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Abstract:

The main disadvantage of the k-means algorithm is that the number of clusters, K, must be supplied as a parameter.
In this paper we present a simple validity measure based on the intra-cluster and inter-cluster distance measures
which allows the number of clusters to be determined automatically. The basic procedure involves producing all
the segmented images for 2 clusters up to Ky clusters, where Ko represents an upper limit on the number of
clusters. Then our validity measure is calculated to determine which is the best clustering by finding the minimum
value for our measure. The validity measure is tested for synthetic images for which the number of clusters in

known, and is also implemented for natural images.
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1. Introduction

Many approaches to image segmentation have
been proposed over the years [1-12]. Of these
various methods, clustering is one of the
simplest, and has been widely used in
segmentation of grey level images [13-15].
Techniques such as k-means [16], isodata [16],
and fuzzy c-means [17,18] have been around
for quite a while, however, their application to
colour images has been limited. Although
colour images have increased dimensionality by
requiring three bands such as red, green and
blue, clustering techniques can be easily
extended to cope with this. The k-means and
fuzzy c-means algorithms require the number of
clusters to be known beforehand, and the
isodata algorithm has six parameters which
must be supplied by the user. In order to supply
the information required by the aforementioned
algorithms, the user must have some knowledge
about the image, and this may not be the case.
The new method is based on the k-means
algorithm and it overcomes the limitation of
having to indicate the number of clusters by
incorporating a validity measure based on the
intra-cluster and inter-cluster distance measures.
The performance of our proposed cluster

validity measure is compared with the results
obtained using the Davies-Bouldin index[19]
and Dunn's index [20].

2. K-means Method

The k-means method aims to minimize the sum
of squared distances between al points and the
cluster centre. This procedure consists of the
following steps, as described by Tou and
Gonzalez [16].

1. Choose K initia cluster centres z;(1), (1),
yeery ZK(].) .

2. At the k-th iterative step, distribute the
samples {x} among the K clusters using the
relation,

x1 (k) if [x- z (0| <]x- 2 ()

forali = 1,2 .., K i?* j where G(K
denotes the set of samples whose cluster centre
is z(K).



3. Compute the new cluster centres z(k+1), j =
1, 2, ..., K such that the sum of the squared
distances from all points in G(k) to the new
cluster centre is minimized. The measure which
minimizes this is simply the sample mean of
G(K). Therefore, the new cluster centre is given

by
2 (k+) =2 & x j=12..K

j xCik)

where N is the number of samplesin G (k).

4.1f z(k+1) = z(K)for j= 1,2, ..., K thenthe
algorithm has converged and the procedure is
terminated.

Otherwise go to Step 2.

It is obvious in this description that the final
clustering will depend on the initial cluster
centres chosen and on the value of K. The latter
is of the most concern since this requires some
prior knowledge of the number of clusters
present in the data, which, in practice, is highly
unlikely.

3. Cluster Validity Measures
3.1 Existing M easures

Many criteria have been developed for
determining cluster validity [19-25], al of
which have a common goa to find the
clustering which results in compact clusters
which are well separated. The Davies-Bouldin
index [19], for example, is a function of the
ratio of the sum of within-cluster scatter to
between-cluster separation. The objective is to
minimize this measure as we want to minimize
the within-cluster scatter and maximize the
between-cluster separation. Bezdek and Pal [21]
have given a generalization of Dunn's index
[20]. Also, by considering five different
measures of distance function between clusters
and three different measures of cluster diameter,
they obtained fifteen different values of the

generalized Dunn's index. For details on
expressions for these indices please see [21].
Let us denote these fifteen indices by D;; where
1£) £5 and 1£ i £ 3. Di; represents the
original definition of Dunn’s index.

3.2 Proposed Measure

Since the k-means method aims to minimize
the sum of sgquared distances from all points to
their cluster centres, this should result in
compact clusters. We can therefore use the
distances of the points from their cluster centre
to determine whether the clusters are compact.
For this purpose, we use the intra-cluster
distance measure, which is simply the distance
between a point and its cluster centre and we
take the average of al of these distances,
defined as

K
ma=—28 & [x-z|°
N i=1 xeC

where N is the number of pixels in the image,
K is the number of clusters, and z is the cluster
centre of cluster G. We obviously want to
minimize this measure. We can also measure
the inter-cluster distance, or the distance
between clusters, which we want to be as big as
possible. We calculate this as the distance
between cluster centres, and take the minimum
of this value, defined as

inter =min(|z - z,[),i=12..K - 1
j=i+1...K

We take only the minimum of this value as we
want the smallest of this distance to be
maximized, and the other larger values will
automatically be bigger than this value.

Since we want both of these measures to help us
determine if we have a good clustering, we
must combine them in some way. The obvious
way isto take the ratio, defined as:



validity = 0@
inter

Since we want to minimize the intra-cluster
distance and this measure is in the numerator,
we consequently want to minimize the validity
measure. We also want to maximize the inter-
cluster distance measure, and since thisisin the
denominator, we again want to minimize the
validity measure. Therefore, the clustering
which gives a minimum value for the validity
measure will tell us what the ideal value of K is
in the k-means procedure.

4. Description of Method

A number of colour spaces exist in which the
segmentation of images can be performed [26].
However, the method discussed here and the
results reported later are all based on the use of
the (red, green, blue) colour space. This
method, however, could be easily implemented
in any colour space.

We basically want to produce the segmented
images for 2 up to Kmax clusters, where Koy is
an upper limit on the number of clusters, and
then calculate the validity measure to determine
which is the best clustering, and, therefore,
what is the optimal value of K. We do this by
first forming one cluster containing all the
pixels in the image. Then an iterative process
begins where, unless the number of clusters is
equal to Knyax, the cluster having maximum
variance is split into two. Once the cluster is
split, we make use of the k-means procedure to
obtain the clustering for this new number of
clusters. Once al the clusters have been formed,
the validity measure can be calculated for each
of them to determine what the optimal value of
Kis.

Since the k-means algorithm aims to minimize
the average intra-cluster distance, it is most
likely that the cluster having maximum variance
will be separated by the k-means procedure
when the number of clusters is increased.
Therefore, when we require the number of

clusters to be increased, we split the cluster
having maximum variance, so the k-means
procedure is given good starting cluster centres.
We caculate the variance of the three
components for cluster C; as

1o
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where N is the number of pixelsin cluster G
and x is the vector representing each pixel's red,
green and blue components as X, X%, and X,
respectively. This gives us three variance
values, but we ultimately want just one value,
which we can use to compare the variance of
each cluster. We take the average variance of
the three components by adding them up and
dividing the sum by 3. This gives us the
following variance values

s? i=12,..K
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When splitting a cluster, we take into account
al three of the red, green and blue components.
Given the cluster G whose cluster centre is z,
we wish to obtain two new cluster centres z
andz . We split cluster G by creating two new
values for each component, which are centred
around the cluster centre value. The two new
cluster centres are calculated as

Z2=(2,- &, 2,- &, Z;- a)
Z‘II:(41+a1’ z,+a,, 2, +a,)

where a;, & and ag, are constants. The values
for these constants are determined by taking
into account the minimum and maximum values
for each colour component occurring in the
cluster. The constants, & will be the values
which are half of the smaller of (z; — min) and



(zj — max), where min; is the minimum value
for the j-th colour component and max; is the
maximum value for the j-th component. This
results in the two new cluster centres being well

separated, but also still well within the original

cluster.

With the above method we could use any
validity measure such as the Davies-Bouldin
index or Dunn's index. For Dunn's index we
would want to find the clustering which
maximizes thisindex.

5. Experimental Results

Experiments were conducted for both synthetic
images and natural images. In the following two
sub-sections, namely, 5.1 and 5.2, results
obtained for these images are discussed.
Primarily due to space limitations, the input
images and the values of the proposed and
existing validity criteria are not presented. They
will be shown during the presentation of the
paper at the conference.

5.1 Synthetic Images

This method was first implemented with
synthetic images for which the ideal clustering
was known beforehand. A total of five synthetic
images were used with varying numbers of
clusters. The first two images, synl and syn2,
have four clusters. Three of the clusters had
uniformly distributed values with a range of 30
in one colour component each, and the other
cluster had a constant value. synl has clusters
with varying sizes, while syn2 had equal sized
clusters. The third synthetic image, syn3 has
nine clusters each of the same size and each
having values uniformly distributed with a
range of 30 in one colour component. syn4 has
16 clusters of equa size, 15 of which have
values uniformly distributed with a range of 30
in one colour component and one cluster of
constant value. Finally syn5 has only two
clusters of equal size each of which has values
uniformly distributed with a range of 30 in one
colour component.

The algorithm described in the previous section
was executed on each of these images with Kpax
set to 25, as the ideal cluster numbers are
obviously well below this. It was found that the
minimum values of the validity measure
occurred at the correct number of clusters for
each of the synthetic images. The Davies
Bouldin and Dunn's indexes were both
implemented for these synthetic images which
also resulted in their optimum values occurring
at the correct number of clusters.

52 Natural Images

The next step involved testing this method with
real images. A tota of eleven images were
selected which represent a wide variety of
colour images from the segmentation point of
view. These images are caled balls, Lenna,
molecule teapot, ant, blond, jet, mandrill,
peppers, mouseand rose Once again Kpax Was
set to 25 because this is suitably large enough
given that from avisual point of view we would
not identify more than 25 colour regions in
these images.

The first thing we noticed was that there was a
tendency for the minimum value of the validity

measure to occur for small numbers of clusters
in the range of 2, 3, or 4. Thisis dueto alarge

inter-cluster distance value occurring when the
number of clusters is this low, resulting in the
validity measure being very smal. The only

exception occurred for the image molecule for

which the minimum value for the validity

measure was produced for 8 clusters. In general,

we expect that colour images will have a
number of clusters greater than 2, 3 or 4. So,

instead of simply selecting the clustering which
leads to the minimum value of the validity

measure, we look for the first local maximum in

the validity measure, where a local maximum is
defined to occur at Kk if

validity(k-1) < validity(k) > validity(k+1),

k33



Once we find the first local maximum in the
validity measure, occurring for k clusters, we
then select the smallest value of the validity
measure between k + land Ky clusters. By
this definition the first possible local maximum
can occur for three clusters, so the smallest
number of clusters which could be selected is
four. In genera we do not expect that colour
images will have only 2 or 3 clusters. By
applying the above stated modified rule for the
synthetic images, the correct number of clusters
can still be found, except for syn2 which only
had 2 clusters.

The number of clusters produced (1) based on
simply the globa minimum and (2) by
following the modified rule for our proposed
measure are shown in Table 1. The most
common failing with the resulting segmentation
based on globa minimum of the validity
measure was that that part of the objects were
classified together with the background. This
was caused due to an inadequate number of
clusters to represent the regions in the images.
The modified rule of first finding the local
maximum overcomes this problem, as this
ensures that such low numbers of clusters can
never be selected. Segmentation results based
on the modified rule show a vast improvement.

Table 1. Number of Clusters

Image Global Modified
Minimum Minimum
balls 2 10
Lenna 2 11
molecule 8 8
teapot 3 8
ant 3 6
blond 2 5
jet 2 5
mandrill 4 10
peppers 2 6
mouse 2 6
rose 3 6

The Davies-Bouldin and Dunn's indexes also
have a tendency to select a small number of
clusters. Therefore, a similar modified rule can
be applied to them. The Davies-Bouldin index
resulted in a reasonable number of clusters for
some images, however, for balls, Lenna, and
mouse the number of clusters obtained by the
modified rule are too small to adequately
represent the regions in these images.

Our validity measure worked more consistently
for the natural images than either the Davies-
Bouldin index or Dunn's indices. The number of
clusters produced by our measure produced
good segmentation results for each of the
natural images as opposed to the other measures
for which a good segmentation could not be
found for each of the images.

6. Conclusion

By incorporating the validity measure based on
the intracluster and inter-cluster distance
measures, the number of clusters present in an
image can be determined automatically. The
validity measure proposed here works well with
synthetic images, producing a minimum value
for the expected number of clusters. Although
there is a tendency to select smaller cluster
numbers for natural images, this is due to the
inter-cluster distance being much greater and
greatly affecting the validity measure. We
overcome this by looking for a local maximum
for the validity measure and then by finding the
minimum value after the local maximum. By
using this modified rule, the smallest number of
clusters that can be selected isfour. Thisisnot a
real problem because natural colour images can
be expected to have more than two or three
clusters. The modified rule still alows the
optimal number of clusters to be selected for the
synthetic images, except for the image with
only two clusters as two clusters cannot be
selected by this modified rule. The Davies-
Bouldin index and Dunn's indexes could not
detect the correct number of clusters for al the
natural images, however, our validity measure



performed more consistently for all of the
natural images, producing good segmentation
results.

As minor modifications to this algorithm, we
could use median cluster centre representation
instead of mean cluster centre representation,
and we could use absolute distance instead of
Euclidean distance to calculate the distance
between a pixel and its cluster centre or
between cluster centres. We could also use any
of the number of different colour spaces
available. As an improvement we could also
incorporate the context of the image, as a given
pixel is expected to be highly correlated with its
neighbouring pixels values. This could be
achieved by taking into account the values of
the neighbouring pixels.

This method is not restricted to colour images.
It can be easily extended to cope with any
dimensionality, so this method may also be
used for multispectral images. Similarly, there
is no reason why this method cannot be used for
grey scale images, which have only one
dimension.
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