
Test Cases Generation from UML Activity Diagrams

Hyungchoul Kim, Sungwon Kang, Jongmoon Baik, Inyoung Ko
School of Engineering

Information and Communications University, Korea
{hckim1, kangsw, jbaik, iko}@icu.ac.kr

Abstract

UML activity diagram is a notation suitable for

modeling a concurrent system in which multiple
objects interact with each other. This paper proposes a
method to generate test cases from UML activity
diagrams that minimizes the number of test cases
generated while deriving all practically useful test
cases. Our method first builds an I/O explicit Activity
Diagram from an ordinary UML activity diagram and
then transforms it to a directed graph, from which test
cases for the initial activity diagram are derived. This
conversion is performed based on the single stimulus
principle, which helps avoid the state explosion
problem in test generation for a concurrent system.

1. Introduction

An important challenge in software testing is test
cases generation. It is especially difficult when a
system contains concurrently executing participants (or
objects) since such a system can exhibit different
responses depending on the concurrency condition.
The Unified Modeling Language (UML) activity
diagram is a suitable modeling language for describing
the interactions between system objects since activity
diagram can be conveniently used to capture business
processes, workflows and interaction scenarios.

In the past, there were several approaches for
generating test cases from UML activity diagrams [1-
5]. But most of them do not deal with concurrency
problems and tend to propose only a conceptual idea
for test generation.

This paper discusses system test generation for the
systems modeled with UML activity diagrams. In this
paper, we propose a method that is based on an I/O
explicit Activity Diagram (IOAD) model, which is an
abstraction model obtained from the fully expanded
activity diagram by exposing only external inputs and
outputs. The advantage of using this intermediate
model is in that the IOAD models let us focus only on

observable behavior so that only and all the behavior
relevant for testing is kept in the model. Then from
IOAD model, our method constructs a directed graph
to extract test scenarios and test cases. To increase an
efficiency of system testing, we use the all-paths test
coverage criterion, which has high test coverage and is
frequently used in graph-based testing.

The remainder of the paper is organized as follows:
In Section 2, we survey representative test generation
techniques developed in the past that generates test
cases from UML activity diagrams and point out their
limitations. In Section 3, we describe our method by
defining the IOAD model, discussing test coverage and
giving an example that shows the main idea of IOAD
model. In Section 4, the method is applied to an
example to demonstrate its efficacy. Finally, in Section
5 we conclude our paper by discussing the
contributions of the paper and the future research
directions.

2. Related Work

In this section, we survey representative researches
[1-3] of test cases generation based on UML activity
diagrams. The method of the paper [1] generates test
cases from UML activity diagrams systematically,
which modifies Depth First Algorithm (DFS) for
automated generation. The paper [1] does not fully
handle fork-join structures. The deficiency of [1] is that
any fork node has only two exit edges; evidently, these
assumptions limit the applicable scope of the proposed
algorithm. Another problem in the paper [1] is that
basic path defined, basic paths, can be found by the
DFS algorithm, while the detailed walkthrough of the
proposed algorithm shows that some test scenarios are
not generated, especially when the test scenarios are
derived from the fork-join parts of the activity
diagrams [4].

The paper [2] defines the concept of the thin-thread
tree, the condition tree, and the data-object tree, as well
their relationship with the UML activity diagrams [5].
The previous works dealing with test scenario
generations in activity diagrams did not consider data

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.189

556

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.189

556

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.189

556

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.189

556

objects and input values. This paper proposes traversal
algorithms for this [5]. However, the proposed
algorithms are incomplete. For example, for the
example in Figure 1, it generates only two test
scenarios. If we regard each activity as an atomic one,
it should generate ten test scenarios.

The paper [3] differs from the papers [1-2] in that it
derives usage-scenarios instead of test-scenarios.
Though the concept between test scenarios and usage
scenarios are different, this paper does not focus on
automatic generation of test cases for synchronous
events cases. Table 1 compares and summarizes the
three approaches.

Table 1. Testing approaches using activity diagram

 Techniques Limitations

Wang et al [1] - Table representation
 - DFS algorithm

- Simple fork-join

Liet al [2] - Use adaptive agents (AI approach)
- Introduce data-object concept

- Path explosion,
- Manual

Chandler et al [3] - Capture and store XMI

- Simple fork-join
- Use case scenario generation

3. Test Cases Generation

In this section, we describe our test generation
method. First, we represent the original activity
diagram as an Input/Output explicit Activity Diagram
(IOAD), IOAD is an activity diagram that explicitly
shows external inputs to and external outputs. It is
explicit in showing the external inputs and outputs in
the sense that in IOAD no activity can be further
decomposed into constituent activities or tasks, thereby
exposing all possible external inputs and outputs.

For the transition, it is necessary to specify each
action in the activity diagram owing to interleaving
events that they contain. Each action can be divided
into accept event and send signal. In the IOAD, model,
we suppress non-external input and output. By
applying this IOAD model, we can solve the state
explosion problem that would otherwise occur.

Secondly, we will show how to extract test cases
from the IOAD model. Based on all-paths test coverage
criterion, we will traverse all nodes without revisiting
the same node.

3.1 Two Utilitarian Principles for Test Cases
Generation

To generate test cases from an IOAD model, we
adopted two principles that minimizes the number of
test cases generated by focusing only on the test cases
that are controllable and can be practiced by the testers..
The first of them is the principle of black-box testing.
Black-box testing describes testing based on external
specifications. It observes the operations to be
executed. Therefore, input data determine the
appropriate action status of the program, and an output
data sequentially executed after invoking an input data.
As a guide for preparing the software analyst to test the

software system, input data and the accuracy of model
output data enable the analyst to assure the existence of
the data necessary to execute the model in order to
ascertain the accuracy of the data generated by the
model. We should identify all categories of input data
and any special analytical techniques required to obtain
those data [6]. If the sources of input data include
output from other models, sufficient details should be
provided to enable the analyst to assess the
appropriateness of those data in solving his problem
[6]. Output data should provide the analyst with a
methodology for assessing the accuracy of model
output data [6]. Since the accuracy of the output values
will be judged in relation to the method used to derive
them, a review of the algorithms used to compute those
output values may be necessary at this point [6].

The second one is the single stimulus principle [7].
The single stimulus principle, which prohibits multiple
stimuli at stable states and stimuli during transitions in
testing, can be used to delimit test purpose or focal
points of individual test cases [7].

The overall procedure for generating test cases is as
below:
� Derive a system of activity diagram from given

specifications
� Derive IOAD Diagram Model Activity Diagram

Model can be presented via specification writers
and implementers)
A. Delete data objects and use them as input

data
B. Delete implicit operations (e.g. read action

and write action)
C. Leave send signal and accept event actions

� Based on two principles, construct a graph from
IOAD. We can focus on the interrelation of sub-
systems from a stable state of a system to a stable
state

557557557557

� Traverse nodes based on all-paths test coverage
criterion

� Generate test scenarios
In this paper, we use the term test scenario and test

case interchangeably.

3.2 I/O Explicit Activity Diagram

UML activity diagrams are used typically for
workflow representations, the realization of the
operation of the design phase, and refinement or
sequence ordering and concurrency. In contrast to the
UML activity diagram, IOAD is a model that
suppresses non-external inputs and outputs in the UML
activity diagram. Activities are categorized into two
external elements: send signal and accept event. To
illustrate this feature, all activities are translated into
send signal and accept event notations. Meanwhile
data objects such as invoice and order are dropped out
because these objects are implicit tasks.

There are three characteristics in this model. This
model alters the fully specified original activity
diagram into an IOAD. We represent the model by
external inputs and external outputs. In an activity
diagram, action can be divided into three categories:
input action, output action, and internal action. Internal
action is less important to testers whereas a result from
function behavior is considered to be a more
substantial result.

Based on this model, sequence, decision, and loop
cases are all simple constructs. Wherever send signal
and accept event are located, sequential c, Boolean
cases (true/false), and loop-non loop cases are simply
redesigned. In addition, the fork-join construct should
be considered.

3.3 Test Coverage

When analyzing graphs, we choose the basic path
and used the first search algorithm. These two
principles have been proved in graph testing to
generate proper test scenarios. When calculating a path
of an activity diagram, if each activity in the path
occurs only once, we call such a path a basic path of
the activity diagram [4]. The diagram composed by all
the basic paths of an activity diagram is called a basic
activity diagram of the activity diagram [4]. DFS
algorithm is used to search all nodes, from the first
node to the end node, to calculate all the paths of an
activity diagram. When we traverse an activity diagram
from the initial activity state to the final activity
state by DFS algorithm, we ensure that the loops are
executed one at a time and that all action states and
transitions are covered. Thus we arrive at a number of
basic paths. This number of basic paths is generally

acceptable in practice. So we define these basic path
based coverage criteria as the test completion criteria.

An intuitive approach is to require a test suite to
cover all possible paths in a flow graph. But it is not a
practical approach because many flow graphs contain a
huge number or even an infinite number of paths [8].
To adopt a practical path-coverage criterion, we need
to select a representative subset of all-paths to retest
and the selection needs to remove redundant
information in a path [8]. There are two ways: The first
is to remove redundant nodes, and the second is to
remove redundant edges [8].

In graph theory, an elementary path is a path with
no repeat occurrences of any node, and a simple path is
a path with no repeat occurrence of any edge [8]. With
these restrictions, given a flow graph, there are usually
a very limited number of elementary and simple paths
[8].

3.4 An Example

The fragment of an activity diagram in Figure 1 has
a simple fork-join structure.

Fig 1. A simple fork-join structure

As can be seen in the example in Figure 1, the
original activity diagram generates ten test scenarios
(5! /3!*2! = 10). But, this example is different from
IOAD. It means that starting point as I1 is unimportant
because the flow of thread occurs in a few seconds and
therefore the output value O2 should be inspected
quickly. If the output value O2 is not examined, it can
be taken for granted that this system has erroneous
parts. The test case generation which considers I1
becomes redundant work and is expensive.

How many test scenarios will be generated from the
fragment of an activity diagram in Figure 1? If we
apply the same example to the IOAD, we can derive
two test cases.

558558558558

In this concurrent case of Figure 2, two flows
execute concurrently: One starting with O2 and the
other starting with I1. However, O2 is an external
output action by the system, which cannot be
controlled by the tester. On the other hand, I1 is an
external input and the system waits until the tester
injects input. So we can assume that if the tester waits
long enough, then O2 will eventually execute. After
that, the tester can inject I1 to initiate the right-hand
side flow of the fork-join structure in Figure 2.
Therefore we can eliminate from the test cases derived
the interleaved sequences of actions that start with I1
as shown in the table of Figure 2..

Fig 2. A sample IOAD model for the fork-join
structure in Figure 1 and test scenarios for the

IOAD model

Fig 3. UML activity diagram for the order
processing activity

559559559559

4. An Application Example

Figure 3 shows an activity diagram for an order
processing activity. We can convert this diagram into
an IOAD as in Figure 4. Based on the two principles
introduced in Section 3, activities can be changed into
accept event and send signal. Activities Process Order
and Receive Order are transformed into an accept
event Order Received. The object Invoice and a
performing activity Send Invoice, Validate Order, and
Invoice Confirmed are converted to a send signal Send
Invoice and to an accept event Invoice Confirmed,
respectively. Likewise, the activities Send Order,
Order Checked, Notify Shipping, Ship Order, and
Order Request are altered to a send signal and an
accept event notation.

Fig 4. Building IOAD from the original activity

diagram for the order processing activity

Figure 5 presents test cases generation process. We
do not need to consider sequential cases. For example,
we should consider the starting point from the fork as
two cases (O1 and O4) because two starting points are

concurrent cases. However, in our model, we regard
testers’ viewpoints as significant ones. Therefore, we
just wait for the output event (O1 and O4, or vice
versa). In addition to this, output event is followed by
input event. For instance, if the tester input I3, then he
can expect O5 output. Based on these procedures, we
can build Test Scenario Graph as in Figure 5. As a
coverage model, we adopt all-paths coverage criteria.
There are only two elementary paths:

P1 = {I1, O1, O4, I3, O5, I2, O2, O3, I4, O6, I5, O7}
P2 = {I1, I5, O7}

With an additional path
P3 = {I1, O1, O4, I2, O2, O3, I3, O5, I4, O6, I5, O7}
P4 = {I1, O1, O4, I3, O5, I4, O6, I2, O2, O3, I5, O7}

are all simple paths. We can define elementary paths as
independent paths because P3 and P4 are redundant
cases when traversing nodes as indicated in P1.

Table 2 shows the result of test derivation.

Fig 5. Test cases derivation

560560560560

Table 2. Test derivation result

5. Conclusion and Future Work

In this paper, we presented a new method of
generating test cases from UML activity diagrams. To
derive test cases from UML activity diagrams, we
introduced the IOAD model, which is subsequently
converted to a directed graph for immediate extraction
of test scenarios and test cases from the IOAD. This
conversion is performed based on the single stimulus
principle [7]. This method avoids the state explosion
problem that can occur when trying to derive a set of
test cases with thorough coverage for concurrent
system. By reducing the number of test cases for
concurrent system testing while keeping all practically
useful test cases, we can save cost and time in software
development without compromising quality of the
developed system.

In the future, we plan to generalize our method so
that it can accommodate various test coverage criteria
within the same test derivation framework. We also
plan to develop an automated tool for our method.
There are mainly two parts to be automated. When
constructing the IOAD, some notations of UML
activity diagrams (data objects and implicit event
triggers) need to be omitted. Next, it should be
automated to build the directed graph and parse test
cases from it. Then, we can generate test scenarios and
test cases automatically. Many UML tools which
support UML 2.0 [10] can generate XMI (Xml
Metadata Interchange) file. Based on this XMI file, it
would be easy to develop a tool which can generate
IOAD and generate test cases.

6. References

 [1] Wang. L., Yuan, J., Yu, X., , Hu, J., Li , X., Zheng G.,
“Generating Test Cases from UML Activity Diagram based
on Gray-Box Method,” National Natural Science Foundation
of China, 2005.
[2] Li, H., Lam, C. P., “Using Anti-Ant-like Agents to
Generate Test Threads from the UML Diagrams,” TestCom
2005, LNCS 3502, pp. 69 – 80, 2005.

[3] Chandler, R., Lam, C. P., Li, H., “An Automated
Approach to Generating Usage Scenarios from UML
Activity Diagrams,” Proceedings of the 12th Asia-Pacific
Software Engineering Conference, 2005.

[4] Chen, M., Qiu, X., Li, X., “Automatic Test Case
Generation for UML Activity Diagrams,” National Natural
Science Foundation of China, AST’06, 2006.

[5] Xu, D., Li, H., Lam, C.P., “Using Adaptive Agents to
Automatically Generate Test Scenarios from the UML
Activity Diagrams,” Proceedings of the 12th Asia-Pacific
Software Engineering Conference, 2005.

[6] Andriole, S. J., Software Validation, Verification, Testing
and Documentation, Petrocelli Books, 1986.

[7] Kang, S., Shin, J., Kim, M., “Interoperability test suite
derivation for communication protocols,” Computer
Networks Journal, Vol. 32, No. 3, 2000.

[8] Gao, J., Taso, H. S. J., Wu, Y., Testing and Quality
Assurance for Component-based Software, Artech House
Inc., 2003.

[10] UML 2.0 Superstructure, http://www.omg.org/cgi-
bin/doc?formal/05-07-04

561561561561

