
Automated Generation of Statistical Test Cases
from UML State Diagrams

Philippe Chevalley * and Pascale Thkvenod-Fosse
LAAS-CNRS, 7 avenue du Colonel Roche

31077 Toulouse Cedex 4, France
{chevalle, thevenod} @laas.fr

Abstract
The adoption of the object-oriented (00) technology fo r

the development of critical software raises important
testing issues. This paper addresses one of these issues:
how to create effective tests from 00 specification
documents? More precisely, the paper describes a
technique that adapts a probabilistic method, called
statistical functional testing, to the generation of test cases
from UML state diagrams, using transition coverage as the
testing criterion. Emphasis is put on defining an automatic
way to produce both the input values and the expected
outputs. The technique is automated with the aid of the
Rational Software Corporation’s Rose RealTime tool. An
industrial case study from the avionics domain, formally
specified and implemented in Java, is used to illustrate the
feasibility of the technique at the subsystem level. Results
offirst test experiments are presented to exemplifi the fault
revealing power of the created statistical test cases.

1. Introduction

Software testing involves executing a program on a set
of test case input values and comparing the actual output
results with the expected results. A large number of testing
techniques have been defined for programs developed
according to hierarchical approaches and written in
procedural languages (see e.g., [l]). But, it is now well
recognized that these techniques must be revisited to take
account of the characteristics of the object-oriented (00)
technology (see e.g., [2, 14, 151). Even if this technology is
more and more used in industrial cases, testing methods for
00 programs are still to be improved. The development of
high-quality 00 software requires appropriate testing to
ensure that the software meets its specification. This
statement becomes crucial for safety-related software
where failures may be a synonym of injuries or financial
loss. This paper presents results from an ongoing research

* The author is with Rockwell-Collins France as a CIFRE fellow.

work focused on the automatic generation of test cases
from Unified Modeling Language (UML) specifications.

The UML [4] is a semiformal language that comprises
nine types of graphics, called diagrams. They are used to
describe different aspects of a system including static,
dynamic, and use-case views. The testing technique we
investigate is based on the information provided by one
type of diagrams, called state diagram: it is based on
Harel’s Statecharts [lo], and is widely used to represent
the dynamic behavior of objects. The UML is supported by
several Computer-Aided Software Engineering (CASE)
tools in current use for specifying and designing industrial
applications. Our aim is to study to what extent the
facilities offered by such tools may provide a practical
support for the generation of adequate test cases. The paper
investigates the automation process of a probabilistic
method for generating test inputs, called statistical
functional testing [25], with the aid of the Rational
Software Corporation’s Rose RealTime tool [20].

Statistical testing involves exercising a program with
input values that are randomly generated according to a
given probability distribution over the input domain. When
the focus of testing is fault removal, that is, bug-finding
rather than reliability assessment, the effectiveness of the
method depends on the adequacy of the distribution in
revealing faults with high probability. Here, we will use
the information provided by the UML state diagrams to
define a probability distribution that is well suited to
rapidly trigger all the transitions of the diagrams. This
approach belongs to the family of statistical functional
testing techniques, as defined in [25]. It should not be
confused with (i) random testing - a blind approach that
uses a uniform probability over the input domain [7], or (ii)
statistical operational testing - that is, when the test
samples are randomly drawn from an input distribution
representative of operational usage in order to determine

0-7695-1372-7101 $10.00 0 2001 IEEE
205

mailto:laas.fr

whether or not a piece of software is ready for use
(reliability assessmenl) [17, 211.

The paper is organmzed as follows. In Section 2, we first
discuss related work on test cases generation from UML
state diagrams. Section 3 recalls the principle of statistical
testing, and introduces the testing technique under
investigation. Then, Section 4 presents the case study used
to illustrate the feasibility of the proposed approach. It is
extracted from a research version of an avionics system
provided by the Advanced Technology Center of
Rockwell-Collins - the mode control logic part of a Flight
Guidance System [I61 - and implemented in Java.
Section 5 presents the testing technique and gives first
experimental results. Future work is outlined in Section 6.

2. Definitions and Related Work

This paper uses the: following definitions 1191. A test or
test case is a general software artifact that includes test
case input values (01- input values, for short), expected
outputs for the test case, and any inputs that are necessary
to put the software system into the state that is appropriate
for the input values. A. test case input value comes from the
test requirements which define specific things that must be
satisfied or covered d uring testing: for example, reaching
statements are the requirements for statement coverage. A
testing criteriorz (e.g., statement coverage) is a rule or a
collection of rules thai: impose test requirements on a set of
test cases. A testing technique guides the tester through the
testing process by including a testing criterion and a
process for creating test case input values. Testing criteria
may be related to the coverage of either a model of the
program structure (e.g., the program control flow graph) or
a model of its functionality (e.g., finite state machines that
may be used to describe some software functions). ‘The
former case defines structural (or white box) testing
techniques, and the latter case defines functional (or black
box) testing techniques [11.

There is a general agreement among the testing
community that the 00 development process and
associated concepts raise a number of problems from the
perspective of testing (see e.g., [2, 14, 151). Among the
questions that must be answered, let us quote: How to
determine the unit and integration testing levels
(decentralized architecture of objects)? Which models and
associated testing criteria should be used to produce
effective input values’? How to solve the controllability and
observability problems that are increased by object
encapsulation? etc. This paper is related to the second
issue. Our aim is to investigate a functional testing
technique based on LIML state diagrams, emphasis being
put on defining an automatic way of producing both the
input values and the expected outputs. In previous work

that addresses this topic, we identified two different axes
depending on the information represented by UML state
diagrams.

The first axis is centered on use case documents [9, 11,
221. Based on these documents, Frolich and Link 191
explain how test cases can be automatically generated with
the aid of Artificial Intelligence (AI) methods. Their use
cases are systematically transformed into UML state
diagrams, which then represent the behavior of the system
under test. State diagrams are further more mapped to a
planning language and then a planning tool (called
graphplan) yields the different test cases as solutions to a
planning problem. The testing criterion retained is the
coverage of every transition of the state diagram. The work
of [22] is focused on a similar process. The authors also
propose to convert use cases into formal scenarios using
annotated state diagrams and then to derive test cases from
these state diagrams in a systematic manner. The method,
called SCENT (for SCENario-based validation and Test of
software), derives test cases to cover every transition. The
work presented in [l l] addresses the issue of testing
distributed components and their interactions specified in
UML state diagrams using commercial modeling tools
such as Rational Rose. This technique is similar to the two
previous ones: state diagrams represent scenarios of use
cases and the testing criterion is transition coverage.

The second axis is the most similar to ours in that i t is
centered on UML state diagrams that are used to represent
the behavior of an object [3, 12, 191. Binder’s book [3]
addresses a wide spectrum of concerns. Among them, the
author considers the UML from a testing perspective: a
detailed analysis of each UML diagram is presented and
generic test requirements for each diagram are identified,
which can be used to develop application-specific test
cases. As regards the state diagrams, emphasis is put on the
use of the FREE (Flattened Regular Expression) state
model that is consistent with all requirements of the state
diagrams: according to this model, in case of inheritance
the state diagram of a class is expanded to represent the
behavior of inherited features. Then, conventional state-
based testing criteria (see e.g., [5]) can be applied to the
expanded diagrams. In [12], the authors propose a
transformation method from state diagrams into extended
finite state machines and flow graphs. The transformation
consists in flattening the hierarchical and concurrent
structure of states and eliminating broadcast
communications, while preserving both control and data
flow in the UML state diagrams. Then, it is shown that
conventional control and data flow testing criteria (see e.g.,
181) can be applied to the transformed models. Unlike the
previous techniques, the work of [19] is concentrated on
the definition of testing criteria related to the coverage of
UML state diagrams, without flattening transformation.

206

Four testing criteria are defined from the change event
enabled transitions: (1) transition coverage, (2) full
predicate coverage, (3) transition-pair coverage and, (4)
complete sequence coverage where a complete sequence is
a sequence of state transitions that form a complete
practical use of the system. To evaluate their criteria, the
authors have developed a proof-of-concept test data
generation tool, called UMLTest, which is integrated with
the Rational Rose tool. An empirical study conducted on a
small size program (400 lines of C code) has demonstrated
the feasibility of the proposed testing criteria. More
empirical studies are still required to evaluate and compare
the effectiveness of the testing techniques associated with
each of the four criteria.

To conclude on the work pointed out in this section, it is
worth noting that all the testing techniques involve a
deterministic process for creating test case input values: it
consists in selecting a priori a set of test cases such that
each element defined by the chosen testing criterion is
covered once. As far as we know, a probabilistic process,
such as the statistical approach presented in the next
section, has not yet been investigated from UML diagrams.

3. Statistical Functional Testing

Statistical testing involves exercising a program with
input values that are randomly generated according to a
given probability distribution over the input domain.
Previous work related to procedural programs [25] has
shown that the information provided by testing criteria may
be used as guides for determining input distributions from
which effective test case input values are produced.
Section 3.1 recalls the motivation and the principle of the
approach, called statistical structural or functional testing,
depending on whether the testing criteria are related to the
coverage of a structural or a functional model of the
software. Based on this background, Section 3.2 introduces
the testing technique we are currently investigating, that is
statistical functional testing designed from UML state
diagrams with the support of the Rational Rose RealTime
tool.

3.1. Background

Given a testing criterion, the conventional method for
generating input values proceeds according to the
deterministic process. But a major limitation is due to the
imperfect connection of the criteria with real faults, so that
exercising each element defined by such criteria once
(e.g., each transition of a finite state machine) may not be
sufficient to ensure a high fault exposure power. Yet, the
criteria provide us with relevant information about the
target piece of software. A practical way to compensate for

criteria weakness is to require that each element be
exercised several times. This involves larger sets of input
values that have to be automatically generated: it is the
motivation of statistical testing designed according to a
testing criterion [25]. In this approach, the information
provided by criteria is combined with an automatic way of
producing input values, that is, a random generation.

When using the statistical approach for generating input
values, the activation number of each element defined by
the testing criterion is a random variable. Two factors play
a part in ensuring that on average every element is
exercised several times, whatever the particular input
values randomly generated according to the input
distribution and within a moderate test duration. The first
factor is the input probability distribution, from which the
input values are randomly drawn; the second factor is the
test size, i.e., the number of input values that are generated.
Both of them have to be determined according to the
chosen testing criterion.

The determination of the input distribution is the comer
stone of the method. The aim is to search for a probability
distribution that is proper to rapidly exercise every element
defined by the criterion. Given a criterion C - say,
transition coverage - let S be the corresponding set of
elements - the set of transitions. Let P be the occurrence
probability per execution of the least likely element of S.
Then, the distribution must accommodate the highest
possible P value. Depending on the complexity of this
optimization problem, the determination of the distribution
may proceed either in an analytical way or in an empirical
way (see e.g., [24, 2.51 for detailed examples). The first
way supposes that the activation conditions of the elements
can be formulated as a function of the input parameters.
Then their probabilities of occurrence are a function of the
input probabilities, facilitating the derivation of an input
distribution that maximizes the frequency of the least
likely element. The second way is based on simulations to
tune progressively the input distribution until the frequency
of each element is deemed sufficiently high (see Section
3.2).

The test size N must be large enough to ensure that each
element of S is exercised several times under the defined
input distribution. The assessment of a minimum test size
N is based on the notion of test quality with respect to the
testing criterion. This quality, denoted q,, is the probability
of exercising at least once the least likely element of S. As
a result, the test quality q, and the test size N are linked by
the relation: (I-P)N = 1-q,. Thus, knowing the value of P
for the derived input distribution, if a test quality objective
q, is required, the minimum test size N is given by
Relation (1) .

N = In(1 -9,) / In(1 -P) (1)

207

Returning to the motivation of statistical testing -
exercising several tirnes each element defined by the
criterion, let n be the average number of times the least
likely element is exercised. Then n = P.N = P.ln(1 -9,) /
In(1-P) from Relation (1). For small values of P (i.e., P <
0.1, which is a readistic assumption for non trivial
applications), In(1-P) 6: -P. Thus, we get Relation (2) that
establishes a link between q, and n. For example, n = 3 for
q, = 0.95, and n G 5 for q, = 0.99.

n :z - In(1-qN) (2)
A number of experiments have already been conducted

on procedural progrizms coming from various critical
application domains. They confirmed the soundness of the
statistical testing techniques, which have repeatedly
exhibited a higher ermr detection power when compared
with deterministic testing techniques and random
(uniform) testing (see e.g., [25] that reports on a sample of
these experiments). The main conclusion arising from this
previous work is that statistical testing is a suitable means
to compensate for the tricky link between testing criteria
and software design Saults. As regards 00 programs, a
first empirical investigation of statistical functional testing
was successfully conducted on the control program of a
production cell [26]: the program was developed using the
Fusion method [6] and implemented in Ada 95. But
because no CASE tool supports the Fusion method, this
work was based on functional models (automata) manually
drawn from the information got from Fusion analysis and
design documents.

3.2. CASE Tools Applied to Statistical Functional
Testing

Several CASE tooh in current use provide support for
graphical behavioral modeling. The expected benefits of
using a CASE tool for supporting the generation of test
cases are noticeable. First, no specific model of the
software is required lor the purpose of testing. Second,
since most of these tools offer prototyping or simulation
facilities, they provide the test designer with an automatic
solution to generate the expected outputs (assuming that
the models are correct:). These benefits hold for any testing
technique, whether deterministic or statistical.

In the case of st;itistical functional techniques, the
analytical determination of the input distribution may be
very tedious as soon as the activation conditions of the
elements to be covered during testing are highly dependent
on each other. Moreover, it becomes impossible when the
model complexity prohibits us from getting the set of
equations relating the element probabilities to the input
distribution. For many industrial applications, the practical

limitation of an analytical search is rapidly reached, even
at the component (subsystem) level.

A pragmatic way to proceed is then to conduct an
empirical search of the input distribution. It is based on the
following principle: starting from an initial input
distribution (e.g., the uniform one), several large sets of
input values are generated; the models are executed with
these values to count the number of times each targeted
element is covered; the execution results are analyzed to
determine the activation conditions of the least covered
elements in order to improve the input distribution. This
iterative process is stopped when the frequency of each
element is deemed sufficiently high. Note that the
empirical process does not yield the actual value of the
probability P of exercising the least likely element. Hence,
the test size N cannot be assessed from Relation (1). In that
case, Relation (2) is used to tune the test size N according
to a test quality objective q,.

The feasibility of such an empirical procedure requires
the use of a CASE tool that provides facilities to program
model execution and to instrument the model in order to
collect statistics about coverage measures during
execution. A first investigation was centered on the
STATEMATE environment [24]. The test criterion used was
the coverage of the basic states (states having no offspring)
of the Statecharts. This work showed the feasibility of the
empirical procedure on a case study from the nuclear field,
and the results of test experiments supported the high fault
revealing power of the test cases. Yet, for real-time
software systems (such as the avionics case study
presented in Section 4) that have to react to small changes
of their environment (e.g., a pilot changes the position of a
two-way switch), it should be important to focus on all the
transitions between the states of the behavioral models,
rather than just the basic states. Obviously, using transition
coverage as the testing criterion makes the empirical
search of the input distribution an order of magnitude more
complex - or even unfeasible, as we will see in Section 5.
Hence, how to design another - practical and automatic -
procedure is the aim of our investigation conducted with
the aid of the Rational Rose RealTime tool.

4. Case Study: an Avionics System

As support of our theoretical work, the Advanced
Technology Center of Rockwell-Collins provided us with a
research version of an avionics system, the mode control
logic of a Flight Guidance System (FGS) for a General
Aviation class aircraft. The FGS compares the measured
state of an aircraft (present position, speed, attitude) to the
desired state and generates pitch and roll guidance
commands in order to minimize the difference between the
measured and desired states. An FGS can be broken into

208

the mode control logic and the flight control laws. The case
study focuses on the mode control logic. This system
accepts commands from the pilots, the Flight Management
System (FMS), and information about the current state of
the aircraft to determine which system modes are active.
The active modes in turn determine which flight control
laws are used to generate the pitch and roll guidance
commands. When engaged, the autopilot translates these
commands into movement of the aircraft’s control
surfaces.

From the SCR (Software Cost Reduction) specification
of this industrial example [16], we developed a UML
model in the Rose RealTime environment. This model is
made of 115 classes, including 14 classes with a functional
behavior that determines the bulk of the model. In this real-
time environment, these 14 classes are modeled with
capsules, which are a specialization of the general concept
of a UML class [23] and their behavior is modeled with
UML state diagrams.

The Java implementation to be tested has been
developed at the Advanced Technology Center from the
SCR specification and is also made of 115 Java classes
(6500 LOC). It is designed as an automaton that is updated
at each cycle of execution. A cycle may be divided into
three activities. First, input variables are set from values
provided by the aircraft buses. Second, the program reacts
to input values. Third, output variables are produced and
sent on the aircraft buses.

4.1. UML State Diagrams

The functional behavior of this avionics system has
been modeled with a total of 14 concurrent UML state
diagrams. Figure 1 depicts as an example a subset of four
diagrams referring to the Aircraft Data Sources and
Autopilot classes of the FGS case study: two diagrams
represent the behavior of the super-states Aircraft Data
Sources and Autopilot, and the other two describe the
behavior of the composite states DISENGAGED and
ENGAGED. The Aircraft Data Sources state diagram
consists of two basic states, SPEED-OK and TOO-FAST,
with SPEED-OK as the initial state. These states are or-
states, that is, being in the Aircraft Data Sources state
diagram implies being either in SPEED-OK or in
TOO-FAST but not in both. A Boolean variable
Overspeed is set according to the active state. This variable
is involved in the triggering of transitions in the Autopilot
state diagram. The autopilot has two composite or-states,
DISENGAGED and ENGAGED. In the DISENGAGED
state, the autopilot is idle and information is displayed to
the flight crew to indicate whether the autopilot has been
disengaged in a bad condition (the Warning substate) or in
a normal condition (the Normal substate). In the

ENGAGED state, the autopilot elaborates guidance
commands to drive the aircraft’s control surfaces. This is
the goal of the Normal substate. In the Sync substate, the
automatically generated flight guidance is overridden by
manually generated commands from the pilots.

Airrrvfl Dala Sources Autopilot (t

Figure 1. State diagrams for the Aircraft Data
Sources and Autopilot classes

4.2. Description of Events

The triggering of transition represents the response of
the system to events generated externally by the
environment or internally by the system itself. An event
occurs when the value of any variable changes. Tables 1
and 2 show the events that trigger the labeled transitions of
Figure 1. The formalism used in these tables is derived
from the SCR formal notation [16]. The event “@T(c)”
means that the Boolean expression c has to change from
false to true. Reciprocally, the event “@F(c)” is defined as
@F(c) = @T(, c), which means the Boolean expression c
has to change from true to false. In addition to an event, a
guard expression may condition the triggering of a
transition so that the transition can only be taken if that
expression is true. A guard is defined after the keyword
WHEN. For example, transition APl means that the
autopilot changes from DISENGAGED to ENGAGED
when the event “@T(AP-Engage-Switch = ON) WHEN
(AP-Disconnect-Bar = UP)” occurs. This event
corresponds to the flight crew pressing the button
requesting the engagement of the autopilot from OFF to
ON when the button requesting the disconnection of the
autopilot is in the position UP.

The UML state diagrams shown in Figure 1 look
simple, but the triggering of their transitions is subject to
events that are not so trivial. Events occur on a change of
value that is expressed with the notation “@T(c)” and
“@F(c)”. Let us take an example to understand that some
transitions may be difficult to trigger due to this particular
definition of events. Consider an event E defined with the
expression “@T(c) WHEN d” where c and d are Boolean
expressions. If the expression c becomes true when the
guard d is false, the event does not occur.

209

Label Previous St,ate + ADS 1 TOO-FAST

I ADS2 I TOO-FAST I @T(Indicated-Mach-Number <= Mmo AND Above-Transition-Altitude) (SPEED-OK 1

Events New State

@T(Indicated-Airspeed <= Vmo AND NOT Above-Transition-Altitude) SPEED-OK

1 ADS3 1 SPEED-OK 1 @T(Indicated-Airspeed > (Vmo + 10) AND NOT Above-Transition-Altitude) (TOO-FAST 1
ADS4 SPEED-OK @T(Indicated-Mach-Number > (Mmo + 0.03) AND Above-Transition-Altitude) TOO-FAST

Label

~~

1 AP2 IENGAGED I @T(AP-Disconnect-Bar = DOWN)

Events New State

@T(AP-Engage_Switch = ON) WHEN (APDisconnectBar = UP) ENGAGED

I DISENGAGED I

@T(SyncLeft = ON OR SyncRight = ON)

ENGAGED

Normal

Sync

I AP3 (ENGAGED I @T(AP-Disengage-Left = ON) OR @T(AP-Disengage-Right = ON) 1 DISENGAGED 1
DISENGAGED

Sync

Normal

Warning

I AP8 I Entered(DISE.NGAGED) I NOT(@T(GA Pressed) AND (NOT Oversueed')) I Normal I

At the next cycle, if d becomes true and c does not change,
the event does no more occur, even if the expression c is
true. Indeed, the expression c was true at the previous
cycle and is still true at the current cycle, while the event E
request a change of value from false to true, which is not
the case. This example shows that the event E uses both
the previous and current values for the expression c. If we
want to trigger the ev'ent E at this stage, it will take at least
two cycles since the expression c must first change to false
and then return to true:.

Moreover, a lot of events in the case study are based on
two-way switches (ON and OFF) that provoke an event
only when their statu.; changes from OFF to ON (changes
from ON to OFF have no effect). For instance, the
engagement of the autopilot is requested when the switch
APEngage is set to ON whereas it is not disengaged when
this switch is set to OFF. Other switches are used to
disengage it. Then, some changes provoke an event
whereas others provoke nothing because of this particular
representation of :switches. Finally, the activation
conditions of the transitions may depend on several
variables. For instance, the Sync state can be requested
only when one of the two switches (syncLeft and
syncRighr) is set to ON when both previous values were
OFF. Once the Sync state is activated, setting the second
switch to ON has no effect.

5. Generation of Statistical Test Cases

To study the feasibility of the statistical approach, we
have used a subsystem of the FGS case study. It involves
77 classes and 4 UML state diagrams (those of Figure I) ,
with a total of 12 transitions. This subsystem is controlled
by 11 input variables. An input variable is either a Boolean
variable, which represents the position of a two-way button
(or switch) that may be operated by the flight crew (e.g., to
request the engagement of the autopilot), or a float variable
that represents an air data elaborated by other devices (e.g.,
the indicated airspeed or the pressure altitude).

5.1. Determination of an Input Distribution

For this subsystem, we first used the empirical
procedure (Section 3.2) for determining a probability
distribution over the input domain, using transition
coverage as the testing criterion. Simulation experiments
were conducted from a uniform distribution over the input
domain: several large sets of input values were generated
using different initializations of the random generator; the
models were executed with these sets to collect measures
of the transition coverage provided by each of them. The
results showed that most transitions are never or seldom
exercised under the uniform distribution, which means that
this distribution does not supply a sound probe of the

210

modeled transitions. The activation conditions of the least
(or never) covered transitions were analyzed to improve
the distribution, and many try-and-backtrack loops were
thus performed each time with a modified input
distribution that should increase the triggering probability
of the least covered transitions at the previous step.
Unfortunately, we observed no significant improvement all
along the empirical procedure. The reason for this is that
by defining a probability distribution over the input
domain, we act on the occurrence probability of values
(e.g., the probability that a Boolean variable has the value
true), but not on the occurrence probability of value
changes (e.g., a Boolean variable changes from false to
true). Since the events that trigger the transitions are
related to changes, little improvement may be expected
using the empirical procedure conducted over the input
domain.

Yet, the analysis guided us to define an algorithm,
called functional distribution algorithm, outlined in Figure
2. It allows us to significantly increase the frequency of
changes that may trigger one of the enabled outgoing
transitions, i.e., one of the outgoing transitions of the
current active state(s) of the model: the algorithm selects
the enabled transition that was the least triggered by the
previous test case input values.

ADS2
ADS3
ADS4
AP 1

Input

2 - 5 3-5
1 - 5 4 - 8
1 -3 3 - 6
3 -8 16 - 20

output

AP2

Step 1

1 - 4 4 - 6

A set of state diagrams S representing super-states
of the (sub)system under study.
An input value generated according to the
functional distribution.
Select a super-state S , E S with the probability q2 I
T, where T,) is the number of transitions in .Y,,and in
its potential composite states, and 7 is the total of
transitions in all the state diagrams of the
(subkvstem.

A P3

state and in its potential composite states, select the

variable implied in the event that triggers the
transition.

0 - 2 4 - 6

AP6

uniform distribution over the input domain and, (2) five
different sequences of input values generated by the
functional algorithm. These results show that in the latter
case (functional distribution), every transition is triggered
at least 3 times by each of the five test sequences. From
Relation (2) , it means that a test size of N = 300
corresponds to a test quality of q N z 0.95 (Section 3.1). To
reach the same test quality, the uniform distribution would
require a much larger test size.

0 - 2 3 - 5

Table 3. Transition coverage measures:
simulation results for 5 sequences of 300 input
values generated according to each distribution

(minimum & maximum activation numbers)

AW

I Tr;;:? Uniform Functional I Distribution I Distribution I

0 - 2 3 - 5

I ADS1 I 1 - 5 I 3- 8 I

Step4 If the chosen variable is a Boolean, change its
current value. Otherwise, generate a random input
value within the domain of the variable to change
its current value.

I AP4 I 0 - 2 I 5-10 I
I AP5 I 0 - 4 I 3 - 5 I

1 AP8 I 2 - 5 I 11-15 I

However, the functional distribution does not provide a
“balanced” coverage of the transitions. This is due to the
fact that the activation conditions of some transitions are
dependent on each other: some transitions are reachable
only when others have been triggered. For example (see
Figure 1), a single transition AP1 enters the ENGAGED
state of the autopilot while three different transitions (AP2,
AP3 and AP4) exit this state; as a result, AP1 will always
be exercised more often than AP2 (or AP3 or AP4),
whatever the input distribution.

Finally, it is worth noting that there is a difference
between the number of input values (N = 300) and the
number of triggered transitions (about 130 under the
functional distribution). It is due to the fact that some
events are not easy to produce and may request several
successive input values to occur (see Section 4.2). Yet,
input values that do not actually provoke the triggering of a
modeled transition are not “garbage”: when testing the
program, they allow us to verify that it actually does
nothing when it is supposed to do nothing.

21 1

5.2. Test Generation Process

Test Size

To automize the test case generation in the Rose
RealTime environment, we propose to extend the UML
model representing the program under test with two
capsules. These capsules, named generator and collector,
are respectively respclnsible for the generation of the input
values and the collection of transition coverage measures
(Figure 3). The functional distribution algorithm is
implemented in the generator capsule. The collector
capsule supplies the generator capsule with the coverage
measures needed at step 2 of the functional algorithm, to
identify and select the least triggered enabled transition.

In addition, the transition coverage measures guide the
empirical determination of the test size: given a test quality
objective, Relation (2) gives the minimum number of times
n each transition has to be triggered: hence, the generator
capsule may stop the production of new input values as
soon as the predefined value n is reached. Then, two files
are automatically created. One file contains the expected
outputs produced by simulation of the model with the input
values. Another file represents a Java class that contains
the input values translated into Java instructions. This class
is a test driver especially created for managing the test
process of the Java program. During the test experiments,
outputs produced by the Java program are automatically
compared to the expected outputs provided by the model.

Returning to the subsystem on which we exemplify our
testing technique, the 12 transitions may be triggered
according to values of input variables and internal
variables. An internal variable is any function of input
variables, active states or other internal variables. The test
generation process consists of selecting values of input
variables according to the algorithm. Internal variables are
not directly controlled by the generated test cases but via
input variables.

Functional
Distribution Distribution

Uniform

<<Capsule >>

?
!

100
Figure 3. Test generation process

300 5.3. Results of First Test Experiments 31 41

Test experiments have been conducted on the Java
program to get a hint on the adequacy of our test cases. In

400

these experiments, we used ten different sequences of 500
input values: five of them were generated according to the
functional distribution algorithm, and the other five
according to a uniform distribution over the input domain,
for purposes of comparison.

First, running the 10 sequences revealed no fault in the
Java implementation, which always supplied output values
identical to the expected ones provided by the UML model.
This is in conformity with the test experiments conducted
on the same FGS case study by Offutt [18]: no faults were
found in the subsystem investigated.

Then, mutation analysis has been used to get an insight
into the error detection power of the test cases. Mutation
analysis consists in creating a sample of faulty programs
from the program under test, by seeding it with faults
called mutations. Mutations are single-point, syntactically
correct changes introduced one by one in the original
program. A mutant is then a copy of the original program
containing one mutation. If test cases cause a mutant to
produce different outputs than the expected ones, the
mutant is said killed by the test cases. The number of
mutants killed by a set of test cases may give an empirical
assessment of their effectiveness. In [181, Offutt evaluates
his testing technique on the overall FGS case study with a
set of 155 mutants. With in mind to compare both
techniques (in future work), Offutt provided us with his
mutants. 46 of these mutants are related to the subsystem
we consider. This sample of mutants is small and non-
exhaustive, but it gives us a first hint on the adequacy of
our test cases.

Table 4 summarizes the results of the experiments. For
each input distribution, it shows the number of mutants
killed by each of the 5 sequences of input values, as a
function of the test size. The results are in favor of a best
efficiency of the test sequences generated according to the
functional distribution algorithm. Also, one can note that
the number of killed mutants stabilize around N = 300,
which suggests that requiring a test quality objective of q,
3 0.95 with respect to the transition coverage criterion
could be a reasonable stopping rule to tune the test size (to
be confirmed by further experiments).

Table 4. Number of mutants killed by each of
the five sequences of input values

32 41
500 32 41

I 200 I 28 I 41 I

21 2

The 5 mutants that are not repeatedly killed under the
functional distribution have been analyzed. Analysis results
show that these 5 mutants deal with constant values, that is
a constant value is replaced by another value. For instance,
a mutant changes the correct statement ‘‘c > 0.813” with
the faulty statement “c > 0.815” where c is defined in the
range [O.O-1.01. This mutant can only be killed if the
random value generated for c falls within the small sub-
domain ~0.813-0.815]. This type of faults highlights the
already known weakness of statistical testing with respect
to faults related to extremal/special values. Previous work
reported on the importance of using additional
(deterministic) test cases specifically aimed to reveal this
type of faults [25].

6. Conclusion and Future Directions

The paper presents a statistical testing technique for the
generation of test cases from UML specifications. The
approach represents a challenge for the testing of complex
critical systems. This first investigation is concentrated on
the automation process of the technique with the aid of the
Rational Software Corporation’s Rose RealTime tool. An
automated test generation process is proposed that
produces sequences of test cases (including both the input
values and the expected outputs) for Java programs. The
testing criterion used to guide the selection of input values
is the coverage of the transitions of the UML state
diagrams. Based on this criterion, we present a generic
algorithm for the probabilistic (random) generation of
input values that allows us to produce sequences of test
cases that trigger several times every transition.

Returning to the related work outlined in Section 2, it is
worth noting that transition coverage of the state diagrams
is not a very stringent requirement: it is the least
demanding of the four testing criteria defined in [19]; and,
unlike [3, 121 we do not flatten the state diagrams to use
testing criteria related to the coverage of expanded
behavioral models. According to the motivation of
statistical testing, here the principle consists of (I) the use
of models and testing criteria of reasonable complexity to
guide the selection of input values in order to facilitate the
definition of a test generation algorithm (and the analysis
required to implement the algorithm) and, (2) the
requirement of exercising several times - using different
input values - every element identified by the criterion to
compensate for the lack of detailed behavioral information
supported by the models (and a fortiori by the testing
criterion). On the opposite, improvements of the
deterministic testing techniques are based on refinements
of the behavioral models (e.g., using flattening
transformation) and/or of the testing criteria (e.g.,
transition-pair coverage instead of transition coverage).

But, the cost of such improvements is an additional
complexity of the analysis required to create the test case
input values, which may become impossible to automatize.

The feasibility of our approach is exemplified on a
subsystem of a research version of an avionics system, the
FGS case study. Results of first test experiments are in
favor of a high effectiveness of the generated test cases.
However, further extensive experiments must be conducted
to get a more valuable assessment of the testing technique
(including the stopping rule to tune the test size), and to
compare it with other (deterministic) approaches, in terms
of cost/effectiveness.

Ongoing work is concentrated on such experiments.
They will be conducted on the whole FGS case study.
Mutation analysis based on larger samples of seeded faults
will be used to get a more reliable feedback on the
efficiency of different techniques. In particular, it will
involve mutation faults defined to target object-oriented
concepts (such as those described in [13]). This future
work will allow us to analyze the strengths and weaknesses
of statistical functional testing applied to 00 programs.
Then, we will investigate the possibility of extending our
framework with structural testing techniques to target the
specificities of the Java programming language.

Acknowledgements

We are grateful to David E. Statezni of Rockwell-
Collins, Inc. for his advice and review comments on earlier
versions of this paper. We also thank Jeff Offutt of George
Mason University for having supplied us with the mutants
involved in our test experiments.

References

B. Beizer. Sofhyare Testing Techniques. Van Nostrand
Reinhold, New York, Second Edition, 1990.

R.V. Binder. Testing Object-Oriented Software: a Survey.
Journal of Software Testing, Verification & Reliability,
6:125-252, 1996.

R.V. Binder. Testing Object-Oriented Systems. Addison-
Wesley, 1999.

G. Booch, J. Rumbaugh, and 1. Jacobson. The Unified
Modeling Language User Guide. Object Technology Series.
Addison Weysley Longman, Inc., October 1998.

T.S. Chow. Testing Software Design Modeled by Finite
State Machines. IEEE Transactions on Sofiware
Engineering, SE-4(3): 178-186, 1978.

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist,
F. Hayes, and P. Jeremaes. Object-Oriented Development -
The Fusion Method. Object-Oriented Series, Prentice Hall,
1994.

213

J.W. Duran and S.C. Ntafos. An Evaluation of Random
Testing. IEEE Trmsactions on Software Engineering, SE-
10(4):438-444, 1984.

P.G. Frankl and E.J. Weyuker. An Applicable Family of
Data Flow Testing Criteria. IEEE Transactions on Software
Engineering, l4(IO): 1483-1498, 1988.

P. Frohlich and J. Link. Automated Test Case Generation
from Dynamic Models. In Proceedings of the Fourteenth
European Conference on Object-Oriented Programming
(ECOOP'OO), volume 1850 of Lecture Notes in Computer
Science, Springer, pages 472-491, Sophia Antipolis and
Cannes, France, June 2000.

[IO] D. Harel. Statecharts: a Visual Formalism for Complex
Systems. Science of Computer Programming, 8:23 1-274,
1987.

[I l l J. Hartmann, C. Imoberdorf, and M. Meisinger. UML-
Based Integratiori Testing. In Proceedings of the 2000
International Sym,posium on Software Testing and Analysis
(ISSTA 'OO), pages 60-70, Portland, Oregon, USA, August
2000.

[I21 Y.G. Kim, H.S. H:ong, D.H. Bae, and S.D. Cha. Test Cases
Generation from UML State Diagrams. IEE Proceeding-
Sofhvare, 146(4): 1 87- 192, 1999.

[I31 S. Kim, J.A. Clatk, and J.A. McDermid. Class Mutation:
Mutation Testing for Object-Oriented Programs. In
Proceedings of the Net. ObjectDays Conference on Object-
Oriented Software Systems, Erfurt, Germany, October 2000.

[I41 D. Kung, P. Hsia, J. Gao (eds). Testing Object-Oriented
Software. IEEE Cl3mputer Society, 1998.

[I51 J.D. McGregor. A.n overview of testing. Journal of Object-
Oriented Programming, 9(8):5-9, 1997 (first issue of a
monthly column i n the Journal).

[I61 S.P. Miller. Specifying the Mode Logic of a Flight
Guidance System in CORE and SCR. In Proceedings of the
Second Workshop on Formal Methods in Software Practice
(FMSP'98). Clearwater Beach, Florida, USA, March 1998.

[171 J. Musa. Software Reliability Engineering. McGraw-Hill,
1999.

[18] A.J. Offutt. Generating Test Data From
Requirements/Specifications: Phase I11 Final Report.
Technical Report, George Mason University, Fairfax, USA,
November 1999.

[I91 A.J. Offutt and A. Abdurazik. Generating Tests from UML
Specifications. In Proceedings of the Second International
Conference on the Unified Modeling Language (UML'99),
volume 1723 of Lecture Notes in Computer Science,
Springer, pages 416-429, Fort Collins, USA, October 1999.

[20] Rational Software Corporation. Rational Rose RealTime
User's Guide. March 1999.

[21] P. Runeson and B. Regnell. Derivation of an Integrated
Operational Profile and Use Case Model. In Proceedings of
the Ninth International Symposium on Sofhvare Reliability
Engineering (ISSRE '98), pages 70-79, Paderbom, Germany,
November 1998.

[22] J. Ryser and M. Glinz. A Scenario-Based Approach to
Validating and Testing Software Systems Using Statecharts.
In Proceedings of the Twelfth International Conference on
Software & Systems Engineering and their Applications
(ICSSEA '99), Paris, France, December 1999.

[23] B. Selic and J. Rumbaugh. Using UML for Modeling
Complex Real-Time Systems. Technical Report, ObjecTime
limited and Rational Software Corporation, March 1998.

[24] P. ThCvenod-Fosse and H. Waeselynck. STATEMATE
Applied to Statistical Software Testing. In Proceedings of
the I993 International Symposium on Software Testing and
Analysis (ISSTA '93), pages 99-109, Cambridge, USA, June
1993.

[25] P. Thtvenod-Fosse, H. Waeselynck, and Y. Crouzet.
Software Statistical Testing. In B. Randell, J.-C. Laprie, H.
Kopetz, and B. Littlewood, editors, Predictably Dependable
Computing Systems, Springer, pages 253-272, 1995.

[26] H. Waeselynck and P. ThCvenod-Fosse. A Case Study in
Statistical Testing of Reusable Concurrent Objects. In
Proceedings of the Third European Dependable Computing
Conference (EDCC-3), volume 1667 of Lecture Notes in

Computer Science, Springer, pages 401-41 8, Prague, Czech
Republic, September 1999.

214

