.71 0 0 0 0 4 9 13 12 1 false) (9 1 1 1 25 92.51 0.38 2.67 34.69 246.7 0.03 13.71 0 0 0 0 4 9 13 12 1 false) (41 2 1 2 241 1472.15 0.06 15.69 93.81 23101.5 0.49 1283.42 0 7 14 0 17 52 145 96 3 false) (30 2 1 2 151 852.22 0.07 14.68 58.05 12512.17 0.28 695.12 0 6 5 0 17 33 94 57 3 false) (6 1 1 1 7 19.65 0.4 2.5 7.86 49.13 0.01 2.73 0 0 0 0 5 2 5 2 1 false) (20 5 1 1 63 288.85 0.05 21 13.75 6065.91 0.1 336.99 0 0 4 0 16 8 42 21 9 false) (149 15 11 6 781 5575.99 0.02 46.92 118.83 261640.64 1.86 14535.59 2 65 10 0 31 110 448 333 29 false) (6 1 1 1 8 22.46 0.5 2 11.23 44.92 0.01 2.5 0 0 0 0 4 3 5 3 1 false) (16 3 1 2 70 353.11 0.13 7.71 45.77 2723.97 0.12 151.33 2 18 10 0 12 21 43 27 5 false) (15 1 1 1 46 179.72 0.19 5.25 34.23 943.51 0.06 52.42 0 0 5 0 5 10 25 21 1 false) (13 1 1 1 69 298.21 0.06 15.5 19.24 4622.3 0.1 256.79 0 6 5 0 10 10 38 31 1 false) (6 1 1 1 13 44.97 0.29 3.5 12.85 157.4 0.01 8.74 0 0 0 0 7 4 9 4 1 false) (14 2 1 1 37 151.24 0.11 9.29 16.29 1404.34 0.05 78.02 3 0 4 0 10 7 24 13 3 false) (14 2 1 1 37 151.24 0.11 9.29 16.29 1404.34 0.05 78.02 3 0 4 0 10 7 24 13 3 false) (27 3 1 1 130 744.63 0.08 12.04 61.85 8964.95 0.25 498.05 0 39 12 0 15 38 69 61 5 false) (19 2 1 2 60 300 0.11 9.5 31.58 2850 0.1 158.33 0 6 0 0 16 16 41 19 3 false) (21 2 1 2 105 525 0.04 23 22.83 12075 0.18 670.83 6 6 3 0 16 16 59 46 3 false) (6 1 1 1 13 43.19 0.27 3.75 11.52 161.94 0.01 9 0 0 1 0 6 4 8 5 1 false) (16 3 3 2 40 185.75 0.13 7.64 24.32 1418.49 0.06 78.8 0 5 0 0 14 11 28 12 5 false) (55 9 1 3 292 1738.63 0.03 33.32 52.18 57931.89 0.58 3218.44 12 20 10 0 23 39 179 113 17 false) (6 1 1 1 5 11.61 0.67 1.5 7.74 17.41 0 0.97 0 0 0 0 3 2 3 2 1 false) (9 1 1 1 18 62.27 0.44 2.29 27.24 142.33 0.02 7.91 0 0 1 0 4 7 10 8 1 false) (12 1 1 1 29 110.41 0.3 3.33 33.12 368.04 0.04 20.45 0 0 0 0 5 9 17 12 1 false) (12 1 1 1 25 92.51 0.38 2.67 34.69 246.7 0.03 13.71 0 0 0 0 4 9 13 12 1 false) (69 19 19 13 418 2746.2 0.03 36.57 75.09 100429.38 0.92 5579.41 0 18 24 0 31 64 267 151 37 false) (138 25 1 24 625 4677.38 0.04 27.21 171.89 127275.78 1.56 7070.88 1 58 6 0 32 147 375 250 47 false) (6 1 1 1 6 15.51 0.5 2 7.75 31.02 0.01 1.72 0 0 0 0 4 2 4 2 1 false) (6 1 1 1 6 15.51 0.5 2 7.75 31.02 0.01 1.72 0 0 0 0 4 2 4 2 1 false) (72 16 9 7 255 1573.33 0.05 18.26 86.16 28729.02 0.52 1596.06 1 19 6 0 22 50 172 83 31 false) (6 1 1 1 4 8 0.67 1.5 5.33 12 0 0.67 0 0 0 0 3 1 3 1 1 false) (6 1 1 1 5 11.61 0.5 2 5.8 23.22 0 1.29 0 0 0 0 4 1 4 1 1 false) (6 1 1 1 7 19.65 0.4 2.5 7.86 49.13 0.01 2.73 0 0 0 0 5 2 5 2 1 false) (6 1 1 1 9 27 0.4 2.5 10.8 67.5 0.01 3.75 0 4 0 0 5 3 6 3 1 false) (11 1 1 1 22 73.08 0.47 2.14 34.11 156.61 0.02 8.7 0 0 0 0 3 7 12 10 1 false) (23 4 1 4 75 396.41 0.09 11.57 34.26 4586.97 0.13 254.83 1 23 0 0 18 21 48 27 7 false) (17 1 1 1 49 221.65 0.26 3.88 57.09 860.54 0.07 47.81 0 9 1 0 6 17 27 22 1 false) (60 13 1 6 155 919.26 0.07 13.9 66.12 12780.02 0.31 710 4 15 0 0 20 41 98 57 19 false) (32 5 1 3 72 360 0.08 13.24 27.2 4764.71 0.12 264.71 1 0 1 0 15 17 42 30 9 false) (16 3 3 1 33 144.95 0.09 10.56 13.72 1531 0.05 85.06 1 0 4 0 13 8 20 13 5 false) (42 2 1 2 210 1316.03 0.07 13.88 94.81 18268.21 0.44 1014.9 0 6 1 0 18 59 119 91 3 false) (6 1 1 1 8 22.46 0.5 2 11.23 44.92 0.01 2.5 0 0 0 0 4 3 5 3 1 false) (14 2 1 1 67 328.76 0.09 11.47 28.66 3771.09 0.11 209.5 6 13 1 0 13 17 37 30 3 false) (27 3 1 1 87 456.57 0.12 8.31 54.96 3793.04 0.15 210.72 0 9 0 0 12 26 51 36 5 false) (8 1 1 1 24 88.81 0.14 7.2 12.33 639.44 0.03 35.52 0 0 0 0 8 5 15 9 1 false) (7 1 1 1 13 39 0.33 3 13 117 0.01 6.5 0 0 0 0 4 4 7 6 1 false) (31 5 1 1 67 284.61 0.05 19.94 14.28 5674.43 0.09 315.25 1 4 1 0 11 8 38 29 9 false) (8 1 1 1 12 39.86 0.21 4.67 8.54 186.03 0.01 10.33 0 3 0 0 7 3 8 4 1 false) (11 1 1 1 29 116 0.09 10.83 10.71 1256.67 0.04 69.81 0 3 0 0 10 6 16 13 1 false) (6 1 1 1 4 8 0.67 1.5 5.33 12 0 0.67 0 0 0 0 3 1 3 1 1 false) (13 2 1 1 20 74.01 0.29 3.5 21.15 259.02 0.02 14.39 0 0 0 0 7 6 14 6 3 false) (6 1 1 1 10 31.7 0.33 3 10.57 95.1 0.01 5.28 0 3 0 0 6 3 7 3 1 false) (22 2 1 2 81 421.97 0.09 11.48 36.77 4842.06 0.14 269 0 12 1 0 17 20 54 27 3 false) (29 7 5 2 100 508.75 0.04 25.33 20.08 12888.24 0.17 716.01 0 9 5 0 19 15 60 40 13 false) (9 1 1 1 81 366.41 0.05 20.22 18.12 7409.59 0.12 411.64 0 2 3 0 14 9 55 26 1 false) (16 4 4 1 135 675 0.04 24.37 27.7 16447.5 0.23 913.75 0 3 4 0 17 15 92 43 7 false) (92 15 15 15 466 2643.35 0.02 57 46.37 150670.96 0.88 8370.61 27 41 67 0 19 32 274 192 29 false) (18 4 4 1 76 369.21 0.07 15.38 24 5680.1 0.12 315.56 7 11 9 0 16 13 51 25 7 false) (36 6 1 6 182 1005.29 0.05 21.46 46.84 21576.47 0.34 1198.69 9 22 15 0 19 27 121 61 11 false) (5 1 1 1 9 28.53 0.33 3 9.51 85.59 0.01 4.75 1 1 0 0 6 3 6 3 1 false) (22 3 1 3 69 341.84 0.07 14.06 24.31 4807.12 0.11 267.06 4 0 6 0 15 16 39 30 5 false) (3 1 1 1 7 18.09 0.4 2.5 7.24 45.24 0.01 2.51 0 0 0 0 5 1 6 1 1 false) (7 2 1 1 27 105.49 0.08 12 8.79 1265.83 0.04 70.32 0 0 1 0 10 5 15 12 3 false) (3 1 1 1 14 48.43 0.23 4.38 11.07 211.89 0.02 11.77 0 0 0 0 7 4 9 5 1 false) (7 1 1 1 29 110.41 0.21 4.88 22.65 538.26 0.04 29.9 0 0 0 0 6 8 16 13 1 false) (9 3 1 1 41 170.97 0.07 14.14 12.09 2417.96 0.06 134.33 0 0 1 0 11 7 23 18 5 false) (11 3 1 1 49 215.22 0.07 14.67 14.67 3156.61 0.07 175.37 0 0 1 0 12 9 27 22 5 false) (4 1 1 1 13 39 0.33 3 13 117 0.01 6.5 0 0 0 0 4 4 7 6 1 false) (3 1 1 1 7 19.65 0.4 2.5 7.86 49.13 0.01 2.73 0 0 0 0 5 2 5 2 1 false) (30 4 1 2 193 1149.16 0.04 25.34 45.35 29117.23 0.38 1617.62 10 22 21 0 25 37 118 75 7 false) (5 1 1 1 5 11.61 0.67 1.5 7.74 17.41 0 0.97 1 1 2 0 3 2 3 2 1 false) (16 4 1 2 109 591.46 0.04 25.89 22.84 15315.78 0.2 850.88 6 10 9 0 24 19 68 41 7 false) (5 1 1 1 5 11.61 0.67 1.5 7.74 17.41 0 0.97 1 1 2 0 3 2 3 2 1 false) (15 4 1 2 109 591.46 0.04 25.89 22.84 15315.78 0.2 850.88 7 10 10 0 24 19 68 41 7 false) (40 10 1 8 399 2609.12 0.03 31.3 83.37 81653.73 0.87 4536.32 35 31 46 0 27 66 246 153 19 false) (5 1 1 1 5 11.61 0.67 1.5 7.74 17.41 0 0.97 1 1 2 0 3 2 3 2 1 false) (5 1 1 1 5 11.61 0.67 1.5 7.74 17.41 0 0.97 1 1 2 0 3 2 3 2 1 false) (12 2 1 1 100 516.99 0.07 15.21 33.99 7863.73 0.17 436.87 8 14 8 0 17 19 66 34 3 false) (5 1 1 1 6 15.51 0.5 2 7.75 31.02 0.01 1.72 1 7 1 0 4 2 4 2 1 false) (44 6 1 4 380 2490.74 0.03 34.84 71.49 86774.3 0.83 4820.79 18 28 33 0 32 62 245 135 11 false) (31 5 1 5 141 734.53 0.06 16.56 44.36 12163.87 0.24 675.77 5 0 10 0 12 25 72 69 9 false) (22 6 1 3 94 503.61 0.05 19.95 25.24 10047.02 0.17 558.17 11 21 25 0 21 20 56 38 11 false) (20 4 1 4 122 666.05 0.07 14.44 46.13 9617.77 0.22 534.32 2 13 9 0 19 25 84 38 7 false) (27 6 3 5 140 801.91 0.07 14.9 53.81 11951.03 0.27 663.95 4 16 20 0 22 31 98 42 11 false) (6 1 1 1 28 121.01 0.2 5 24.2 605.07 0.04 33.61 3 3 3 0 10 10 18 10 1 false) (25 2 1 2 140 759.68 0.06 15.45 49.18 11735.7 0.25 651.98 2 4 10 0 14 29 76 64 3 false) (10 2 1 1 45 206.32 0.1 9.8 21.05 2021.97 0.07 112.33 5 4 6 0 14 10 31 14 3 false) (10 2 1 1 45 206.32 0.1 9.8 21.05 2021.97 0.07 112.33 5 4 6 0 14 10 31 14 3 false) (5 1 1 1 5 11.61 0.5 2 5.8 23.22 0 1.29 3 3 2 0 4 1 4 1 1 false) (14 3 1 2 56 266.27 0.12 8.62 30.91 2294.05 0.09 127.45 4 8 7 0 14 13 40 16 5 false) (20 4 1 4 97 526.35 0.09 11.12 47.35 5850.56 0.18 325.03 3 12 14 0 17 26 63 34 7 false) (28 7 5 5 142 809.46 0.07 14.56 55.58 11789.43 0.27 654.97 4 18 19 0 21 31 99 43 13 false) (3 1 1 1 11 34.87 0.29 3.5 9.96 122.04 0.01 6.78 0 3 7 0 7 2 9 2 1 false) (45 12 5 8 288 1810.2 0.04 26.32 68.78 47644.35 0.6 2646.91 21 29 36 0 28 50 194 94 23 false) (7 2 1 2 25 102.19 0.16 6.19 16.52 632.28 0.03 35.13 0 2 2 0 9 8 14 11 3 false) (7 2 1 2 25 102.19 0.16 6.19 16.52 632.28 0.03 35.13 0 2 2 0 9 8 14 11 3 false) (7 2 1 2 25 102.19 0.16 6.19 16.52 632.28 0.03 35.13 0 2 2 0 9 8 14 11 3 false) (7 2 1 2 25 102.19 0.16 6.19 16.52 632.28 0.03 35.13 0 2 2 0 9 8 14 11 3 false) (7 2 1 2 25 102.19 0.16 6.19 16.52 632.28 0.03 35.13 0 2 2 0 9 8 14 11 3 false) (7 2 1 2 25 102.19 0.16 6.19 16.52 632.28 0.03 35.13 0 2 2 0 9 8 14 11 3 false) (7 2 1 2 25 102.19 0.16 6.19 16.52 632.28 0.03 35.13 0 2 2 0 9 8 14 11 3 false) (11 2 1 1 32 130.8 0.08 12 10.9 1569.59 0.04 87.2 2 2 3 0 12 5 22 10 3 false) (11 2 1 1 48 207.45 0.08 12 17.29 2489.43 0.07 138.3 2 2 3 0 12 8 32 16 3 false) (27 8 4 6 93 484.48 0.07 13.74 35.27 6655.21 0.16 369.73 14 22 9 0 18 19 64 29 15 false) (10 2 1 2 26 104 0.15 6.67 15.6 693.33 0.03 38.52 4 12 5 0 10 6 18 8 3 false) (9 2 1 1 27 110.36 0.12 8.25 13.38 910.48 0.04 50.58 3 3 1 0 11 6 18 9 3 false) (9 2 1 1 43 185.84 0.11 9.17 20.27 1703.56 0.06 94.64 3 3 1 0 11 9 28 15 3 false) (20 3 1 1 36 147.15 0.07 14.67 10.03 2158.18 0.05 119.9 0 0 5 0 11 6 20 16 5 false) (98 10 10 7 486 3428.87 0.04 27.25 125.84 93428.15 1.14 5190.45 6 57 49 0 32 101 314 172 19 false) (172 25 15 24 750 5588.41 0.04 22.99 243.12 128457.87 1.86 7136.55 20 56 77 0 27 148 498 252 49 false) (6 1 1 1 50 216.1 0.18 5.65 38.22 1221.78 0.07 67.88 0 0 2 0 7 13 29 21 1 false) (43 4 1 4 267 1619.65 0.05 19.2 84.37 31093.83 0.54 1727.43 1 29 31 0 19 48 170 97 7 false) (36 2 1 2 171 916.14 0.04 24.18 37.89 22153.96 0.31 1230.78 11 31 34 0 19 22 115 56 3 false) (21 4 1 3 87 472.09 0.11 9.48 49.79 4476.07 0.16 248.67 11 5 14 0 16 27 55 32 7 false) (6 1 1 1 23 92 0.19 5.14 17.89 473.14 0.03 26.29 2 7 2 0 9 7 15 8 1 false) (5 1 1 1 14 51.81 0.22 4.5 11.51 233.13 0.02 12.95 2 0 1 0 9 4 10 4 1 false) (5 1 1 1 14 53.3 0.22 4.5 11.85 239.86 0.02 13.33 3 0 1 0 9 5 9 5 1 false) (8 1 1 1 39 162.63 0.12 8.13 20.02 1321.34 0.05 73.41 5 0 5 0 10 8 26 13 1 false) (6 1 1 1 35 143.06 0.15 6.75 21.19 965.66 0.05 53.65 6 0 4 0 9 8 23 12 1 false) (16 4 1 2 91 474.06 0.05 19.41 24.42 9202.35 0.16 511.24 1 1 5 0 20 17 58 33 7 false) (14 3 1 3 37 167.37 0.1 10.4 16.09 1740.67 0.06 96.7 0 7 4 0 13 10 21 16 5 false) (88 19 9 9 492 3289.76 0.02 48.79 67.42 160516.7 1.1 8917.59 6 51 39 0 33 70 285 207 37 false) (29 4 1 3 151 912.7 0.05 18.53 49.27 16907.83 0.3 939.32 7 6 18 0 26 40 94 57 6 false) (60 21 5 15 809 5767.59 0.01 73.1 78.9 421634.86 1.92 23424.16 16 37 49 0 44 96 490 319 41 false) (52 10 3 6 342 2220.21 0.02 46.67 47.58 103609.98 0.74 5756.11 12 25 31 0 36 54 202 140 19 false) (7 1 1 1 19 76 0.22 4.5 16.89 342 0.03 19 1 0 1 0 8 8 10 9 1 false) (8 1 1 1 34 146.95 0.2 5 29.39 734.73 0.05 40.82 2 5 7 0 8 12 19 15 1 false) (20 1 1 1 99 507.8 0.12 8.25 61.55 4189.34 0.17 232.74 3 4 6 0 11 24 63 36 1 false) (29 6 1 6 133 707.82 0.04 24 29.49 16987.59 0.24 943.76 7 3 5 0 20 20 85 48 8 false) (9 1 1 1 28 114.45 0.14 7.14 16.02 817.49 0.04 45.42 0 0 2 0 10 7 18 10 1 false) (15 4 4 2 55 264.4 0.08 12 22.03 3172.85 0.09 176.27 1 0 1 0 16 12 37 18 7 false) (14 2 1 1 51 239.72 0.11 9.5 25.23 2277.36 0.08 126.52 2 7 7 0 13 13 32 19 3 false) (22 3 1 1 47 215.49 0.12 8.03 26.81 1732.23 0.07 96.24 0 0 1 0 11 13 28 19 4 false) (63 15 4 3 262 1626.88 0.03 35.45 45.89 57670.7 0.54 3203.93 5 0 17 0 35 39 183 79 20 false) (9 2 1 1 40 178.38 0.14 7.22 24.7 1288.28 0.06 71.57 2 1 3 0 13 9 30 10 3 false) (9 2 1 1 39 173.92 0.14 7.22 24.08 1256.07 0.06 69.78 2 0 3 0 13 9 29 10 3 false) (17 4 1 2 68 340 0.07 13.6 25 4624 0.11 256.89 1 1 6 0 17 15 44 24 7 false) (9 3 3 1 19 70.31 0.21 4.8 14.65 337.48 0.02 18.75 0 0 0 0 8 5 13 6 5 false) (10 2 1 1 62 294.8 0.08 12.5 23.58 3685.04 0.1 204.72 4 0 4 0 15 12 42 20 3 false) (3 1 1 1 5 11.61 0.5 2 5.8 23.22 0 1.29 0 0 0 0 4 1 4 1 1 false) (9 5 5 1 31 124 0.16 6.43 19.29 797.14 0.04 44.29 0 0 0 0 9 7 21 10 9 false) (101 19 9 8 677 4887.38 0.02 64.68 75.56 316115.55 1.63 17561.98 44 76 84 0 49 100 413 264 37 false) (29 8 1 6 555 3695.31 0.02 48.05 76.91 177559.52 1.23 9864.42 28 6 17 0 31 70 338 217 15 false) (22 6 5 4 185 1092.77 0.03 29.45 37.1 32187.18 0.36 1788.18 3 8 16 0 27 33 113 72 11 false) (106 13 1 11 421 2739.78 0.04 27.04 101.31 74089.87 0.91 4116.1 0 14 51 0 20 71 229 192 25 false) (21 3 1 3 86 454.54 0.09 11.25 40.4 5113.63 0.15 284.09 0 6 6 0 15 24 50 36 5 false) (10 2 1 2 37 162.52 0.14 7.27 22.35 1181.93 0.05 65.66 0 0 1 0 10 11 21 16 3 false) (17 3 1 3 137 718.97 0.04 24.29 29.6 17460.6 0.24 970.03 4 3 9 0 17 21 77 60 5 false) (13 3 1 3 71 337.6 0.08 13.2 25.58 4456.28 0.11 247.57 4 0 5 0 12 15 38 33 5 false) (4 1 1 1 5 11.61 0.67 1.5 7.74 17.41 0 0.97 0 3 1 0 3 2 3 2 1 false) (49 13 8 6 384 2312.59 0.02 55.62 41.58 128629.96 0.77 7146.11 0 22 15 0 28 37 237 147 25 false) (49 13 8 6 384 2312.59 0.02 55.62 41.58 128629.96 0.77 7146.11 0 22 15 0 28 37 237 147 25 false) (55 14 9 5 366 2272.66 0.02 49.74 45.69 113051.62 0.76 6280.65 1 23 23 0 31 43 228 138 27 false) (55 14 9 5 366 2272.66 0.02 49.74 45.69 113051.62 0.76 6280.65 1 23 23 0 31 43 228 138 27 false) (17 5 4 2 120 620.39 0.04 23.47 26.43 14560.94 0.21 808.94 1 10 4 0 19 17 78 42 9 false) (17 5 4 2 120 620.39 0.04 23.47 26.43 14560.94 0.21 808.94 1 10 4 0 19 17 78 42 9 false) (20 5 4 2 127 671.25 0.04 23.16 28.99 15544.65 0.22 863.59 1 5 3 0 20 19 83 44 9 false) (20 5 4 2 127 671.25 0.04 23.16 28.99 15544.65 0.22 863.59 1 5 3 0 20 19 83 44 9 false) (30 9 9 2 405 2183.89 0.01 76.87 28.41 167872.07 0.73 9326.23 1 12 6 0 23 19 278 127 17 false) (45 15 15 2 581 3190.77 0.01 95.66 33.36 305225.84 1.06 16956.99 1 16 9 0 23 22 398 183 29 false) (20 6 6 2 241 1299.55 0.02 46 28.25 59779.23 0.43 3321.07 1 6 7 0 23 19 165 76 11 false) (41 10 7 2 312 1905.86 0.03 38.79 49.14 73923.53 0.64 4106.85 3 8 6 0 29 40 205 107 19 false) (25 8 8 1 228 1252.14 0.04 27.04 46.31 33856.01 0.42 1880.89 0 8 5 0 19 26 154 74 15 false) (22 5 1 2 114 602.54 0.05 22.11 27.26 13319.21 0.2 739.96 10 22 6 0 20 19 72 42 9 false) (41 4 1 4 247 1453.01 0.04 23.68 61.36 34405.27 0.48 1911.4 0 21 15 0 17 42 130 117 7 false) (48 6 5 4 279 1758.75 0.04 24.77 71.01 43561.75 0.59 2420.1 25 13 40 0 25 54 172 107 11 false) (24 9 1 8 74 355.74 0.09 11.65 30.54 4143.37 0.12 230.19 0 0 9 0 11 17 38 36 17 false) (25 4 1 3 97 480.56 0.04 22.46 21.39 10795.37 0.16 599.74 0 15 16 0 17 14 60 37 7 false) (176 23 15 17 696 5219.89 0.03 37.2 140.31 194194.61 1.74 10788.59 6 100 82 0 38 143 416 280 43 false) (10 2 1 2 21 75.28 0.14 7 10.75 526.99 0.03 29.28 0 0 1 0 8 4 14 7 3 false) (66 9 4 7 342 2203.49 0.03 28.98 76.03 63864.99 0.73 3548.06 5 26 34 0 26 61 206 136 17 false) (32 4 1 3 130 744.63 0.06 16.36 45.51 12184.85 0.25 676.94 9 31 22 0 20 33 76 54 7 false) (18 2 1 2 70 364.66 0.1 10.29 35.45 3750.81 0.12 208.38 0 12 9 0 16 21 43 27 3 false) (3 1 1 1 7 19.65 0.5 2 9.83 39.3 0.01 2.18 0 0 2 0 4 3 4 3 1 false) (14 3 3 2 46 218.72 0.07 13.82 15.83 3022.38 0.07 167.91 3 4 12 0 16 11 27 19 5 false) (29 4 3 3 133 768.92 0.05 19.35 39.73 14882.34 0.26 826.8 4 21 14 0 24 31 83 50 7 false) (104 18 13 7 372 2414.97 0.02 41.38 58.36 99929.77 0.8 5551.65 5 70 38 0 32 58 222 150 35 false) (68 12 5 7 187 1130.3 0.05 21.71 52.05 24543.69 0.38 1363.54 4 58 39 0 24 42 111 76 23 false) (7 1 1 1 7 18.09 0.5 2 9.05 36.19 0.01 2 1 0 2 0 4 2 5 2 1 false) (21 4 1 4 104 567.78 0.06 17.86 31.79 10140.57 0.19 563.36 4 16 19 0 19 25 57 47 7 false) (10 2 1 1 24 103.73 0.2 5 20.75 518.63 0.03 28.81 0 0 1 0 10 10 14 10 3 false) (19 3 1 3 74 366.61 0.1 9.75 37.6 3574.45 0.12 198.58 9 7 13 0 13 18 47 27 5 false) (7 1 1 1 11 34.87 0.29 3.5 9.96 122.04 0.01 6.78 0 0 0 0 7 2 9 2 1 false) (8 1 1 1 11 36.54 0.29 3.5 10.44 127.89 0.01 7.11 0 0 0 0 7 3 8 3 1 false) (8 1 1 1 11 36.54 0.33 3 12.18 109.62 0.01 6.09 0 0 0 0 6 4 7 4 1 false) (8 1 1 1 11 36.54 0.33 3 12.18 109.62 0.01 6.09 0 0 0 0 6 4 7 4 1 false) (19 2 1 1 57 261.33 0.09 10.58 24.71 2764.2 0.09 153.57 0 0 3 0 11 13 32 25 3 false) (10 2 1 1 23 87.57 0.19 5.4 16.21 472.87 0.03 26.27 1 6 6 0 9 5 17 6 3 false) (11 1 1 1 42 155.42 0.16 6.25 24.87 971.37 0.05 53.96 0 1 3 0 5 8 22 20 1 false) (9 1 1 1 18 68.53 0.2 5 13.71 342.66 0.02 19.04 0 0 1 0 10 4 14 4 1 false) (7 1 1 1 10 33.22 0.33 3 11.07 99.66 0.01 5.54 0 0 0 0 6 4 6 4 1 false) (8 1 1 1 46 191.82 0.14 7 27.4 1342.72 0.06 74.6 0 1 2 0 9 9 32 14 1 false) (15 2 1 1 42 178.41 0.1 9.63 18.54 1717.22 0.06 95.4 0 0 3 0 11 8 28 14 3 false) (10 2 1 2 39 171.3 0.09 10.56 16.21 1809.36 0.06 100.52 4 15 6 0 13 8 26 13 3 false) (6 1 1 1 9 27 0.33 3 9 81 0.01 4.5 0 0 0 0 6 2 7 2 1 false) (44 6 1 6 152 886.6 0.05 18.91 46.89 16764.79 0.3 931.38 1 16 12 0 24 33 100 52 11 false) (8 1 1 1 34 138.97 0.16 6.19 22.46 859.9 0.05 47.77 0 2 6 0 9 8 23 11 1 false) (15 2 1 1 62 294.8 0.15 6.87 42.88 2026.77 0.1 112.6 0 0 0 0 11 16 42 20 3 false) (7 1 1 1 30 122.62 0.18 5.63 21.8 689.76 0.04 38.32 0 0 0 0 9 8 20 10 1 false) (6 1 1 1 26 101.58 0.17 6 16.93 609.47 0.03 33.86 0 0 1 0 9 6 18 8 1 false) (15 3 1 3 36 147.15 0.06 18 8.17 2648.68 0.05 147.15 0 0 3 0 12 5 21 15 5 false) (70 13 7 9 355 2263.14 0.04 27.86 81.22 63061.03 0.75 3503.39 6 15 25 0 24 59 218 137 25 false) (24 4 1 4 91 466.76 0.06 16.94 27.55 7907.54 0.16 439.31 3 2 5 0 18 17 59 32 7 false) (6 1 1 1 21 84 0.17 5.79 14.52 486 0.03 27 3 2 5 0 9 7 12 9 1 false) (12 3 1 2 106 525.14 0.06 18.12 28.99 9514.39 0.18 528.58 7 9 15 0 14 17 62 44 5 false) (5 1 1 1 7 19.65 0.5 2 9.83 39.3 0.01 2.18 2 1 3 0 4 3 4 3 1 false) (8 1 1 1 45 187.65 0.09 10.63 17.66 1993.75 0.06 110.76 4 2 5 0 10 8 28 17 1 false) (9 2 1 1 43 185.84 0.07 13.5 13.77 2508.88 0.06 139.38 2 2 6 0 12 8 25 18 3 false) (9 2 1 1 53 232.79 0.06 17.06 13.64 3972.03 0.08 220.67 2 2 5 0 13 8 32 21 3 false) (19 4 1 4 134 731.56 0.05 18.29 40.01 13377.17 0.24 743.18 3 0 4 0 16 28 70 64 7 false) (6 1 1 1 13 43.19 0.33 3 14.4 129.56 0.01 7.2 3 2 5 0 5 5 7 6 1 false) (25 6 1 6 182 1005.29 0.04 23.73 42.36 23858.84 0.34 1325.49 3 0 4 0 16 30 93 89 11 false) (19 3 1 3 72 360 0.1 10.11 35.6 3640 0.12 202.22 1 9 14 0 14 18 46 26 5 false) (76 16 10 11 526 3670.05 0.03 33.87 108.35 124313.16 1.22 6906.29 28 17 35 0 32 94 327 199 31 false) (35 5 1 5 191 1114.08 0.1 10.11 110.24 11259.34 0.37 625.52 1 0 1 0 10 47 96 95 9 false) (8 3 1 2 43 188.87 0.09 10.67 17.71 2014.61 0.06 111.92 7 2 6 0 12 9 27 16 5 false) (14 1 1 1 49 196 0.36 2.77 70.78 542.77 0.07 30.15 0 0 0 0 3 13 25 24 1 false) (7 1 1 1 27 102.8 0.13 8 12.85 822.39 0.03 45.69 2 1 3 0 8 6 15 12 1 false) (27 5 1 4 159 888.01 0.05 20.7 42.9 18381.79 0.3 1021.21 8 19 17 0 23 25 114 45 9 false) (20 3 1 2 205 1138.69 0.03 30.2 37.71 34384.39 0.38 1910.24 10 7 16 0 19 28 116 89 5 false) (27 6 1 2 279 1627.38 0.03 33.51 48.56 54539.1 0.54 3029.95 14 5 11 0 20 37 155 124 11 false) (25 5 1 4 100 552.36 0.05 20.16 27.4 11135.5 0.18 618.64 2 0 5 0 21 25 52 48 9 false) (423 96 27 63 2075 17124.28 0.01 125.77 136.16 2153690.63 5.71 119649.48 80 165 81 0 72 233 1261 814 162 false) (30 5 1 5 189 1061.18 0.07 13.61 78 14437.64 0.35 802.09 1 0 2 0 11 38 95 94 9 false) (10 4 1 3 28 109.39 0.18 5.69 19.23 622.17 0.04 34.57 2 2 20 0 7 8 15 13 7 false) (49 16 10 3 399 2602.9 0.03 31.06 83.81 80843.05 0.87 4491.28 35 12 115 0 24 68 223 176 31 false) (85 32 12 10 589 4031.99 0.02 51.47 78.34 207526.23 1.34 11529.23 53 27 156 0 32 83 322 267 63 false) (8 7 1 1 74 347.83 0.06 16.32 21.3 5681.26 0.12 315.63 15 2 10 0 14 12 46 28 13 false) (50 15 9 1 219 1282.9 0.04 25.26 50.79 32401.84 0.43 1800.1 19 53 17 0 21 37 130 89 29 false) (165 29 27 22 1118 8593.51 0.02 42.76 200.98 367446.53 2.86 20413.7 61 32 48 0 32 174 653 465 57 false) (17 2 1 2 103 505.41 0.11 9.27 54.5 4686.53 0.17 260.36 1 0 1 0 8 22 52 51 3 false) (15 4 1 4 55 267.19 0.08 13.07 20.45 3491.27 0.09 193.96 1 0 1 0 14 15 27 28 7 false) (61 11 7 10 259 1571.12 0.05 18.72 83.91 29416.66 0.52 1634.26 6 8 17 0 20 47 171 88 21 false) (63 12 3 10 493 3343.21 0.02 40.22 83.12 134469 1.11 7470.5 30 18 74 0 31 79 288 205 23 false) (16 3 1 3 82 427.18 0.07 15.16 28.18 6475.08 0.14 359.73 8 4 33 0 18 19 50 32 5 false) (49 13 1 13 132 773.25 0.05 21.53 35.91 16649.11 0.26 924.95 1 0 1 0 26 32 79 53 16 false) (52 14 1 14 142 842.16 0.04 23.03 36.57 19394.56 0.28 1077.48 1 0 1 0 27 34 84 58 18 false) (42 7 1 7 263 1633.09 0.1 10.16 160.8 16586.02 0.54 921.45 1 0 4 0 10 64 133 130 13 false) (62 13 9 10 271 1655.41 0.05 20.34 81.37 33677.25 0.55 1870.96 5 8 16 0 21 48 178 93 25 false) (65 13 3 10 520 3559.65 0.02 43.66 81.52 155431.03 1.19 8635.06 30 19 40 0 33 82 303 217 25 false) (75 17 9 11 471 3235.94 0.03 38.3 84.48 123948.13 1.08 6886.01 25 15 77 0 33 84 276 195 33 false) (8 2 1 1 14 48.43 0.23 4.38 11.07 211.89 0.02 11.77 0 10 4 0 7 4 9 5 3 false) (8 2 1 1 25 106.2 0.16 6.19 17.16 657.1 0.04 36.51 0 5 3 0 11 8 16 9 3 false) (3 1 1 1 5 11.61 0.5 2 5.8 23.22 0 1.29 0 0 1 0 4 1 4 1 1 false) (4 1 1 1 7 16.25 0.67 1.5 10.84 24.38 0.01 1.35 0 0 0 0 3 2 5 2 1 false) (15 4 3 1 52 249.98 0.07 14.68 17.03 3670.2 0.08 203.9 2 14 8 0 17 11 33 19 7 false) (8 2 1 1 14 48.43 0.23 4.38 11.07 211.89 0.02 11.77 0 10 4 0 7 4 9 5 3 false) (9 2 1 2 26 108.42 0.18 5.5 19.71 596.3 0.04 33.13 0 2 3 0 9 9 15 11 3 false) (13 3 1 2 66 313.82 0.07 13.93 22.53 4371.1 0.1 242.84 4 19 13 0 13 14 36 30 5 false) (3 1 1 1 5 11.61 0.5 2 5.8 23.22 0 1.29 0 0 1 0 4 1 4 1 1 false) (4 1 1 1 7 16.25 0.67 1.5 10.84 24.38 0.01 1.35 0 0 0 0 3 2 5 2 1 false) (6 1 1 1 17 64.73 0.22 4.5 14.38 291.26 0.02 16.18 1 7 5 0 9 5 12 5 1 false) (6 1 1 1 16 59.21 0.25 4 14.8 236.83 0.02 13.16 1 7 5 0 8 5 11 5 1 false) (15 2 1 1 40 183.4 0.09 10.64 17.24 1950.69 0.06 108.37 0 7 7 0 13 11 22 18 3 false) (9 1 1 1 21 84 0.19 5.14 16.32 432 0.03 24 0 3 5 0 9 7 13 8 1 false) (9 1 1 1 21 84 0.19 5.14 16.32 432 0.03 24 0 3 5 0 9 7 13 8 1 false) (20 1 1 1 120 629.75 0.06 16 39.36 10076.02 0.21 559.78 1 19 16 0 16 22 76 44 1 false) (7 1 1 1 13 43.19 0.4 2.5 17.27 107.96 0.01 6 2 2 3 0 5 5 8 5 1 false) (3 1 1 1 22 85.95 0.2 5 17.19 429.76 0.03 23.88 1 0 3 0 10 5 17 5 1 false) (3 1 1 1 21 79.95 0.22 4.5 17.77 359.8 0.03 19.99 1 0 3 0 9 5 16 5 1 false) (6 2 1 2 27 112.59 0.16 6.29 17.91 707.7 0.04 39.32 2 6 4 0 11 7 19 8 3 false) (7 1 1 1 13 43.19 0.4 2.5 17.27 107.96 0.01 6 2 2 3 0 5 5 8 5 1 false) (3 1 1 1 22 85.95 0.2 5 17.19 429.76 0.03 23.88 1 0 3 0 10 5 17 5 1 false) (3 1 1 1 21 79.95 0.22 4.5 17.77 359.8 0.03 19.99 1 0 3 0 9 5 16 5 1 false) (6 2 1 2 27 112.59 0.16 6.29 17.91 707.7 0.04 39.32 2 6 4 0 11 7 19 8 3 false) (2 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 false) (2 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 false) (3 1 1 1 1 0 0 0 0 0 0 0 0 12 8 0 1 0 1 0 1 false) (4 1 1 1 5 11.61 0.5 2 5.8 23.22 0 1.29 2 0 3 0 4 1 4 1 1 false) (9 2 1 1 15 51.89 0.23 4.38 11.86 227.03 0.02 12.61 0 8 2 0 7 4 10 5 3 false) (16 1 1 1 88 408.66 0.07 15.32 26.67 6261.24 0.14 347.85 0 4 7 0 11 14 49 39 1 false) (5 1 1 1 5 11.61 0.67 1.5 7.74 17.41 0 0.97 1 1 2 0 3 2 3 2 1 false) (4 1 1 1 15 47.55 0.27 3.75 12.68 178.31 0.02 9.91 3 1 1 0 5 4 9 6 1 false) (5 1 1 1 27 105.49 0.16 6.29 16.78 663.06 0.04 36.84 4 5 2 0 8 7 16 11 1 false) (9 2 1 1 39 171.3 0.1 10 17.13 1713 0.06 95.17 2 5 3 0 12 9 24 15 3 false) (18 3 1 1 47 215.49 0.12 8.03 26.81 1732.23 0.07 96.24 4 0 2 0 11 13 28 19 4 false) (38 10 4 4 142 835.34 0.04 26.1 32 21802.25 0.28 1211.24 4 33 27 0 29 30 88 54 13 false) (14 6 5 1 59 277.33 0.06 17.6 15.76 4880.94 0.09 271.16 2 2 6 0 16 10 37 22 11 false) (47 13 3 2 150 863.23 0.04 27.86 30.99 24047.21 0.29 1335.96 7 14 20 0 26 28 90 60 21 false) (11 2 1 1 29 125.34 0.16 6.11 20.51 765.94 0.04 42.55 0 1 4 0 11 9 19 10 3 false) (11 2 1 1 28 121.01 0.16 6.11 19.8 739.53 0.04 41.08 0 2 5 0 11 9 18 10 3 false) (11 2 1 1 32 142.7 0.1 9.63 14.83 1373.5 0.05 76.31 1 2 3 0 14 8 21 11 3 false) (21 4 4 4 96 492.41 0.1 10.5 46.9 5170.32 0.16 287.24 3 7 7 0 15 20 68 28 7 false) (23 4 4 4 96 492.41 0.1 10.5 46.9 5170.32 0.16 287.24 1 5 7 0 15 20 68 28 7 false) (13 3 1 3 49 240.44 0.14 7.26 33.1 1746.71 0.08 97.04 0 0 0 0 13 17 30 19 5 false) (21 3 1 3 72 377.85 0.09 10.93 34.57 4129.37 0.13 229.41 0 0 0 0 17 21 45 27 5 false) (21 3 1 3 72 380.55 0.1 10.43 36.48 3969.82 0.13 220.55 0 0 0 0 17 22 45 27 5 false) (22 4 4 3 98 531.77 0.08 12.75 41.71 6780.12 0.18 376.67 0 0 0 0 17 26 59 39 7 false) (41 8 6 6 187 1113.43 0.07 14.8 75.22 16481.41 0.37 915.63 1 9 2 0 19 43 120 67 15 false) (22 4 3 2 64 310.91 0.07 14.77 21.05 4591.91 0.1 255.11 0 0 5 0 16 13 40 24 7 false) (9 3 3 1 24 91.38 0.1 10 9.14 913.77 0.03 50.76 0 0 0 0 10 4 16 8 5 false) (50 10 10 9 136 733.36 0.09 11.21 65.44 8218.63 0.24 456.59 0 0 12 0 13 29 86 50 19 false) (29 10 10 8 118 640.3 0.05 20.43 31.33 13084.38 0.21 726.91 1 0 8 0 20 23 71 47 19 false) (50 10 10 9 138 757.88 0.1 10.16 74.62 7697.18 0.25 427.62 0 0 12 0 13 32 88 50 19 false) (29 19 1 8 216 1310.28 0.05 18.55 70.63 24306.94 0.44 1350.39 8 0 5 0 18 49 115 101 37 false) (29 7 5 2 100 508.75 0.04 25.33 20.08 12888.24 0.17 716.01 0 9 5 0 19 15 60 40 13 false) (9 1 1 1 81 366.41 0.05 20.22 18.12 7409.59 0.12 411.64 0 2 3 0 14 9 55 26 1 false) (16 4 4 1 135 675 0.04 24.37 27.7 16447.5 0.23 913.75 0 3 4 0 17 15 92 43 7 false) (9 1 1 1 25 104.25 0.2 5 20.85 521.24 0.03 28.96 0 0 0 0 9 9 15 10 1 false) (6 1 1 1 19 70.31 0.29 3.43 20.51 241.06 0.02 13.39 0 0 0 0 6 7 11 8 1 false) (30 7 3 4 171 955.03 0.03 30.04 31.79 28687.59 0.32 1593.75 0 2 7 0 22 26 100 71 13 false) (14 2 1 2 20 71.7 0.35 2.86 25.09 204.86 0.02 11.38 0 0 2 0 5 7 12 8 3 false) (56 22 1 12 455 2982.34 0.02 53.98 55.25 160995.7 0.99 8944.21 0 1 10 0 35 59 273 182 40 false) (21 3 1 3 214 1207.79 0.04 26.67 45.29 32207.61 0.4 1789.31 1 10 7 0 20 30 134 80 5 false) (14 1 1 1 80 380.39 0.11 9.5 40.04 3613.71 0.13 200.76 3 12 7 0 9 18 42 38 1 false) (7 1 1 1 8 24 0.5 2 12 48 0.01 2.67 0 0 1 0 4 4 4 4 1 false) (16 3 3 1 40 169.92 0.17 5.85 29.05 994.02 0.06 55.22 0 0 3 0 9 10 27 13 5 false) (22 3 1 3 229 1335.73 0.04 25.08 53.25 33504.61 0.45 1861.37 1 4 5 0 21 36 143 86 5 false) (27 4 1 3 75 360.55 0.09 11.7 30.82 4218.45 0.12 234.36 0 3 9 0 13 15 48 27 7 false) (3 1 1 1 12 39.86 0.29 3.5 11.39 139.52 0.01 7.75 0 0 0 0 7 3 9 3 1 false) (7 2 1 1 27 105.49 0.08 12 8.79 1265.83 0.04 70.32 0 0 1 0 10 5 15 12 3 false) (3 1 1 1 14 48.43 0.23 4.38 11.07 211.89 0.02 11.77 0 0 0 0 7 4 9 5 1 false) (7 1 1 1 29 110.41 0.21 4.88 22.65 538.26 0.04 29.9 0 0 0 0 6 8 16 13 1 false) (9 3 1 1 41 170.97 0.07 14.14 12.09 2417.96 0.06 134.33 0 0 1 0 11 7 23 18 5 false) (11 3 1 1 49 215.22 0.07 14.67 14.67 3156.61 0.07 175.37 0 0 1 0 12 9 27 22 5 false) (4 1 1 1 13 39 0.33 3 13 117 0.01 6.5 0 0 0 0 4 4 7 6 1 false) (3 1 1 1 7 19.65 0.4 2.5 7.86 49.13 0.01 2.73 0 0 0 0 5 2 5 2 1 false) (12 3 1 1 51 227.43 0.1 10.42 21.83 2369.07 0.08 131.62 0 0 1 0 10 12 26 25 5 false) (31 4 1 2 141 829.45 0.05 21.52 38.55 17846.19 0.28 991.46 1 19 15 0 27 32 90 51 7 true) (29 5 1 3 111 641.73 0.08 12.33 52.03 7914.68 0.21 439.7 4 22 27 0 22 33 74 37 9 true) (71 10 8 9 211 1251.39 0.04 27.11 46.15 33930.43 0.42 1885.02 6 45 30 0 26 35 138 73 19 true) (15 2 1 2 74 385.5 0.07 14.25 27.05 5493.37 0.13 305.19 0 7 9 0 19 18 47 27 3 true) (33 6 1 5 172 989.84 0.05 18.46 53.63 18269.63 0.33 1014.98 7 30 31 0 19 35 104 68 11 true) (92 4 1 4 822 6234.84 0.04 26.64 234.02 166113.93 2.08 9228.55 7 46 62 0 24 168 449 373 7 true) (44 7 1 7 269 1746.31 0.05 22.12 78.96 38620.28 0.58 2145.57 6 14 36 0 25 65 154 115 13 true) (143 13 1 12 695 4996.93 0.04 28.52 175.18 142535.33 1.67 7918.63 11 57 93 0 24 122 405 290 25 true) (196 37 21 26 1177 9135.35 0.01 71.54 127.7 653537.1 3.05 36307.62 14 170 155 0 52 165 723 454 71 true) (12 1 1 1 37 159.91 0.11 9 17.77 1439.2 0.05 79.96 0 1 7 0 12 8 25 12 1 true) (12 1 1 1 37 159.91 0.11 9 17.77 1439.2 0.05 79.96 0 1 7 0 12 8 25 12 1 true) (133 30 1 26 605 4185.91 0.01 77.46 54.04 324260.81 1.4 18014.49 3 91 55 0 50 71 385 220 34 true) (28 3 1 2 104 557.19 0.07 15.24 36.57 8490.44 0.19 471.69 0 11 9 0 20 21 72 32 5 true) (91 20 9 4 568 3740.26 0.02 51.47 72.67 192513.32 1.25 10695.18 20 96 46 0 28 68 318 250 39 true) (41 4 3 3 129 745.8 0.08 13.19 56.52 9840.36 0.25 546.69 0 12 1 0 19 36 79 50 7 true) (149 20 1 18 702 5081.36 0.03 29.58 171.78 150305.78 1.69 8350.32 0 62 10 0 32 119 482 220 37 true) (411 73 30 41 1500 12749.77 0.02 43.41 293.68 553518.63 4.25 30751.03 45 339 42 0 48 314 932 568 141 true) (121 15 3 12 537 3817.28 0.04 23.26 164.09 88801.93 1.27 4933.44 3 29 16 0 24 114 316 221 29 true) (130 20 9 10 607 4282.56 0.02 51.6 83 220979.91 1.43 12276.66 23 65 12 0 38 95 349 258 37 true) (79 12 4 6 201 1227.81 0.07 13.73 89.42 16858.82 0.41 936.6 14 78 2 0 17 52 117 84 23 true) (57 9 1 7 213 1318.43 0.03 29.27 45.05 38588.27 0.44 2143.79 6 7 6 0 32 41 138 75 15 true) (49 7 1 5 229 1341.48 0.07 13.6 98.6 18250.34 0.45 1013.91 6 4 3 0 15 43 151 78 13 true) (58 10 5 1 187 1038.71 0.03 33.52 30.99 34816.7 0.35 1934.26 6 6 9 0 21 26 104 83 19 true) (28 3 1 3 148 835.29 0.05 18.67 44.75 15592.09 0.28 866.23 2 11 40 0 20 30 92 56 5 true) (13 3 1 3 38 164.23 0.14 7.33 22.4 1204.38 0.05 66.91 2 0 0 0 11 9 26 12 5 true) (71 8 1 7 307 1993 0.05 21.94 90.85 43721.41 0.66 2428.97 6 39 25 0 26 64 199 108 15 true) (22 2 1 2 114 575.06 0.06 15.43 37.27 8872.37 0.19 492.91 1 19 27 0 12 21 60 54 3 true) (22 5 5 3 84 440.83 0.08 12.55 35.13 5531.32 0.15 307.3 0 17 9 0 17 21 53 31 9 true) (59 7 1 7 349 2318.71 0.05 22.14 104.75 51324.87 0.77 2851.38 16 23 32 0 26 74 223 126 13 true) (19 1 1 1 118 561.08 0.08 12 46.76 6732.92 0.19 374.05 1 3 10 0 8 19 61 57 1 true) (89 24 9 19 402 2603.24 0.02 47.6 54.69 123914.45 0.87 6884.14 4 62 30 0 34 55 248 154 32 true) (32 4 1 4 121 648.26 0.05 18.57 34.91 12037.08 0.22 668.73 3 24 13 0 19 22 78 43 7 true) (74 11 11 9 354 2274.9 0.03 36.74 61.92 83581.43 0.76 4643.41 7 28 31 0 32 54 230 124 21 true) (32 4 1 4 117 574.11 0.04 22.75 25.24 13060.92 0.19 725.61 0 4 17 0 14 16 65 52 5 true) (107 18 9 10 516 3366.16 0.02 64.92 51.85 218524.86 1.12 12140.27 9 73 51 0 37 55 323 193 35 true) (7 1 1 1 30 122.62 0.18 5.63 21.8 689.76 0.04 38.32 0 0 0 0 9 8 20 10 1 true) (19 3 1 1 85 439.44 0.1 9.64 45.57 4237.49 0.15 235.42 2 22 12 0 15 21 58 27 5 true) (18 3 1 3 60 297.25 0.11 9.47 31.39 2815.15 0.1 156.4 3 34 14 0 14 17 37 23 5 true) (22 3 1 3 81 439.53 0.09 11.08 39.66 4871.43 0.15 270.63 3 11 10 0 19 24 53 28 5 true) (20 3 1 3 64 330.88 0.1 10.5 31.51 3474.19 0.11 193.01 2 19 8 0 18 18 43 21 5 true) (8 1 1 1 24 103.73 0.2 5 20.75 518.63 0.03 28.81 0 7 7 0 10 10 14 10 1 true) (44 8 4 7 159 971.26 0.08 13.06 74.36 12685.78 0.32 704.77 2 31 10 0 20 49 95 64 15 true) (91 18 7 16 591 4176.06 0.05 21.41 195.05 89412.4 1.39 4967.36 4 18 4 0 22 112 373 218 35 true) (47 3 1 3 256 1563.78 0.04 28 55.85 43785.9 0.52 2432.55 2 13 2 0 23 46 144 112 5 true) (24 4 3 3 107 587.63 0.05 19.13 30.72 11241.58 0.2 624.53 1 7 4 0 22 23 67 40 7 true) (82 11 3 10 475 3155.83 0.02 44.71 70.59 141084.24 1.05 7838.01 9 59 35 0 32 68 285 190 21 true) (10 2 1 1 32 150.41 0.15 6.5 23.14 977.69 0.05 54.32 1 12 4 0 13 13 19 13 3 true) (28 6 5 5 104 564.33 0.06 16.09 35.08 9078.38 0.19 504.35 2 7 0 0 20 23 67 37 11 true) )))