IDEA: ITERATIVE DICHOTOMIZATION ON EVERY ATTRIBUTE

1. Todo List

- Competency
 - Compare performance for logged vs. unlogged coordinates.
 - Compare performance for pruned vs. unpruned with lives=3 system. Performance should increase once we prune.
- Cosmetics
 - Thinner lines for block outlines.
 - Only display clustered quadrants.
 - Try only showing the top 80% densest clusters.
- Performance Scores
 - Eliminate self testing by setting aside train/test sets.
- Clean up and profile code.
- Clustering
 - Use a color scale to represent cluster scores.
 - Graph legend showing colors with scores.
 - Mark (gray out) clusters which have a large delta between their performance scores (neighboring clusters which have high/low scores.)
 - Instead of using a 10% similarity rule in the GRIDCLUS algorithm [2], find the largest drop in block similarity and use that as <u>a</u> basis for similar.
 - $\sum \frac{\sqrt{23}}{3} i_t$
- Takeaways from the Teak Experiment [1]
 - Prune subtrees using a decreasing performance rule with lives=3.
 - Re-cluster on remaining blocks. (Grid 2)
 - Test on Grid 2.
- Feature Subset Selection
 - What's best among the best clusters?
- Contrast Sets
 - What makes cluster X different from unclustered or neighboring clusters?
- Interactive Clustering
 - Import data.
 - Assign attributes.
 - Show statistics for active cluster / all clusters.

2

References

- [1] Jacky W. Keung Ekrem Kocaguneli, Tim Menzies. Teak: Learning better case selection strategies for analogy based software cost estimation. <u>IEEE Transactions on Software</u> Engineering, 6, 2007.
- [2] E. Schikuta. Grid-clustering: An efficient hierarchical clustering method for very large data sets. Pattern Recognition, International Conference on, 2:101, 1996.