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Abstract 
The adoption of the object-oriented (00) technology fo r  

the development of critical software raises important 
testing issues. This paper addresses one of these issues: 
how to create effective tests from 00 specification 
documents? More precisely, the paper describes a 
technique that adapts a probabilistic method, called 
statistical functional testing, to the generation of test cases 
from UML state diagrams, using transition coverage as the 
testing criterion. Emphasis is put on defining an automatic 
way to produce both the input values and the expected 
outputs. The technique is automated with the aid of the 
Rational Software Corporation’s Rose RealTime tool. An 
industrial case study from the avionics domain, formally 
specified and implemented in Java, is used to illustrate the 
feasibility of the technique at the subsystem level. Results 
offirst test experiments are presented to exemplifi the fault 
revealing power of the created statistical test cases. 

1. Introduction 

Software testing involves executing a program on a set 
of test case input values and comparing the actual output 
results with the expected results. A large number of testing 
techniques have been defined for programs developed 
according to hierarchical approaches and written in 
procedural languages (see e.g., [l]). But, it is now well 
recognized that these techniques must be revisited to take 
account of the characteristics of the object-oriented (00) 
technology (see e.g., [2, 14, 151). Even if this technology is 
more and more used in industrial cases, testing methods for 
00 programs are still to be improved. The development of 
high-quality 00 software requires appropriate testing to 
ensure that the software meets its specification. This 
statement becomes crucial for safety-related software 
where failures may be a synonym of injuries or financial 
loss. This paper presents results from an ongoing research 
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work focused on the automatic generation of test cases 
from Unified Modeling Language (UML) specifications. 

The UML [4] is a semiformal language that comprises 
nine types of graphics, called diagrams. They are used to 
describe different aspects of a system including static, 
dynamic, and use-case views. The testing technique we 
investigate is based on the information provided by one 
type of diagrams, called state diagram: it is based on 
Harel’s Statecharts [lo], and is widely used to represent 
the dynamic behavior of objects. The UML is supported by 
several Computer-Aided Software Engineering (CASE) 
tools in current use for specifying and designing industrial 
applications. Our aim is to study to what extent the 
facilities offered by such tools may provide a practical 
support for the generation of adequate test cases. The paper 
investigates the automation process of a probabilistic 
method for generating test inputs, called statistical 
functional testing [25], with the aid of the Rational 
Software Corporation’s Rose RealTime tool [20]. 

Statistical testing involves exercising a program with 
input values that are randomly generated according to a 
given probability distribution over the input domain. When 
the focus of testing is fault removal, that is, bug-finding 
rather than reliability assessment, the effectiveness of the 
method depends on the adequacy of the distribution in 
revealing faults with high probability. Here, we will use 
the information provided by the UML state diagrams to 
define a probability distribution that is well suited to 
rapidly trigger all the transitions of the diagrams. This 
approach belongs to the family of statistical functional 
testing techniques, as defined in [25]. It should not be 
confused with (i) random testing - a blind approach that 
uses a uniform probability over the input domain [7], or (ii) 
statistical operational testing - that is, when the test 
samples are randomly drawn from an input distribution 
representative of operational usage in order to determine 
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whether or not a piece of software is ready for use 
(reliability assessmenl) [ 17, 211. 

The paper is organmzed as follows. In Section 2, we first 
discuss related work on test cases generation from UML 
state diagrams. Section 3 recalls the principle of statistical 
testing, and introduces the testing technique under 
investigation. Then, Section 4 presents the case study used 
to illustrate the feasibility of the proposed approach. It is 
extracted from a research version of an avionics system 
provided by the Advanced Technology Center of 
Rockwell-Collins - the mode control logic part of a Flight 
Guidance System [I61 - and implemented in Java. 
Section 5 presents the testing technique and gives first 
experimental results. Future work is outlined in Section 6. 

2. Definitions and Related Work 

This paper uses the: following definitions 1191. A test or 
test case is a general software artifact that includes test 
case input values (01- input values, for short), expected 
outputs for the test case, and any inputs that are necessary 
to put the software system into the state that is appropriate 
for the input values. A. test case input value comes from the 
test requirements which define specific things that must be 
satisfied or covered d uring testing: for example, reaching 
statements are the requirements for statement coverage. A 
testing criteriorz (e.g., statement coverage) is a rule or a 
collection of rules thai: impose test requirements on a set of 
test cases. A testing technique guides the tester through the 
testing process by including a testing criterion and a 
process for creating test case input values. Testing criteria 
may be related to the coverage of either a model of the 
program structure (e.g., the program control flow graph) or 
a model of its functionality (e.g., finite state machines that 
may be used to describe some software functions). ‘The 
former case defines structural (or white box) testing 
techniques, and the latter case defines functional (or black 
box) testing techniques [ 11. 

There is a general agreement among the testing 
community that the 00 development process and 
associated concepts raise a number of problems from the 
perspective of testing (see e.g., [2, 14, 151). Among the 
questions that must be answered, let us quote: How to 
determine the unit and integration testing levels 
(decentralized architecture of objects)? Which models and 
associated testing criteria should be used to produce 
effective input values’? How to solve the controllability and 
observability problems that are increased by object 
encapsulation? etc. This paper is related to the second 
issue. Our aim is to investigate a functional testing 
technique based on LIML state diagrams, emphasis being 
put on defining an automatic way of producing both the 
input values and the expected outputs. In previous work 

that addresses this topic, we identified two different axes 
depending on the information represented by UML state 
diagrams. 

The first axis is centered on use case documents [9, 11, 
221. Based on these documents, Frolich and Link 191 
explain how test cases can be automatically generated with 
the aid of Artificial Intelligence (AI) methods. Their use 
cases are systematically transformed into UML state 
diagrams, which then represent the behavior of the system 
under test. State diagrams are further more mapped to a 
planning language and then a planning tool (called 
graphplan) yields the different test cases as solutions to a 
planning problem. The testing criterion retained is the 
coverage of every transition of the state diagram. The work 
of [22] is focused on a similar process. The authors also 
propose to convert use cases into formal scenarios using 
annotated state diagrams and then to derive test cases from 
these state diagrams in a systematic manner. The method, 
called SCENT (for SCENario-based validation and Test of 
software), derives test cases to cover every transition. The 
work presented in [ l l ]  addresses the issue of testing 
distributed components and their interactions specified in 
UML state diagrams using commercial modeling tools 
such as Rational Rose. This technique is similar to the two 
previous ones: state diagrams represent scenarios of use 
cases and the testing criterion is transition coverage. 

The second axis is the most similar to ours in that i t  is 
centered on UML state diagrams that are used to represent 
the behavior of an object [3, 12, 191. Binder’s book [3] 
addresses a wide spectrum of concerns. Among them, the 
author considers the UML from a testing perspective: a 
detailed analysis of each UML diagram is presented and 
generic test requirements for each diagram are identified, 
which can be used to develop application-specific test 
cases. As regards the state diagrams, emphasis is put on the 
use of the FREE (Flattened Regular Expression) state 
model that is consistent with all requirements of the state 
diagrams: according to this model, in case of inheritance 
the state diagram of a class is expanded to represent the 
behavior of inherited features. Then, conventional state- 
based testing criteria (see e.g., [5]) can be applied to the 
expanded diagrams. In [12], the authors propose a 
transformation method from state diagrams into extended 
finite state machines and flow graphs. The transformation 
consists in flattening the hierarchical and concurrent 
structure of states and eliminating broadcast 
communications, while preserving both control and data 
flow in the UML state diagrams. Then, it  is shown that 
conventional control and data flow testing criteria (see e.g., 
181) can be applied to the transformed models. Unlike the 
previous techniques, the work of [19] is concentrated on 
the definition of testing criteria related to the coverage of 
UML state diagrams, without flattening transformation. 
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Four testing criteria are defined from the change event 
enabled transitions: (1) transition coverage, (2) full 
predicate coverage, (3) transition-pair coverage and, (4) 
complete sequence coverage where a complete sequence is 
a sequence of state transitions that form a complete 
practical use of the system. To evaluate their criteria, the 
authors have developed a proof-of-concept test data 
generation tool, called UMLTest, which is integrated with 
the Rational Rose tool. An empirical study conducted on a 
small size program (400 lines of C code) has demonstrated 
the feasibility of the proposed testing criteria. More 
empirical studies are still required to evaluate and compare 
the effectiveness of the testing techniques associated with 
each of the four criteria. 

To conclude on the work pointed out in this section, it is 
worth noting that all the testing techniques involve a 
deterministic process for creating test case input values: it 
consists in selecting a priori a set of test cases such that 
each element defined by the chosen testing criterion is 
covered once. As far as we know, a probabilistic process, 
such as the statistical approach presented in the next 
section, has not yet been investigated from UML diagrams. 

3. Statistical Functional Testing 

Statistical testing involves exercising a program with 
input values that are randomly generated according to a 
given probability distribution over the input domain. 
Previous work related to procedural programs [25]  has 
shown that the information provided by testing criteria may 
be used as guides for determining input distributions from 
which effective test case input values are produced. 
Section 3.1 recalls the motivation and the principle of the 
approach, called statistical structural or functional testing, 
depending on whether the testing criteria are related to the 
coverage of a structural or a functional model of the 
software. Based on this background, Section 3.2 introduces 
the testing technique we are currently investigating, that is 
statistical functional testing designed from UML state 
diagrams with the support of the Rational Rose RealTime 
tool. 

3.1. Background 

Given a testing criterion, the conventional method for 
generating input values proceeds according to the 
deterministic process. But a major limitation is due to the 
imperfect connection of the criteria with real faults, so that 
exercising each element defined by such criteria once 
(e.g., each transition of a finite state machine) may not be 
sufficient to ensure a high fault exposure power. Yet, the 
criteria provide us with relevant information about the 
target piece of software. A practical way to compensate for 

criteria weakness is to require that each element be 
exercised several times. This involves larger sets of input 
values that have to be automatically generated: it is the 
motivation of statistical testing designed according to a 
testing criterion [25]. In this approach, the information 
provided by criteria is combined with an automatic way of 
producing input values, that is, a random generation. 

When using the statistical approach for generating input 
values, the activation number of each element defined by 
the testing criterion is a random variable. Two factors play 
a part in ensuring that on average every element is 
exercised several times, whatever the particular input 
values randomly generated according to the input 
distribution and within a moderate test duration. The first 
factor is the input probability distribution, from which the 
input values are randomly drawn; the second factor is the 
test size, i.e., the number of input values that are generated. 
Both of them have to be determined according to the 
chosen testing criterion. 

The determination of the input distribution is the comer 
stone of the method. The aim is to search for a probability 
distribution that is proper to rapidly exercise every element 
defined by the criterion. Given a criterion C - say, 
transition coverage - let S be the corresponding set of 
elements - the set of transitions. Let P be the occurrence 
probability per execution of the least likely element of S. 
Then, the distribution must accommodate the highest 
possible P value. Depending on the complexity of this 
optimization problem, the determination of the distribution 
may proceed either in an analytical way or in an empirical 
way (see e.g., [24, 2.51 for detailed examples). The first 
way supposes that the activation conditions of the elements 
can be formulated as a function of the input parameters. 
Then their probabilities of occurrence are a function of the 
input probabilities, facilitating the derivation of an input 
distribution that maximizes the frequency of the least 
likely element. The second way is based on simulations to 
tune progressively the input distribution until the frequency 
of each element is deemed sufficiently high (see Section 
3.2). 

The test size N must be large enough to ensure that each 
element of S is exercised several times under the defined 
input distribution. The assessment of a minimum test size 
N is based on the notion of test quality with respect to the 
testing criterion. This quality, denoted q,, is the probability 
of exercising at least once the least likely element of S. As 
a result, the test quality q, and the test size N are linked by 
the relation: (I-P)N = 1-q,. Thus, knowing the value of P 
for the derived input distribution, if a test quality objective 
q, is required, the minimum test size N is given by 
Relation ( 1 ) .  

N = In( 1 -9,) / In( 1 -P) (1) 
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Returning to the motivation of statistical testing - 
exercising several tirnes each element defined by the 
criterion, let n be the average number of times the least 
likely element is exercised. Then n = P.N = P.ln( 1 -9,) / 
In(1-P) from Relation (1). For small values of P (i.e., P < 
0.1, which is a readistic assumption for non trivial 
applications), In(1-P) 6: -P. Thus, we get Relation (2) that 
establishes a link between q, and n. For example, n = 3 for 
q, = 0.95, and n G 5 for q, = 0.99. 

n :z - In( 1-qN) (2) 
A number of experiments have already been conducted 

on procedural progrizms coming from various critical 
application domains. They confirmed the soundness of the 
statistical testing techniques, which have repeatedly 
exhibited a higher ermr detection power when compared 
with deterministic testing techniques and random 
(uniform) testing (see e.g., [25] that reports on a sample of 
these experiments). The main conclusion arising from this 
previous work is that statistical testing is a suitable means 
to compensate for the tricky link between testing criteria 
and software design Saults. As regards 00 programs, a 
first empirical investigation of statistical functional testing 
was successfully conducted on the control program of a 
production cell [26]: the program was developed using the 
Fusion method [6] and implemented in Ada 95. But 
because no CASE tool supports the Fusion method, this 
work was based on functional models (automata) manually 
drawn from the information got from Fusion analysis and 
design documents. 

3.2. CASE Tools Applied to Statistical Functional 
Testing 

Several CASE tooh in current use provide support for 
graphical behavioral modeling. The expected benefits of 
using a CASE tool for supporting the generation of test 
cases are noticeable. First, no specific model of the 
software is required lor the purpose of testing. Second, 
since most of these tools offer prototyping or simulation 
facilities, they provide the test designer with an automatic 
solution to generate the expected outputs (assuming that 
the models are correct:). These benefits hold for any testing 
technique, whether deterministic or statistical. 

In the case of st;itistical functional techniques, the 
analytical determination of the input distribution may be 
very tedious as soon as the activation conditions of the 
elements to be covered during testing are highly dependent 
on each other. Moreover, it becomes impossible when the 
model complexity prohibits us from getting the set of 
equations relating the element probabilities to the input 
distribution. For many industrial applications, the practical 

limitation of an analytical search is rapidly reached, even 
at the component (subsystem) level. 

A pragmatic way to proceed is then to conduct an 
empirical search of the input distribution. It is based on the 
following principle: starting from an initial input 
distribution (e.g., the uniform one), several large sets of 
input values are generated; the models are executed with 
these values to count the number of times each targeted 
element is covered; the execution results are analyzed to 
determine the activation conditions of the least covered 
elements in order to improve the input distribution. This 
iterative process is stopped when the frequency of each 
element is deemed sufficiently high. Note that the 
empirical process does not yield the actual value of the 
probability P of exercising the least likely element. Hence, 
the test size N cannot be assessed from Relation (1). In that 
case, Relation (2) is used to tune the test size N according 
to a test quality objective q,. 

The feasibility of such an empirical procedure requires 
the use of a CASE tool that provides facilities to program 
model execution and to instrument the model in order to 
collect statistics about coverage measures during 
execution. A first investigation was centered on the 
STATEMATE environment [24]. The test criterion used was 
the coverage of the basic states (states having no offspring) 
of the Statecharts. This work showed the feasibility of the 
empirical procedure on a case study from the nuclear field, 
and the results of test experiments supported the high fault 
revealing power of the test cases. Yet, for real-time 
software systems (such as the avionics case study 
presented in Section 4) that have to react to small changes 
of their environment (e.g., a pilot changes the position of a 
two-way switch), it should be important to focus on all the 
transitions between the states of the behavioral models, 
rather than just the basic states. Obviously, using transition 
coverage as the testing criterion makes the empirical 
search of the input distribution an order of magnitude more 
complex - or even unfeasible, as we will see in Section 5. 
Hence, how to design another - practical and automatic - 
procedure is the aim of our investigation conducted with 
the aid of the Rational Rose RealTime tool. 

4. Case Study: an Avionics System 

As support of our theoretical work, the Advanced 
Technology Center of Rockwell-Collins provided us with a 
research version of an avionics system, the mode control 
logic of a Flight Guidance System (FGS) for a General 
Aviation class aircraft. The FGS compares the measured 
state of an aircraft (present position, speed, attitude) to the 
desired state and generates pitch and roll guidance 
commands in order to minimize the difference between the 
measured and desired states. An FGS can be broken into 
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the mode control logic and the flight control laws. The case 
study focuses on the mode control logic. This system 
accepts commands from the pilots, the Flight Management 
System (FMS), and information about the current state of 
the aircraft to determine which system modes are active. 
The active modes in turn determine which flight control 
laws are used to generate the pitch and roll guidance 
commands. When engaged, the autopilot translates these 
commands into movement of the aircraft’s control 
surfaces. 

From the SCR (Software Cost Reduction) specification 
of this industrial example [16], we developed a UML 
model in the Rose RealTime environment. This model is 
made of 115 classes, including 14 classes with a functional 
behavior that determines the bulk of the model. In this real- 
time environment, these 14 classes are modeled with 
capsules, which are a specialization of the general concept 
of a UML class [23] and their behavior is modeled with 
UML state diagrams. 

The Java implementation to be tested has been 
developed at the Advanced Technology Center from the 
SCR specification and is also made of 115 Java classes 
(6500 LOC). It is designed as an automaton that is updated 
at each cycle of execution. A cycle may be divided into 
three activities. First, input variables are set from values 
provided by the aircraft buses. Second, the program reacts 
to input values. Third, output variables are produced and 
sent on the aircraft buses. 

4.1. UML State Diagrams 

The functional behavior of this avionics system has 
been modeled with a total of 14 concurrent UML state 
diagrams. Figure 1 depicts as an example a subset of four 
diagrams referring to the Aircraft Data Sources and 
Autopilot classes of the FGS case study: two diagrams 
represent the behavior of the super-states Aircraft Data 
Sources and Autopilot, and the other two describe the 
behavior of the composite states DISENGAGED and 
ENGAGED. The Aircraft Data Sources state diagram 
consists of two basic states, SPEED-OK and TOO-FAST, 
with SPEED-OK as the initial state. These states are or- 
states, that is, being in the Aircraft Data Sources state 
diagram implies being either in SPEED-OK or in 
TOO-FAST but not in both. A Boolean variable 
Overspeed is set according to the active state. This variable 
is involved in the triggering of transitions in the Autopilot 
state diagram. The autopilot has two composite or-states, 
DISENGAGED and ENGAGED. In the DISENGAGED 
state, the autopilot is idle and information is displayed to 
the flight crew to indicate whether the autopilot has been 
disengaged in a bad condition (the Warning substate) or in 
a normal condition (the Normal substate). In the 

ENGAGED state, the autopilot elaborates guidance 
commands to drive the aircraft’s control surfaces. This is 
the goal of the Normal substate. In the Sync substate, the 
automatically generated flight guidance is overridden by 
manually generated commands from the pilots. 

Airrrvfl Dala Sources Autopilot (t 

Figure 1. State diagrams for the Aircraft Data 
Sources and Autopilot classes 

4.2. Description of Events 

The triggering of transition represents the response of 
the system to events generated externally by the 
environment or internally by the system itself. An event 
occurs when the value of any variable changes. Tables 1 
and 2 show the events that trigger the labeled transitions of 
Figure 1. The formalism used in these tables is derived 
from the SCR formal notation [16]. The event “@T(c)” 
means that the Boolean expression c has to change from 
false to true. Reciprocally, the event “@F(c)” is defined as 
@F(c) = @T(, c), which means the Boolean expression c 
has to change from true to false. In addition to an event, a 
guard expression may condition the triggering of a 
transition so that the transition can only be taken if that 
expression is true. A guard is defined after the keyword 
WHEN. For example, transition APl means that the 
autopilot changes from DISENGAGED to ENGAGED 
when the event “@T(AP-Engage-Switch = ON) WHEN 
(AP-Disconnect-Bar = UP)” occurs. This event 
corresponds to the flight crew pressing the button 
requesting the engagement of the autopilot from OFF to 
ON when the button requesting the disconnection of the 
autopilot is in the position UP. 

The UML state diagrams shown in Figure 1 look 
simple, but the triggering of their transitions is subject to 
events that are not so trivial. Events occur on a change of 
value that is expressed with the notation “@T(c)” and 
“@F(c)”. Let us take an example to understand that some 
transitions may be difficult to trigger due to this particular 
definition of events. Consider an event E defined with the 
expression “@T(c) WHEN d” where c and d are Boolean 
expressions. If the expression c becomes true when the 
guard d is false, the event does not occur. 
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Label Previous St,ate + ADS 1 TOO-FAST 

I ADS2 I TOO-FAST I @T(Indicated-Mach-Number <= Mmo AND Above-Transition-Altitude) (SPEED-OK 1 

Events New State 

@T(Indicated-Airspeed <= Vmo AND NOT Above-Transition-Altitude) SPEED-OK 

1 ADS3 1 SPEED-OK 1 @T(Indicated-Airspeed > (Vmo + 10) AND NOT Above-Transition-Altitude) (TOO-FAST 1 
ADS4 SPEED-OK @T(Indicated-Mach-Number > (Mmo + 0.03) AND Above-Transition-Altitude) TOO-FAST 

Label 

~~ 

1 AP2 IENGAGED I @T(AP-Disconnect-Bar = DOWN) 

Events New State 

@T(AP-Engage_Switch = ON) WHEN (APDisconnectBar = UP) ENGAGED 

I DISENGAGED I 

@T(SyncLeft = ON OR SyncRight = ON) 

ENGAGED 

Normal 

Sync 

I AP3 (ENGAGED I @T(AP-Disengage-Left = ON) OR @T(AP-Disengage-Right = ON) 1 DISENGAGED 1 
DISENGAGED 

Sync 

Normal 

Warning 

I AP8 I Entered(DISE.NGAGED) I NOT(@T(GA Pressed) AND (NOT Oversueed')) I Normal I 

At the next cycle, if d becomes true and c does not change, 
the event does no more occur, even if the expression c is 
true. Indeed, the expression c was true at the previous 
cycle and is still true at the current cycle, while the event E 
request a change of value from false to true, which is not 
the case. This example shows that the event E uses both 
the previous and current values for the expression c. If we 
want to trigger the ev'ent E at this stage, it will take at least 
two cycles since the expression c must first change to false 
and then return to true:. 

Moreover, a lot of events in the case study are based on 
two-way switches (ON and OFF) that provoke an event 
only when their statu.; changes from OFF to ON (changes 
from ON to OFF have no effect). For instance, the 
engagement of the autopilot is requested when the switch 
APEngage is set to ON whereas it is not disengaged when 
this switch is set to OFF. Other switches are used to 
disengage it. Then, some changes provoke an event 
whereas others provoke nothing because of this particular 
representation of :switches. Finally, the activation 
conditions of the transitions may depend on several 
variables. For instance, the Sync state can be requested 
only when one of the two switches (syncLeft and 
syncRighr) is set to ON when both previous values were 
OFF. Once the Sync state is activated, setting the second 
switch to ON has no effect. 

5. Generation of Statistical Test Cases 

To study the feasibility of the statistical approach, we 
have used a subsystem of the FGS case study. It involves 
77 classes and 4 UML state diagrams (those of Figure I ) ,  
with a total of 12 transitions. This subsystem is controlled 
by 11  input variables. An input variable is either a Boolean 
variable, which represents the position of a two-way button 
(or switch) that may be operated by the flight crew (e.g., to 
request the engagement of the autopilot), or a float variable 
that represents an air data elaborated by other devices (e.g., 
the indicated airspeed or the pressure altitude). 

5.1. Determination of an Input Distribution 

For this subsystem, we first used the empirical 
procedure (Section 3.2) for determining a probability 
distribution over the input domain, using transition 
coverage as the testing criterion. Simulation experiments 
were conducted from a uniform distribution over the input 
domain: several large sets of input values were generated 
using different initializations of the random generator; the 
models were executed with these sets to collect measures 
of the transition coverage provided by each of them. The 
results showed that most transitions are never or seldom 
exercised under the uniform distribution, which means that 
this distribution does not supply a sound probe of the 
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modeled transitions. The activation conditions of the least 
(or never) covered transitions were analyzed to improve 
the distribution, and many try-and-backtrack loops were 
thus performed each time with a modified input 
distribution that should increase the triggering probability 
of the least covered transitions at the previous step. 
Unfortunately, we observed no significant improvement all 
along the empirical procedure. The reason for this is that 
by defining a probability distribution over the input 
domain, we act on the occurrence probability of values 
(e.g., the probability that a Boolean variable has the value 
true), but not on the occurrence probability of value 
changes (e.g., a Boolean variable changes from false to 
true). Since the events that trigger the transitions are 
related to changes, little improvement may be expected 
using the empirical procedure conducted over the input 
domain. 

Yet, the analysis guided us to define an algorithm, 
called functional distribution algorithm, outlined in Figure 
2. It allows us to significantly increase the frequency of 
changes that may trigger one of the enabled outgoing 
transitions, i.e., one of the outgoing transitions of the 
current active state(s) of the model: the algorithm selects 
the enabled transition that was the least triggered by the 
previous test case input values. 

ADS2 
ADS3 
ADS4 
AP 1 

Input 

2 - 5  3-5  
1 - 5  4 - 8  
1 -3  3 - 6  
3 -8  16 - 20 

output 

AP2 

Step 1 

1 - 4  4 - 6  

A set of state diagrams S representing super-states 
of the (sub)system under study. 
An input value generated according to the 
functional distribution. 
Select a super-state S ,  E S with the probability q2 I 
T, where T,) is the number of transitions in .Y,,and in 
its potential composite states, and 7 is the total of 
transitions in all the state diagrams of the 
(subkvstem. 

A P3 

state and in its potential composite states, select the 

variable implied in the event that triggers the 
transition. 

0 - 2  4 - 6  

AP6 

uniform distribution over the input domain and, ( 2 )  five 
different sequences of input values generated by the 
functional algorithm. These results show that in the latter 
case (functional distribution), every transition is triggered 
at least 3 times by each of the five test sequences. From 
Relation (2 ) ,  it means that a test size of N =  300 
corresponds to a test quality of q N z  0.95 (Section 3.1). To  
reach the same test quality, the uniform distribution would 
require a much larger test size. 

0 - 2  3 - 5  

Table 3. Transition coverage measures: 
simulation results for 5 sequences of 300 input 
values generated according to each distribution 

(minimum & maximum activation numbers) 

AW 

I Tr;;:? Uniform Functional I Distribution I Distribution I 

0 -  2 3 - 5  

I ADS1 I 1 - 5  I 3- 8 I 

Step4 If the chosen variable is a Boolean, change its 
current value. Otherwise, generate a random input 
value within the domain of the variable to change 
its current value. 

I AP4 I 0 - 2  I 5-10 I 
I AP5 I 0 - 4  I 3 - 5  I 

1 AP8 I 2 - 5  I 11-15 I 

However, the functional distribution does not provide a 
“balanced” coverage of the transitions. This is due to the 
fact that the activation conditions of some transitions are 
dependent on each other: some transitions are reachable 
only when others have been triggered. For example (see 
Figure 1), a single transition AP1 enters the ENGAGED 
state of the autopilot while three different transitions (AP2, 
AP3 and AP4) exit this state; as a result, AP1 will always 
be exercised more often than AP2 (or AP3 or AP4), 
whatever the input distribution. 

Finally, it is worth noting that there is a difference 
between the number of input values (N = 300) and the 
number of triggered transitions (about 130 under the 
functional distribution). It is due to the fact that some 
events are not easy to produce and may request several 
successive input values to occur (see Section 4.2). Yet, 
input values that do not actually provoke the triggering of a 
modeled transition are not “garbage”: when testing the 
program, they allow us to verify that it actually does 
nothing when it is supposed to do nothing. 
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5.2. Test Generation Process 

Test Size 

To automize the test case generation in the Rose 
RealTime environment, we propose to extend the UML 
model representing the program under test with two 
capsules. These capsules, named generator and collector, 
are respectively respclnsible for the generation of the input 
values and the collection of transition coverage measures 
(Figure 3). The functional distribution algorithm is 
implemented in the generator capsule. The collector 
capsule supplies the generator capsule with the coverage 
measures needed at step 2 of the functional algorithm, to 
identify and select the least triggered enabled transition. 

In addition, the transition coverage measures guide the 
empirical determination of the test size: given a test quality 
objective, Relation ( 2 )  gives the minimum number of times 
n each transition has to be triggered: hence, the generator 
capsule may stop the production of new input values as 
soon as the predefined value n is reached. Then, two files 
are automatically created. One file contains the expected 
outputs produced by simulation of the model with the input 
values. Another file represents a Java class that contains 
the input values translated into Java instructions. This class 
is a test driver especially created for managing the test 
process of the Java program. During the test experiments, 
outputs produced by the Java program are automatically 
compared to the expected outputs provided by the model. 

Returning to the subsystem on which we exemplify our 
testing technique, the 12 transitions may be triggered 
according to values of input variables and internal 
variables. An internal variable is any function of input 
variables, active states or other internal variables. The test 
generation process consists of selecting values of input 
variables according to the algorithm. Internal variables are 
not directly controlled by the generated test cases but via 
input variables. 

Functional 
Distribution Distribution 

Uniform 

<<Capsule >> 

? 
! 

100 
Figure 3. Test generation process 
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Test experiments have been conducted on the Java 
program to get a hint on the adequacy of our test cases. In 

400 

these experiments, we used ten different sequences of 500 
input values: five of them were generated according to the 
functional distribution algorithm, and the other five 
according to a uniform distribution over the input domain, 
for purposes of comparison. 

First, running the 10 sequences revealed no fault in the 
Java implementation, which always supplied output values 
identical to the expected ones provided by the UML model. 
This is in conformity with the test experiments conducted 
on the same FGS case study by Offutt [18]: no faults were 
found in the subsystem investigated. 

Then, mutation analysis has been used to get an insight 
into the error detection power of the test cases. Mutation 
analysis consists in creating a sample of faulty programs 
from the program under test, by seeding it  with faults 
called mutations. Mutations are single-point, syntactically 
correct changes introduced one by one in the original 
program. A mutant is then a copy of the original program 
containing one mutation. If test cases cause a mutant to 
produce different outputs than the expected ones, the 
mutant is said killed by the test cases. The number of 
mutants killed by a set of test cases may give an empirical 
assessment of their effectiveness. In [ 181, Offutt evaluates 
his testing technique on the overall FGS case study with a 
set of 155 mutants. With in mind to compare both 
techniques (in future work), Offutt provided us with his 
mutants. 46 of these mutants are related to the subsystem 
we consider. This sample of mutants is small and non- 
exhaustive, but it gives us a first hint on the adequacy of 
our test cases. 

Table 4 summarizes the results of the experiments. For 
each input distribution, it shows the number of mutants 
killed by each of the 5 sequences of input values, as a 
function of the test size. The results are in favor of a best 
efficiency of the test sequences generated according to the 
functional distribution algorithm. Also, one can note that 
the number of killed mutants stabilize around N = 300, 
which suggests that requiring a test quality objective of q, 
3 0.95 with respect to the transition coverage criterion 
could be a reasonable stopping rule to tune the test size (to 
be confirmed by further experiments). 

Table 4. Number of mutants killed by each of 
the five sequences of input values 

32 41 
500 32 41 

I 200 I 28 I 41 I 
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The 5 mutants that are not repeatedly killed under the 
functional distribution have been analyzed. Analysis results 
show that these 5 mutants deal with constant values, that is 
a constant value is replaced by another value. For instance, 
a mutant changes the correct statement ‘‘c > 0.813” with 
the faulty statement “c > 0.815” where c is defined in the 
range [O.O-1.01. This mutant can only be killed if the 
random value generated for c falls within the small sub- 
domain ~0.813-0.815]. This type of faults highlights the 
already known weakness of statistical testing with respect 
to faults related to extremal/special values. Previous work 
reported on the importance of using additional 
(deterministic) test cases specifically aimed to reveal this 
type of faults [25]. 

6. Conclusion and Future Directions 

The paper presents a statistical testing technique for the 
generation of test cases from UML specifications. The 
approach represents a challenge for the testing of complex 
critical systems. This first investigation is concentrated on 
the automation process of the technique with the aid of the 
Rational Software Corporation’s Rose RealTime tool. An 
automated test generation process is proposed that 
produces sequences of test cases (including both the input 
values and the expected outputs) for Java programs. The 
testing criterion used to guide the selection of input values 
is the coverage of the transitions of the UML state 
diagrams. Based on this criterion, we present a generic 
algorithm for the probabilistic (random) generation of 
input values that allows us to produce sequences of test 
cases that trigger several times every transition. 

Returning to the related work outlined in Section 2, it is 
worth noting that transition coverage of the state diagrams 
is not a very stringent requirement: it is the least 
demanding of the four testing criteria defined in [19]; and, 
unlike [3, 121 we do not flatten the state diagrams to use 
testing criteria related to the coverage of expanded 
behavioral models. According to the motivation of 
statistical testing, here the principle consists of ( I )  the use 
of models and testing criteria of reasonable complexity to 
guide the selection of input values in order to facilitate the 
definition of a test generation algorithm (and the analysis 
required to implement the algorithm) and, (2 )  the 
requirement of exercising several times - using different 
input values - every element identified by the criterion to 
compensate for the lack of detailed behavioral information 
supported by the models (and a fortiori by the testing 
criterion). On the opposite, improvements of the 
deterministic testing techniques are based on refinements 
of the behavioral models (e.g., using flattening 
transformation) and/or of the testing criteria (e.g., 
transition-pair coverage instead of transition coverage). 

But, the cost of such improvements is an additional 
complexity of the analysis required to create the test case 
input values, which may become impossible to automatize. 

The feasibility of our approach is exemplified on a 
subsystem of a research version of an avionics system, the 
FGS case study. Results of first test experiments are in 
favor of a high effectiveness of the generated test cases. 
However, further extensive experiments must be conducted 
to get a more valuable assessment of the testing technique 
(including the stopping rule to tune the test size), and to 
compare it with other (deterministic) approaches, in terms 
of cost/effectiveness. 

Ongoing work is concentrated on such experiments. 
They will be conducted on the whole FGS case study. 
Mutation analysis based on larger samples of seeded faults 
will be used to get a more reliable feedback on the 
efficiency of different techniques. In particular, it will 
involve mutation faults defined to target object-oriented 
concepts (such as those described in [13]). This future 
work will allow us to analyze the strengths and weaknesses 
of statistical functional testing applied to 00 programs. 
Then, we will investigate the possibility of extending our 
framework with structural testing techniques to target the 
specificities of the Java programming language. 
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