
Clump: CLUstering on Many Predicates

Bryan Lemon
Lane Department of Computer Science and

Electrical Engineering
West Virginia University

PO Box 6109
Morgantown, WV, 26506-6109
bryan@bryanlemon.com

Tim Menzies
Lane Department of Computer Science and

Electrical Engineering
West Virginia University

PO Box 6109
Morgantown, WV, 26506-6109

tim@menzies.us

ABSTRACT
Current clustering algorithms are slow, with high order poly-
nomial run-times. Current algorithms also cluster data by
Euclidean distance. We propose an algorithm called Clump.
Clump is a Naive Bayes classifier augmented by a rule tree
based clusterer. Clump runs in low order polynomial time,
and clusters by attribute similarity rather than full Euclidean
distance. Clump clusters the data, and during testing, forms
a naive bayes classifier with the data at each node.

Clump and other learners are tested against 7 datasets.
These datasets [21] represent projects ranging from video
guidance, a NASA dataset, to small appliance controllers, a
SoftLab dataset.

Information about the results and conclusion will
go here later.

1. INTRODUCTION
This paper demonstrates how an incremental clusterer can

aid in classification. Clustering algorithms aid in classifica-
tion by grouping like data together. This grouping helps
to reduce the noise in the data, thereby reducing the false
alarm rate [23]. Current clustering algorithms have a high
order polynomial run-time, usually in the form of O(n2) or
higher [1, 19]. Other clustering algorithms have faster run-
times, but have execution time parameters that need to be
tuned to each specific dataset [12]. We propose a self tuning
clustering algorithm that runs in low order polynomial time.

The proposed solution is called Clump, standing for CLUs-
tering on Many Predicates. This solution provides a method
for the domain expert to create, audit, and modify the de-
cision tree. By allowing the end user to oversee the creation
of the decision tree, Clump provides a mechanism to repair
broken rules, and provide domain specific insight. The rule
tree also expands as needed, in response to the current intra-
node entropy. This automated growth removes the necessity
of dataset specific parameters from configuring the learner
and training on the data.

With most clustering algorithms [1,18,19], the Euclidean

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

iv(g) is in bin 2

�
��

�
��

H
HH

H
HH

true

loc is in bin 3

false

l is in bin 1

��
�
��

HH
H

HH

true

loc is in bin 3

false

lOComment is in bin 1

�
��

�
��

H
HH

H
HH

true

null

false

loc is in bin 3

�
��

H
HH

true

iv(g) is in bin 3

��
��

HH
HH

true

v(g) is in bin 0

�
��

H
HH

true

null

false

loc is in bin 3

false

null

false

null

Figure 1: A sample rule tree for the KC1 dataset

distance between two instances is used as the nearness func-
tion. When a group of instances have a small Euclidean
distance when compared to other instances in that group,
they form a cluster. Depending on the clustering algorithm,
there can be sub-clusters [19].

With Clump’s human maintainability, it gains the benefit
of expert systems with the generation speed of automated
clustering. The following sections will describe Clump as it
pertains to automated generation, and compare it to other
rule based and statistical learners. Options for human main-
tainability are described in §7.

2. PROPOSED SOLUTION
A rule tree classifier called Ripple Down Rules(RDR) was

proposed by Paul Compton in his 1991 paper titled “Ripple
Down Rules: Possibilities and Limitations” [5]. A basic Rip-
ple Down Rule tree is defined as a binary tree where each
node contains:

• A classification

• A predicate function

• A true branch

• A false branch

The true and false branches are other nodes that may or
may not exist. The true and false branches are followed
depending on the outcome of the predicate function during
testing. The true and false nodes are created on demand,
and are patches to the tree. Ripple Down Rule trees are
human maintainable and explainable.

With Clump, if the amount of entropy1 in a node exceeds a
threshold value, a patch is created to reduce the intra-node
entropy. Like Ripple Down Rule trees, the clusters made
by Clump are also human maintainable. Figure 2 shows a
sample rule tree generated by Clump.

Clump differs from standard clusterers. Most clustering
algorithms group rows based on the Euclidean distance be-
tween two rows or cluster centroids [1, 12, 18, 19]. This Eu-
clidean distance (Equation 1) is determined by the combined
absolute value of the delta between the two rows or the row
and the centroid.

kX
x=0

∆(|row1[attributex]− row2[attributex]|) (1)

Clump accomplishes its clustering, not by Euclidean dis-
tance, but by how relevant a particular feature is in split-
ting the data. The exact equations used in determining the
relevancy of a give attribute are shown in §4.3 Equation 2 -
Equation 5. Grouping data by relevancy accomplishes much
the same as grouping data by Euclidean distance. It provides
several benefits as well. There is an explanation as to why
a particular instance belongs to a particular cluster. Also,
the standard n2 runtime of clustering algorithms is avoided
because decisions made in generating the tree are made in
respect to each row as its being examined, not to every row
as each row is being examined.

One goal of Clump is to create rule trees that are main-
tainable. The maintenance can be accomplished in two
ways. First, if a rule tree is small enough, a human to look at
the tree, and remember most if not all of it by recall. This al-
lows the human to notice additions/subtractions that could
be made to the tree by utilizing domain specific knowledge.
Second, a tree can be built during initial training, and while
being used with real-time data, can be patched to adapt to
the changing data. A second goal of Clump is to form the
nearest neighbor structure from the data in linear or low
order polynomial time.

Rule trees offer a significant advantage to frequency count
learners such as Naive Bayes:

Rule trees offer not just answers, they offer ex-
planation.

Unlike Ripple Down Rules, Clump is not used for classifi-
cation, but for clustering. Clump is used to find the struc-
ture within the data while avoiding the standard O(n2) clus-
tering algorithms. While testing, Naive Bayes is used to do
the classifying once the data has been limited by Clump as
a clusterer.

91Entropy is used to represent a mix of different classes in a
general sense, not in the standard entropy calculation

This paper will explore the Clump/Naive Bayes combina-
tion while using 7 datasets from the Promise Data Reposi-
tory [10]. The chosen datasets focus on software defect pre-
diction.

3. RELATED WORK
The performance of Clump will be compared to several

different learners in §5 and §6. Among these learners will
be:

• RIpple DOwn Rules, also known as Ridor [9]

• j482

• jRip3

• OneR [13]

• Naive Bayes [17]

• Locally Weighted Learning [7]

Four of the learners listed above are all rule based learners.
Ridor is a version of a Ripple Down Rule tree. j48/C4.5 is an
extended version of Quinlan’s ID3 tree. jRip/RIPPER is an
optimized version of Cohen’s IREP. OneR is a 1R algorithm;
as soon as one rule is matched, the processing stops. Locally
Weighted Learning is Naive Bayes augmented by weighting
training instances by their nearness to the test instance.

3.1 Classifier Algorithms

3.1.1 j48/C4.5
j48/C4.5 is based in the ID3 tree learner. It creates chooses

its splits in data based off of normalized information gain of
the attributes. Once an attribute is chosen, new child nodes
are created for each of the values present in the chosen at-
tribute. The algorithm then recurses on each of the children
nodes. This differs from Clump because each node can split
into at most 2 additional nodes: one for the true branch,
and one for the false branch. Clump chooses a predicate
function for the node, while j48 chooses an attribute to split
on.

3.1.2 jRip/RIPPER
jRip, also called RIPPER, is a rule based algorithm rather

than a rule tree algorithm. RIPPER stands for Repeated In-
cremental Pruning to Produce Error Reduction. RIPPER
creates as series of individual rules, adding conjunctions un-
til the rule only satisfies members of one class. The rules
are then pruned to remove the rules that decrease the per-
formance of the algorithm. RIPPER is closer to OneR than
Clump because RIPPER creates a series of conjunctions. If
the test data matches the first rule, the class of the first rule
is chosen. The test data is passed down the rule list until
it matches on rule or the final catch-all rule is chosen. RIP-
PER explores all possible rules, while Clump explores only
the necessary rules to create the tree.

92This is a Java representation of J. Quinlan’s c4.5 learner. [20]
93This is a Java representation of W. Cohen’s RIPPER learner. [4]

Clump Ridor Ripple Down Rules

How Rules are Chosen

The attribute value pair that
decreases the mixuped-ness of
the resulting dataset as de-
scribed in §4.3.1 is used to
patch the tree.

The attribute value pair that
has the maximum info gain is
used to patch the tree.

A human creates the patch
by examining the training in-
stance and creating a patch
manually.

When to Make a Rule
When the mixuped-ness as
defined in §4.3.1 passes a
threashold.

When eneough training in-
stances have been misclassi-
fied. This is a runtime con-
figuration option.

When a training instance is
misclassified.

Incrimental or Batch Incrimental or batch Batch only Incrimental only

Figure 2: Comparing the difference between classifiers: Clump, Ridor, and Traditional Ripple Down Rules

3.1.3 OneR
OneR, also referred to as 1R, creates a series of rules. The

rules are compared to the testing data one by one. As soon
as a rule matches, processing terminates for the matching
rows, and the matching rule’s classification is assigned to the
rows. Over-fitting avoidance is accomplished by requiring
each rule to match a pre-determined number of rows. The
attributes are ranked according to their error in classifying
the training set, rather than some entropy or information
gain metric. This learner is included as the “straw man” of
the rule based classifiers.

3.1.4 Naive Bayes
Naive Bayes makes many assumptions about data. All

attributes are:

• assumed to be equally important.

• statistically independent.

• do not predict values of other attributes

These assumptions rarely hold up to real world data, but em-
pirically, they work quite well [6]. Naive Bayes is frequently
augmented by different pre and post processing algorithms
to attempt to reduce the its naivety while still maintaining
its performance and runtime.

Naive Bayes runs in O(n) time, as no structure is built, no
rules are learned, and no complex processing is done. Only
frequency statistics are gathered during training, followed by
simple arithmetic during testing. Missing values are handled
by ignoring that attribute during calculations. The major
drawback to Naive Bayes is that, although Naive Bayes offers
conclusions, it offers little insight into how these conclusions
were reached. By adding a decision tree to Naive Bayes, we
hope to add the “why” to the “what” of Naive Bayes.

3.1.5 Locally Weighted Learning
Locally Weighted Learning, or LWL, is lazy naive bayes

classifier. It is called lazy because, upon training, the data is
just stored, leaving the computational work to occur during
testing. Testing is accomplished one row at a time. As each
row is tested, the records in the training set are weighted
based on their Euclidean distance from the testing row. Af-
ter the training instances are weighted, a standard naive
bayes algorithm is applied.

This algorithm assumes that the data near the testing row
holds the most relevance to it. It is possible that two rows
can be near each other while never sharing a common at-
tribute. It is also possible that two rows could be identical in

several attributes, while having many that are substantially
different. Clump attempts to balance these two approaches
by grouping data by their similarities and minimizing en-
tropy.

3.1.6 RIpple DOwn Rules/Ridor
Ridor, or RIpple DOwn Rules, by Compton is the first

implementation of a Ripple Down Rule tree. The main dif-
ference between Ridor and Clump is that Ridor is a classifier
and Clump is an incremental clusterer. Overlooking the dif-
ference in usage, we can compare the generation of the two
learner’s trees. Ridor generates its trees using information
gain to split continuous attributes into two bins, and then
uses a ≤ or > operator to represent the split. Clump on the
other hand splits its data into equal width bins before using
its own scoring function(described in §4.3 to determine the
chosen attribute and range to split on.

A traditional Ripple Down Rules tree as described in [5]
has a rule with an “except” and “or” branch that represents
the true patch and false patch respectively. A patch is cre-
ated as new data enters the tree that violates a previous
rule. By patching the tree, it can remain relevant even as
new, previously unseen, data is discovered.

3.2 Clustering Algorithms
Clustering algorithms attempt to reduce the time needed

to search for nearest neighbors. They accomplish this by
forming a tree of the nodes in the training set. The children
of each node contain the other nodes that share some “near-
ness” to the parent. The speedup in searching time needs to
be balanced with the time necessary to create and maintain
this tree.

3.2.1 Cover Trees
The Cover Tree algorithm was created by Beygelzimer et

al. [1] in 2006. It forms a tree with the top level of the
tree being of level i, where i ≥the number of levels in the
tree. Starting at the root node, as the tree is descended, i
decrements. At each node of the tree, the distance between
any two points of the node’s children is greater than 2i−1.
At least one point p in the node is within 2i of any point q
in the node’s children.

Cover trees have a maximum insertion time of O(c6nln(n))
[1], where c is the dimensionality of the dataset. This inser-
tion time is theoretical and represents the worst case sce-
nario. While the creation time is high, the querying time is
only O(c12lnn).

3.2.2 KD-Trees
A KD-Tree is a binary tree where the data is split at each

node based on some dimension d, and a point along that
axis [18]. A training row r is chosen to be the splitting row
for a node. Any training row who’s dth dimension is less
than the dth dimension of r belongs to the left subtree, and
the rest belong to the right subtree.

Querying the KD-Tree for the nearest neighbor takes at
least O(ln(N)) time, and can take up to O(N) time for some
distributions. The more evenly the data is spread across
the k-dimensional space, the closer the runtime will be to
O(ln(N)). If the training data is clustered in a small sub-
set of the space, and the testing data is not clustered in
that subset, then the majority of the space will have to be
searched. This will push the runtime closer to the worst case
scenario.

3.2.3 Ball Trees
Ball trees are like Cover trees, where the parent nodes

contain all of that node’s children nodes. One benefit of ball
trees over KD-trees is that ball trees do not need to partition
the whole space [19]. Also, the children’s balls are allowed
to intersect with each other. A parent’s ball is large enough
to encompass all of its children and their balls. There are
two main ways to construct the ball trees:

• Bottom Up: The tree is constructed from the leaves to
the root node. This provides the optimum trees, but
takes the longest to construct.

• Top Down: The tree is constructed from the root to the
leaves. This provides the fastest construction time, but
performs worse than trees generated with the Bottom
Up method.

3.3 Burak Filter
The Burak filter was designed to aid in Cross Company

defect prediction. As noted by Turhan et al., when Cross
Company data was used in defect prediction, the recall and
false alarm rates both increased drastically [?]. They deter-
mined that this was caused by the increase defect examples,
both pertinent and extraneous. To remove the extraneous
examples, the training data is filtered with respect to the
testing data.

This filter used the Euclidean distance between the test-
ing and training examples to find the k nearest neighbors
per test instance. The nearest neighbors for each test in-
stance are combined to form the training set. Any training
instances that are within the k nearest neighbors of more
than one test instance are only included once in the final
training set. By training on only the nearest neighbors to
the test instances, theoretically only the relevant training
instances are examined.

The cost associated with generating this nearest neighbor
information is exponential, in the order of O(NtrainNtest).
For large datasets, this preprocessing runtime is impractical
as the neighbor information must be recalculated for each
testing example. Clump is is proposed as an alternative to
to Burak filter.

3.3.1 Clump versus Burak filter
Clump and the Burak filter [24] both are used as a cluster-

ing algorithm designed to aid a classifier. The Burak filter
finds the k nearest neighbors, based on Euclidean distance,

to each testing instance. This information is then passed
to a classifier for final classification. Like the Burak filter,
Clump also finds the nearest neighbors. The neighbors for
Clump are determined by the training rows left in the var-
ious nodes of the Clump tree. The testing instances are
run down the tree, and the resultant data is gathered. This
process is described in more detail in §4.4.

The main difference between Clump and the Burak filter,
run-times aside, is in the amount of data returned. The Bu-
rak filter finds the k nearest neighbors. Enforcing a value of
k can cause unwanted data to be gathered, or useful data to
be set aside. If the testing row falls in a very specific region
of the n dimensional space where few other instances fall,
rows that are distant from the testing example can be in-
cluded in training the final classifier. Likewise, if the testing
row falls in a highly populated area, many useful rows can
be left behind. Clump overcomes this by including only the
rows which are similar to the testing row according to the
rule tree generated during training.

4. DESIGN OF CLUMP
Clump is a rule based decision tree clusterer. At its core,

it is a binary tree with nodes that can have 0 − 2 children.
Each node consists of a rule, its true and false conditions
(if any), and a collection of training data that has reached
that node. When testing, a testing example travels down
the tree until it reaches a point where there are no children
nodes for it to follow. The data that stored in that node is
then passed to a naive bayes classifier for final classification.

Most clustering algorithms use the nearest neighbor calcu-
lation to determine which cluster a record belongs to. This
record by record comparison takes O(n2) comparisons, each
record must be compared against every other record to min-
imize the dissimilarity. Clump creates it’s clusters, not by
minimum dissimilarity, but by grouping records with similar
attributes. Grouping by similar attributes leads to decreased
run-times. Frequency counts can be gathered, and cached,
which leads to decreased run-times. Frequency counts can
be used to determine which attribute value pair to split on
because of the types of rules created by Clump.

When training, Clump produces greedy rules, adding one
attribute to the rule at each level of the tree. Clump per-
forms local feature subset selection as it creates the rules,
only considering attributes that have not been considered
further up the tree. The most important feature, deter-
mined by the reduction in entropy, is chosen for the splitting
criteria at each branch of the tree. When choosing the split-
ting criteria, the standard entropy calculation is not used.
The entropy is determined by the frequency of the different
classes represented in the training rows at each branch of
the tree, relative to the overall frequency of each class. This
allows some features that might only be important under
specific circumstances to be used when needed, and ignored
in the other parts of the tree.

4.1 Runtime Complexity
The theoretical runtime of Clump while training is O((3kn+

k) ∗ logkn) where k is the number of columns in the dataset,
and n is the number of rows. When training, each record is
examined to determine which bin it belongs to (O(1kn)). To
create the bins, the minimum and maximum values of each
attribute must be found (O(1kn)). Next, a Naive bayes clas-
sification table is built with a runtime cost of O(1kn). If the

Clump K-Means Locally Weighted Learning

Clusters With Dependant attributes Independant attributes Independant attributes
Clusters By Attribute similarity Euclidean distance Euclidean distance
Clusters on Attribute similarity Nearest centroid Nearest neighboor

Training behavior
Creates a decision tree with
the relevant training instances
at each leaf

Creates clusters to be used by
another algorithm

Delays processing until test-
ing time.

Testing behavior

Creates a naive bayes classi-
fier based off of the training
data at the node that the test
instance resides at.

Not applicable. K-Means does
no classification

Finds the k nearest neigh-
boors and weights them ac-
cording to the normalized eu-
clidean distance from the test
instance. It then builds a
naive bayes classifier off of the
weighted data.

Figure 3: Comparing the differnece between clustering algorithms: Clump, K-Means, and Locally Weighted
Learning

data requires, a patch is created by examining the frequency
count tables for an attribute value pair that will reduce the
mixuped-ness of the data. This is repeated at each level of
the tree with the amount of data, in both the row count and
the column count, decreasing at each level of the tree.

With the current built-in classifier of Naive Bayes, the
theoretical maximum runtime for testing is O(nkd), where
d is the depth of the tree. This worst case scenario oc-
curs when all the data is contained in a single cluster. The
current maximum depth is limited to 15 levels. The theoret-
ical minimum runtime for testing is O(nk

d
). This best case

scenario occurs when the data is evenly distributed across n-
dimensional space, causing each node in the tree to contain
an equal number of rows.

4.2 Discretization
The rules are based on which bin the discretized attributes

belong in. Rather than rules reading: “If attributex < value
then ...”, the rules for Clump read: “If attributex is in bin x
then ...”. Discretizing is done using equal width discretiza-
tion [25]. Each attribute range is broken up into three differ-
ent bins, with each bin having the same width, or the same
distance between the minimum and maximum values for the
bin. Three bins were chosen by experimental testing.

4.3 Training
Training, like most tree building algorithms is a recursive

process. Initially, a root node is made and populated with
the entire training set. The default class is also set to the
majority class. This root node is then passed to the train-
ing function. The training function looks at the data in the
node, and if there are ≤ 15 rows in the data, training ter-
minates. If there are ≥ 15 rows in the data, an optimal
splitting criteria is chosen. Two resultant nodes are created
and added as children of the generating node. All data from
the generating node that satisfies the optimal splitting cri-
teria is added to the true child node, and all that does not
is added to the false child node. The process then recurses
until all nodes are created.

The optimal splitting criteria is used to create the rule,
and split the data into two groups: the data that satisfies
the splitting criteria, and the data that does not satisfy the
splitting criteria. Each rule created is conditional on the
node’s parent’s rule.

4.3.1 Scoring Function
When choosing the optimal splitting criteria, all possible

splitting criteria for both positive and negative classes at a
node are explored. Each possible split receives a score based
on the relative frequency of the positive and negative records
as described in Equation 2 - Equation 5.

Ptrue =
Ftrue | v

Ftrue
(2)

Pfalse =
Ffalse | v

Ffalse
(3)

Scoretrue =
Ptrue

Ptrue + Pfalse
(4)

Scorefalse =
Pfalse

Pture + Pfalse
(5)

This scoring function removes the bias to choose classes
with more overall support. This is done by normalizing the
frequency of the class at a node by representing it as the
percentage of all examples of class C present in the node.
Comparing the relative frequency of the true versus the false
nodes this way can show the presence or lack thereof of a
bias towards one class versus the other.

4.3.2 Dependant/Independent Attributes
An attribute is independent [14] when the attribute value

is disassociated from the class attribute. A dependant [14]
attribute is when the attribute value is considered in con-
junction with the class attribute. Most clustering algorithms
consider independent attributes, building clusters without
considering the classes of the intra node instances. Clump
builds its clusters by reducing intra node entropy. To ac-
complish this, an attribute value is chosen according the the
process is §4.3.1. The attribute chosen will create two sub
clusters each containing a higher frequency of one class than
the combine parent cluster.

4.3.3 Boosting
Traditional boosting [22] is where the training instances

that fail classification with one learner will be used to train
a second learner. This process can be repeated many times,

function Training(data)
if(numRows == 0 || depth >= 15)
exit;

for(row in data)
for(colum in columns)
columnWidth =

max(column) − min(column)
3

row[column].value =
row[column].value − min(column)

columnW idth

choices = GetColumnWeights(data)

maxChoice = max(choices);

rule = CreateRule(maxChoice, data)

return rule
rule.true = Training(data | rule)
rule.false = Training(data | !rule)

function CreateRule(choice, data)
rule.function = choice
rule.true = Training(data | choice)
rule.false = Training(data | !choice)
return rule

function GetColumnWeights(data)
for(column in columns)
for(bin in column)
trueData = data | column.value = bin && data.class = true
falseData = data | column.value = bin && data.class = false
column.bin.weight = max(trueData.size

data | data.class = true
, -

falseData.size
data | data.class = false

)

Figure 4: Pseudo code of the Clump Training pro-
cess

function Testing(data)
chunks = split(data)
for(chunk in chunks set)
for(row in chunk)
gatheredData += GatherData(tree, row)

nb = NaiveBayes(gatheredData)
return nb(data)

Figure 5: Pseudo code of the Clump Testing process

resulting in a chain of learners that can then be pooled for
final classification. This is commonly referred to as “toilet
learning” as each successive learner is trained off of the dregs
of the learner before it. Clump represents boosting by cre-
ating sub clusters of data when the data added to a cluster
becomes too diverse. Clump creates sub clusters that have a
lesser combined mean degree of diversity within each other
than within the parent cluster.

4.4 Testing
When testing, one or more testing rows are combined to

form a chunk of rows. Each row from a chunk is sent down
the tree, and the data stored at the node where the row stops
is combined. The row of data continues its travel down the
tree, following the true and false branches as necessary until
a leaf node is reached. The row then travels back up the tree
until the last satisfied rule is reached. While combining the
data, any duplicates are ignored4. This combined training

94A duplicate is defined as a specific training instance, not the
combination of attribute values

data is then passed to a naive bayes classifier. Each row in
the testing chunk is then passed to the naive bayes classifier
for final classification.

When gathering the data for the naive bayes classifier,
each node is marked if the data should be used in classifica-
tion. Each node will only be included once, even if multiple
chunk rows fall to that node. Some data may be included
more than once because if a row stops at a parent node and
another row stops at a child node, the data in the child node
is also included in the parent node.

5. EXPERIMENT
Clump is being used as a software defect predictor for

the NASA/MDP data sets5 from the Promise Data Reposi-
tory [21]. The NASA/MDP datasets used are: CM1, KC1,
KC2, KC3, MC2, MW1, and PC1. These datasets were
chosen for examination because they represent a wide vari-
ety of projects. The NASA datasets represent projects such
as flight software, storage management, video guidance sys-
tems, and an experiment framework [24]. NASA utilizes
sub contractors for the majority of its projects, so the seven
projects represented in the MDP datasets represent the work
of many different development teams.

The files have been modified from their original form to
allow them to be used in cross company experiments6. They
have been modified to unify the columns used, and their
orderings. The data is stored in the arff format for easy
integration with the WEKA experimenter [11].

Two different types of experiments are being run. First,
Within Company, and second, Cross Company. Within Com-
pany trains the learning algorithms with a large portion of
data from one data set, and tests the learned theories with
the remainder of the data from that dataset. Cross Com-
pany analysis trains the learning algorithms using all but
one of the available data sets, and tests the theories on the
remaining whole dataset.

The Within Company data sets do a 5 by 5 way cross
validation. This means that the instances are randomly or-
dered 5 times, and broken into 5 separate sets for each ran-
dom ordering. Then 4 out of the 5 separate sets are used for
training, and the remainder is used for testing in a round
robin fashion.

The Cross Company experiments do a 7 way cross valida-
tion. The data is randomly ordered in the test dataset and
in the combined training datasets 7 times, with each data
set being the test dataset once.

The experiment compares several variations of Clump to
other learners, mostly other rule tree learners: oner, naive
bayes, j48, jRipper, Ridor, and locally weighted learning(LWL).
The other learners come from Weka’s Data Mining Soft-
ware [11]. j48, jRipper, Ridor, and Clump represent rule
tree methods. OneR represents a rule based method as well,
but is not built on a rule tree. Naive Bayes and LWL are fre-
quency count methods that are based on Bayes theorem [15].
All experiments are run using Ourmine [10], a shell environ-
ment for data mining experiments created at West Virginia
University.

5.1 Parameters to Clump

95The datasets can be obtained at http://promisedata.org
96Cross company experiments use 6 of the 7 datasets for train-

ing, and the 7th for testing

Runtime while Naive Bayes Ridor Clump LWL j48/C4.5 RIPPER OneR

Training O(nk) O(nk ∗ log(kn) O(3nk ∗ log(kn)) O(n) O(nk ∗ log(n)) O(2nk ∗ log(kn)) O(kn)
Testing O(mk) O(md) O(mk) - O(mkd) O(mnk) O(m ∗ log(m)) Unlisted O(1)

Figure 6: Runtime Complexity of Clump, Naive Bayes [16], Ridor, OneR [2], LWL [7], j48/C4.5 [3], and
RIPPER [8] on a dataset with n training cases, m testing cases, and k attributes.

for data in $datasets; do
preProcess $data > processed.arff
for((r=1;r<=$repeats;r++)); do
seed=$RANDOM;
for((bin=1;bin<=$bins;bin++)); do
cat processed.arff |
someArff --seed $seed

--bins $bins
--bin $bin

for learner in $Learners; do
$learner test.arff train.arff

>> results.dat
done

done
done

done

Figure 7: The pseudo code to run the experiment

Within-Company Cross-Company
Raw Logging Raw Logging

Ridor 2.56 2.52 3.34 3.27
jRip 2.45 2.53 4.06 4.17
Clump 2 3 2 2

Figure 8: Number of rules

Clump takes five different parameters:

• Test file

• Training file

• Maximum level of mixedupedness

• Number of bins for discretization

• Split size

The test and training files are in the arff format described
in Weka’s documentation [11]. Each file has a header where
the column information is included. The name of the data
set, the names of the columns, and the type of column7

is included. The body of the datafile contains a comma
separated list of all instances in the dataset.

The maximum level of mixedupedness represents a thresh-
old on the frequency of training instances not of the majority
class allowed in a node before a new rule is created. This
also effectively puts a lower bounds on the size of a node. A
node can have no less than one more than twice the level of
mixedupedness training instances.

The number of bins for discretization is used when cre-
ating the rules. The minimum and maximum values for a
given attribute are taken. The range is then broken up into
n equal width bins according to its value. More bins means
a higher granularity in the rules created, but it also means
a lower number of training instance in each node. Although

97The columns can be either continuous or discrete

it is often desired to reduce the number of instances in each
cluster, there exists a lower bounds where too few instances
can prevent new rules from being learned. The new rules
could be prevented because the number of instances in each
rule could violate the level of mixedupedness previously set.

The final parameter to Clump is the split size, or the
number of testing instances to consider at one time. The
chunk of testing instance being considered are placed in the
rule tree. The training data stored in each node of the rule
tree where a testing instance stops at is combined to form the
training set for that chunk. This training set and the subset
of the testing set is then passed to a Naive Bayes classifier
for final classification. A higher split size will increase the
number of training instances used in classification, and may
add noise to the training set. Conversely, a small split size
can gather too little data to make an accurate prediction.

5.2 Clump Configuration Values
Optimal values for the split size, number of bins, and level

of mixedupedness were determined experimentally. Any value
greater than or equal to 1 for the split size and level of mix-
upedness produced the same PD and PF results. If these
values were ignored and set to 0, the number of rules cre-
ated rose beyond the capabilities of Clump’s runtime envi-
ronment. The value with the largest impact on the perfor-
mance of Clump was the number of bins used during dis-
cretization. A number of bins ranging between 2 and 10
were tested, and as the bin size chosen neared either ex-
treme, the number of rules and runtime increased. A bin
count of 3-5 produced the lowest run-time and rule counts.
A split size of 5, bin minimum amount of mixupedness of 1,
and 4 bins were chosen.

5.3 Experiments
There were two main experiments run: the Within-Company

tests, and the Cross-Company tests. Each test was run
twice. The first variation was run with the data in its raw
form, and the second variation took the log of the numeric
attributes before classification. Figure 9, Figure 10, Fig-
ure 11, and Figure 12 shows the results for the four different
tests.

6. RESULTS
Figure 9 - Figure 12 show the results in quartile form. In

both Within-Company and Cross-Company, when the num-
bers are not logged, Clump has a higher probability of detec-
tion(PD) than any of the other learners. At the same time,
it also has the highest probability of failurePF. When the
numerics are logged, all of the learners except Naive Bayes
and Clump remain the same while Clump and Naive Bayes
increase their PD. There are three things of note:

• In all of the experiments, The only learner that per-
forms close to, or better than, Clump is Naive Bayes.

PD Quartile

Learner m
in

q
1

m
e
d
ia

n

q
3

m
a
x

Quartile

Clump 0 39 56 70 100
u

Naive Bayes 0 29 37 50 86
u

LWL50 0 20 29 41 88
u

j48 0 16 25 43 75
u

jRip 0 8 21 33 67
u

OneR 0 0 13 25 61
u

Ridor 0 0 11 24 79
u

PF Quartile

Learner m
in

q
1

m
e
d
ia

n

q
3

m
a
x

Quartile

Ridor 0 0 1 4 56
u

jRip 0 1 3 6 38
u

OneR 0 1 3 7 44
u

j48 0 1 4 8 36
u

LWL50 0 3 5 8 24
u

Naive Bayes 0 7 9 12 27
u

Clump 1 11 17 22 35
u

Figure 9: Results of the Within-Company tests with
no preprocessing

PD Quartile

Learner m
in

q
1

m
e
d
ia

n

q
3

m
a
x

Quartile

Clump 37 56 77 80 84
u

Naive Bayes 7 30 41 55 61
u

LWL50 2 12 26 29 36
u

jRip 3 13 19 23 41
u

j48 10 13 17 27 33
u

OneR 3 6 9 16 27
u

Ridor 0 0 3 9 35
u

PF Quartile

Learner m
in

q
1

m
e
d
ia

n

q
3

m
a
x

Quartile

Ridor 0 0 1 1 10
u

OneR 1 2 2 7 16
u

jRip 1 2 4 6 13
u

j48 1 4 6 10 14
u

LWL50 1 6 11 13 20
u

Naive Bayes 1 1 12 15 33
u

Clump 10 23 28 50 53
u

Figure 10: Results of the Cross-Company tests with
no preprocessing

PD Quartile

Learner m
in

q
1

m
e
d
ia

n

q
3

m
a
x

Quartile

Naive Bayes 0 70 80 88 100
u

Clump 0 36 50 67 100
u

LWL50 0 17 30 41 73
u

j48 0 13 25 40 76
u

jRip 0 6 20 33 100
u

OneR 0 0 14 25 75
u

Ridor 0 0 7 27 85
u

PF Quartile

Learner m
in

q
1

m
e
d
ia

n

q
3

m
a
x

Quartile

Ridor 0 0 1 4 43
u

jRip 0 1 3 6 46
u

OneR 0 1 4 5 60
u

j48 0 1 4 9 52
u

LWL50 0 3 6 8 32
u

Clump 0 10 14 21 52
u

Naive Bayes 17 33 38 45 72
u

Figure 11: Results of the Within-Company tests
with logging the numerics

PD Quartile

Learner m
in

q
1

m
e
d
ia

n

q
3

m
a
x

Quartile

Naive Bayes 56 73 86 93 100
u

Clump 36 56 77 80 84
u

LWL50 2 21 25 31 48
u

j48 8 13 16 21 31
u

jRip 3 11 16 21 39
u

OneR 3 8 10 16 27
u

Ridor 0 0 3 10 38
u

PF Quartile

Learner m
in

q
1

m
e
d
ia

n

q
3

m
a
x

Quartile

Ridor 0 0 1 2 5
u

OneR 1 1 2 6 16
u

jRip 0 1 3 5 19
u

j48 1 2 6 9 16
u

LWL50 2 6 10 21 24
u

Clump 9 22 28 50 52
u

Naive Bayes 19 47 48 80 81
u

Figure 12: Results of the Cross-Company tests with
logging the numerics

The PD’s of other learners are between 22% and 52%
lower than Clump with PF’s that are only between

• Clump shows a high increase in PD when working on
Cross-Company data, with a proportionally lower in-
crease in PF.

• Taking the logarithm of the data increases the PD for
Naive Bayes and Clump. The PF of Naive Bayes also
increases, while the PF of Clump stays the same.

In Figure 9

7. FUTURE WORK
Clump represents a new approach to clustering and clas-

sification. Traditional clustering approaches [1, 12, 18, 19]
cluster on independent attributes, while Clump clusters on
dependant attributes. Clump also creates a maintainable
rule tree. This rule tree allows for human interaction both
during the testing and training phases of the algorithm.

7.1 Human Interaction
We plan on extending the functionality of Clump by intro-

ducing the human element. During the training phase, we
propose that humans be presented with the possible patches
at each node of the tree, and choose which patch best ad-
dresses the data. Several variations on this can be investi-
gated. It may be best to show the user a subset of the train-
ing data at the node, and allow the user to choose which
rule is “best” free hand. Another possibility would be to
present the user with the top X rules ordered randomly, as
determined by the current scoring algorithm described in
§4.3.1. When presented with the new rules, the user could
be shown the score of each rule, the rule’s score’s rank, or
be shown no information about the score at all. By allow-
ing the human to interact with the rule tree, the knowledge
of domain experts can be exploited. Another alternative to
this model would be to only query the domain expert when
the score between the top rule candidates is similar enough
to be ambiguous.

7.2 Interface Options
We expect to also expand Clump with a GUI, making

it no longer just command line based. A side effect of this
move will make gathering user feedback easier and more user
friendly. An alternative would be integrating Clump with
the WEKA framework.

7.3 Rule Creation
Internally, Clump uses a custom algorithm to score the

possible rules. We plan to explore alternative rule scor-
ing algorithms, examining them for increased performance.
Rules that test more than one attribute are of great interest.
These conjunctions of rules could isolate clusters of informa-
tion faster than singleton rules alone.

8. CONCLUSION

[1] A. Beygelzimer and J. Langford. Cover trees for nearest
neighbor. pages 97–104, 2006.

[2] G. Buddhinath and D. Derry. A simple enhancement to
one rule classification.

[3] E. C, S. Ruggieri, and S. Ruggieri. Efficient c4.5, 2000.
[4] W. W. Cohen. Fast effective rule induction. In ICML,

pages 115–123, 1995.
[5] P. Compton, G. Edwards, B. Kang, L. Lazarus,

R. Malor, T. Menzies, P. Preston, A. Srinivasan, and
C. Sammut. Ripple down rules: Possibilities and limi-
tations, 1991.

[6] P. Domingos and M. J. Pazzani. On the optimality of
the simple bayesian classifier under zero-one loss. Ma-
chine Learning, 29(2-3):103–130, 1997.

[7] E. Frank, M. Hall, and B. Pfahringer. Locally weighted
naive bayes. In Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence, pages 249–256. Morgan
Kaufmann, 2003.

[8] J. FÃijrnkranz and G. Widmer. Incremental reduced
error pruning, 1994.

[9] B. R. Gaines and P. Compton. Induction of ripple-down
rules applied to modeling large databases, 1995.

[10] G. Gay, T. Menzies, B. Cukic, and B. Turhan. How to
build repeatable experiments. In PROMISE ’09: Pro-
ceedings of the 5th International Conference on Predic-
tor Models in Software Engineering, pages 1–9, New
York, NY, USA, 2009. ACM.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. H. Witten. The weka data mining soft-
ware: An update, 2009.

[12] G. Hamerly and C. Elkan. Learning the k in k-means.
In in k-means, NIPS, page 2004, 2003.

[13] R. C. Holte. Very simple classification rules perform
well on most commonly used datasets. In Machine
Learning, pages 63–91, 1993.

[14] A. Jakulin and I. Bratko. Analyzing attribute depen-
dencies. In PKDD 2003, volume 2838 of LNAI, pages
229–240. Springer-Verlag, 2003.

[15] E. T. Jaynes. Probability Theory: The Logic of Science
(Vol 1). Cambridge University Press, June 2003.

[16] G. John and P. Langley. Estimating continuous distri-
butions in bayesian classifiers. In In Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intel-
ligence, pages 338–345. Morgan Kaufmann, 1995.

[17] M. Minsky. Steps toward artificial intelligence. pages
406–450, 1995.

[18] A. W. Moore. An intoductory tutorial on kd-trees,
1991.

[19] S. M. Omohundro. Five balltree construction algo-
rithms. Technical report, 1989.

[20] J. R. Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1993.

[21] J. Sayyad Shirabad and T. Menzies. The PROMISE
Repository of Software Engineering Databases. School
of Information Technology and Engineering, University
of Ottawa, Canada, 2005.

[22] R. E. Schapire. The boosting approach to machine
learning: An overview, 2002.

[23] N. Srinivasan and V. Vaidehi. Reduction of false alarm
rate in detecting network anomaly using mahalanobis
distance and similarity measure. In Signal Processing,
Communications and Networking, 2007. ICSCN 0́7 In-
ternational Conference on, pages 366–371. IEEE, 2007.

[24] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano.
On the relative value of cross-company and within-
company data for defect prediction. Empirical Softw.

Engg., 14(5):540–578, 2009.
[25] Y. Yang and G. I. Webb. A comparative study of dis-

cretization methods for naive-bayes classifiers. In In
Proceedings of PKAW 2002: The 2002 Pacific Rim
Knowledge Acquisition Workshop, pages 159–173, 2002.

