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ABSTRACT 

Image classification is an important topic in multimedia 
analysis, among which multi-label image classification is a 
very challenging task with respect to the large demand for 
human annotation of multi-label samples. In this paper, we 
propose a multi-view multi-label active learning strategy, 
which integrates the mechanism of active learning and 
multi-view learning. On one hand we explore the sample 
and label uncertainties within each view; on the other hand 
we capture the uncertainty over different views based on 
multi-view fusion. Then the overall uncertainty along the 
sample, label and view dimensions are obtained to detect the 
most informative sample-label pairs. Experimental results 
demonstrate the effectiveness of the proposed scheme. 
 

Index Terms — Active learning, Multi-view learning, 
Image classification, Multi-label classification, Multi-view 
fusion 

1. INTRODUCTION 

Image classification at the semantic level has emerged as an 
important topic in multimedia analysis. Existing researches 
on image classification mainly fall into two scenarios: the 
multi-class and multi-label classification [1][2]. In the multi-
class setting, each image can only be annotated with a single 
label. While in most cases, especially for the real-world 
images, multi-label classification is a better choice, in which 
one or more labels can be assigned to each image. In this 
paper, we focus on the multi-label image classification 
problem. With more labels incorporated, the annotation of 
multi-label images will become much more time-consuming 
and labor-intensive compared to multi-class problem. 
Therefore, effective algorithms are needed to alleviate the 
burden on human labeling.  

Active learning is an effective method for efficient 
labeling, and has been widely used in image classification. 
The main idea of active learning is to iteratively select the 
“most informative” samples to label so that the classification 
performance can be optimally boosted. Earlier active 
learning approaches mainly focused on the multi-class 
setting [1][3]. In recent years, some algorithms have been 

proposed to deal with the multi-label active learning 
problems [4][5], which convert multi-label classification to 
a combination of several multi-class classification problems. 
However, these approaches handle each label independently, 
neglecting the correlation embedded in the multiple labels. 
To solve this problem, a two-dimensional active learning 
(2DAL) scheme was proposed [6], which selects sample-
label pairs instead of samples in each iteration. By 
considering the redundancy of multi-label samples along 
both the sample and label dimensions, 2DAL significantly 
reduced the requirement for human labeling. 

Multi-view learning is another important mechanism 
which reduces the amount of labeled samples required for 
learning. It is often applied to problems with multiple views 
(or representations). In multi-view learning, multiple 
hypotheses (or classifiers) are trained separately from the 
same labeled data set, then the agreement (or disagreement) 
among different learners can be utilized to improve the 
overall classification performance. The widely used multi-
view learning algorithms include co-training [7] and co-EM 
[8], which utilize the information acquired in one view to 
train the other. The idea of multi-view learning and active 
learning can be effectively integrated. As a family of multi-
view active learning, co-testing [9] selects the most 
informative unlabeled samples by detecting the contention 
samples on which the multi-view predictions disagree. 

In this paper, we extend 2DAL to multi-view setting 
and propose a Multi-view Multi-label Active Learning 
scheme for image classification. We use intra-view 
uncertainty to represent the sample and label uncertainties 
within each view, and inter-view uncertainty to reflect the 
uncertainty across multiple views. Based on the integrated 
uncertainty along the three dimensions, the most informative 
sample-label pairs are selected for annotation. Experimental 
results demonstrate that by taking advantage of both active 
learning and multi-view learning the demands for annotation 
can be effectively reduced. 

2. MULTI-VIEW MULTI-LABEL ACTIVE 
LEARNING 

In this section, we introduce the proposed multi-view multi-
label active learning scheme (Figure 1) in detail. 
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Figure 1. Multi-view multi-label active learning. 

2.1. Intra-view Uncertainty 

As discussed in [6], there exist redundancies in multi-
label samples along different labels as well as different 
samples. Traditional one-dimensional active learning merely 
reduces the sample redundancy. In contrast, 2DAL reduces 
both sample and label redundancies simultaneously by 
selecting the most informative sample-label pairs. 

Now we define some notations. Each sample x in the 
dataset X is attached with a set of labels y = {y1, … , yM}, 
where M is the number of labels and each yi {+1, −1} (1 ≤ 
i ≤ M) indicates whether the corresponding  semantic 
concept occurs (+1) or not (−1). We use U(x) to denote the 
unlabeled part of label set y for sample x, and L(x) the 
labeled part. 

Based on the multi-label Bayesian error bound [6], 
when the sample x is represented with a single view, the 
sample-label pair for annotation is selected according to: 

 * *

, ( ) 1
( , ) arg max ; ( ),

s s s

M

s s i s s s
X y U i

y MI y y L
x x

x x x .  (1) 

This selection strategy reflects the uncertainty along both 
the sample and label dimension. Detailed discussion can be 
found in [6]. 

In the multi-view setting, each sample is split into x = 
x(1) … x(V), where V is the number of different views. For 
each view v (1 ≤ v ≤ V), we can define the intra-view 
uncertainty to measure the sample and label uncertainties 
directly according to (1): 

 ( ) ( ) ( )

1
( , ) ; ( ),

M
v v v
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i

UC y MI y y Lx x x . (2) 

Based on (2), each view can determine the most 
informative sample-label pairs for annotation separately. 
However, as illustrated in Figure 1, when a sample-label 
pair is labeled, it is labeled simultaneously for all the views. 
As a result, given the limited number of sample-label pairs 
to be labeled, we should make sure that the selected sample-
label pairs are informative for all the views. The intra-view 
uncertainty of a sample-label pair for all views can be 
defined as the minimum: 
 ( )

1
( , ) min ( , )v

intra s s intra s sv V
UC y UC yx x , (3) 

or mean: 
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of the intra-view uncertainty of each single view.  
Consequently, by maximizing the uncertainty in (3) or 

(4), we can select the sample-label pair for annotation, 
which corresponds to min-max strategy: 
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or mean-max strategy: 

 

* *

, ( )

( )

, ( ) 1

( , ) arg max ( , )

1arg max ( , )

s s s

s s s

s s intra s s
X y U

V
v

intra s s
X y U v

y UC y

UC y
V

x x

x x

x x

x
, (6) 

respectively. 
The sample-label pair selection strategy of (5) or (6) is 

a straightforward extension of (1) to the multi-view setting. 

2.2. Inter-view Uncertainty 

The intra-view uncertainty reflects the uncertainty of a 
sample-label pair within each view. However, it does not 
take into account the inherent correlation among the 
multiple views. Essentially, the sample-label pairs do have 
uncertainty over different views. In this paper, we further 
explore the uncertainty of a sample-label pair along the view 
dimension. The main idea originates from multi-view active 
learning, in which predictions from the multiple views are 
used collaboratively to obtain the multi-view uncertainty 
and detect the most informative data accordingly.  

We will first discuss the multi-view fusion strategies for 
the predictions from multiple views, and then present the 
inter-view uncertainty based on the multi-view prediction. 

2.2.1. Multi-view fusion 
For a sample-label pair, prediction is made from each single 
view. These multi-view predictions vary in both the 
predicted label and the confidence. Thus, we need to 
combine the multiple predictions optimally to obtain the 
overall prediction. 

259

Authorized licensed use limited to: West Virginia University. Downloaded on June 16,2010 at 15:20:49 UTC from IEEE Xplore.  Restrictions apply. 



After the distribution P(v)(y|x(v)) has been trained for 
each view v (v = 1,…, V). The prediction function (or 
classifier) for view v can be simply computed as: 

 ( ) ( ) ( ) ( ) ( )( , ) 1 1v v v v vF y P y P yx x x . (7) 

Then the prediction for a sample-label pair (xs, ys) in view v 
can be made as: 

 ( ) ( )ˆ sgn ( , )v v
s s sy F yx , (8) 

which is equivalent to adopting the label with larger 
posterior probability.  

Given the predictions from multiple views, various 
fusion strategies can be adopted, among which weighted-
sum is the most popular one: 

 ( )

1
( , ) ( , )

V
v

v
v

F y F yx x . (9) 

where μv is the weight for the classifier of view v. The 
weighted-sum strategy is a linear fusion with respect to the 
multiple classifiers. As discussed in [10], the weighted-sum 
fusion is effective for linear-models. However, it will fail to 
capture the interrelations of the more complex non-linear 
models.  

In this paper, we adopt the super-kernel fusion [10] to 
obtain the overall prediction function: 

After we have trained V models for V views, we create 
a new training set Z for multi-view fusion. We pass each 
training sample-label pair (xt, yt) to each of the V models, 
and obtain a V-dimensional new training feature vector z: 

 (1) ( )( , ) ... ( , )
TV

t t t tF y F yz x x . (10) 

As a result, we obtain a training set Z consisting of N new 
training instances, where N is the number of sample-label 
pairs in the original training set. 

Then, we train a super-classifier out of the new training 
set Z for each corresponding label, which is a traditional 
single-label learning problem and can be solved by many 
single-label data classification algorithms. In this paper, we 
employ SVM to train the super-classifier for its 
effectiveness. The kernel function and the corresponding 
parameters are carefully chosen via cross validation. 

Finally, the overall prediction function F of a sample-
label pair can be written as the fusion of the multi-view 
prediction models:  

 (1) ( )( , ) ( , ),..., ( , )VF y f F y F yx x x . (11) 

2.2.2. Inter-view uncertainty 
Once the overall prediction function of all the views is 
obtained, the prediction for a sample-label pair (xs, ys) can 
be defined as:  

 ˆ sgn ( , )s s sy F yx . (12) 

The larger the absolute value of F, the more confident it is 
on the prediction. 

From multi-view active learning point of view, the 
sample-label pair with lower prediction confidence is more 
uncertain, and thus more informative. Therefore, we define 
the inter-view uncertainty as follows: 

 1( , )
abs ( , )inter s s

s s

UC y
F y

x
x

, (13) 

where ε is a small number preventing divide by zero. 
Compared with the intra-view uncertainty that relies on 

all possible labels of ys, the inter-view uncertainty is closely 
related to the specific prediction of ys, and thus provides 
additional information for sample-label pair selection. 

2.3. Overall Uncertainty 

The intra-view uncertainty represents the uncertainty of a 
sample-label pair along the sample and label dimensions, 
while the inter-view uncertainty reflects the uncertainty 
along the view dimension. In order to measure the 
uncertainty along all the three dimensions, we define the 
overall uncertainty as: 
 ( , ) ( , ) ( , )s s intra s s inter s sUC y UC y UC yx x x . (14) 

where λ is a tuning parameter to balance the intra-view and 
inter-view uncertainty. 

Consequently, the most informative sample-label pair 
for annotation can be selected according to: 

 * *

, ( )
( , ) arg max ( , )

s s s

s s s s
X y U

y UC y
x x

x x . (15) 

It is worth noting that although the selection strategy is 
based on the uncertainty along three dimensions, we still 
select sample-label pairs within the sample-label dimension. 
The view dimension serves as a complimentary guidance for 
selecting informative sample-label pairs. As a result, the 
proposed strategy can be seen as a multi-view 2DAL 
strategy. When the multiple views are treated as an entire 
view, (15) is reduced to (1), from which we can see 2DAL is 
a special single-view case of the proposed strategy. 

3. EXPERIMENTS 

In this section, we evaluate the proposed strategy on a real-
world image database, which contains 2000 images obtained 
from the web and Coral CDs. Six classes are defined based 
on high-level semantics including beach, sunset, mountain, 
urban, field and indoor. Each image belongs to one or more 
of the six classes. There are totally 2000×6 = 12000 sample-
label pairs in the multi-label database. 

We employ color and texture features to represent the 
images. The color features consist of 125-dimensional color 
histogram and 6-dimensional color moment (mean and 
variance) in RGB color space. The texture features are 
extracted using 3-level discrete wavelet transformation, and 
the mean and variance averaging on each of 10 sub-bands 
form a 20-dimensional vector. 
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The following four strategies are compared in our 
experiments:  

(s1) The proposed multi-view multi-label active 
learning (multi-view 2DAL) strategy, in which we 
treat the color and texture features as two views, 
and select informative sample-label pairs 
according to (15). 

(s2) Two-dimensional active learning (2DAL) strategy, 
in which we treat the color and texture features as 
an entire feature, and select informative sample-
label pairs according to (1). 

(s3) One-dimensional active learning (1DAL) strategy, 
in which we only take into account the uncertainty 
along the sample dimension, and select 
informative samples rather than sample-label pairs. 

(s4) Non-active learning (random) strategy, in which 
the sample-label pairs are selected randomly. 

We use 200 images (with all the 6 labels annotated) as 
the initial training set. In each iteration, we select the same 
number of sample-label pairs for annotation, i.e. 60 sample-
label pairs or equivalently 10 images for 1DAL.  

The average F1 score over the 6 labels is computed to 
evaluate the classification performance: F1 = 2pr/(p+r), 
where p and r are precision and recall respectively. 

 
Figure 2. The image classification performance of four 
strategies. 

Figure 2 illustrates the classification performance of the 
four strategies. As shown in Figure 2, all the three active 
learning strategies (s1, s2, and s3) outperform the non-active 
learning strategy (s4), which demonstrates the effectiveness 
of active learning for image classification. Among active 
learning, the two-dimensional selection of sample-label 
pairs (s1 and s2) achieves better performance over the one-
dimensional selection of samples (s3), which proves the 
existence of redundancy along the label dimension. Of all 
the strategies, the proposed strategy (s1) has the best 
performance for all iterations, which indicates that the 
integration of multi-view learning and active learning can 
further improve the classification performance. 

4. CONCLUSION 

In this paper, we have proposed a multi-view multi-
label active learning scheme, which integrates the 
mechanism of multi-view learning and active learning for 
multi-label image classification. We explore the sample and 
label uncertainties within each view, and meanwhile capture 
the uncertainty over different views based on multi-view 
fusion. The most informative sample-label pairs are 
consequently selected by maximizing the overall uncertainty 
along the sample, label and view dimensions. Experiments 
on the real-world multi-label image dataset have 
demonstrated the effectiveness of the proposed scheme 
compared with other learning strategies.  
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