
Automatic Test Case Generation from UML Models

Monalisa Sarma Rajib Mall
Department of Computer Science & Engineering

Indian Institute of Technology Kharagpur
WB 721302, Indian Institute of Technology Kharagpur

monalisas@cse.iitkgp.ernet.in

Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

WB 721302, Indian Institute of Technology Kharagpur
rajib@cse.iitkgp.ernet.in

Abstract
This paper presents a novel approach of generating
test cases from UML design diagrams. We consider
use case and sequence diagram in our test case
generation scheme. Our approach consists of
transforming a UML use case diagram into a graph
called use case diagram graph (UDG) and sequence
diagram into a graph called the sequence diagram
graph (SDG) and then integrating UDG and SDG to
form the System Testing Graph (STG). The STG is then
traversed to generate test cases. The test cases thus
generated are suitable for system testing and to detect
operational, use case dependency, interaction and
scenario faults.

Keywords: Software testing, UML models, Object-
oriented system

1. Introduction
With the increasing complexity and size of software
applications more emphasis has been placed on object-
oriented design strategy to reduce software cost and
enhance software usability. However, object-oriented
environment for design and implementation of
software brings about new issues in software testing.
This is because the important features of an object
oriented program, such as, encapsulation, inheritance,
polymorphism, dynamic binding etc. create several
testing problems and bug hazards [3].

Last decade has witnessed a very slow but steady
advancement made to the testing of object-oriented
systems. Most reported research propose test case
generation based on program source code. However,
generating test cases from program source code,
especially for the present day complex applications is
very difficult and ineffective. The reason being that the
design aspects are very difficult to extract from the
code. One significant approach is the generation of test
cases from UML models. The main advantage with this
approach is that it can address the challenges posed by
object-oriented paradigms. Moreover, test cases can be
generated early in the development process and thus it
helps in finding out many problems in design if any
even before the program is implemented. However,

selection of test cases from UML model is one of the
most challenging tasks [1].

In this paper we have proposed an automatic test
case generation method using UML [10] models. We
consider use case and sequence diagrams as a source of
test case generation. Our generated test suite aims to
cover operational and use case dependency faults,
various interaction as well as scenario faults. For
generating the different components of a test case, i.e.
input, expected output and pre- and post- condition we
also use class diagram and data dictionary along with
use case and sequence diagrams. We consider OCL 2.0
[13] in our work.

The rest of the paper is organized as follows.
Related work is discussed in Section 2. Our approach
is discussed in Section 3. In Section 4, coverage
criteria, generation of test cases from the graph is
presented. Implementation of our approach is discussed
in Section 5. Finally, Section 6 concludes this paper.

2. Related Work
Several research attempts have been reported on
scenario coverage based system testing [5, 6, 11].
These attempts are basically black box approaches and
do not take into consideration the structural and
behavioral design into consideration. Further, these
work [5, 6, 11] require using their proposed custom
modeling notations. Fröhlick and Link [5] construct a
statechart model in which the states are abstractions
representing the interval between two successive
messages sent to the system by a user. The coverage
attempted is transition coverage of the statechart
model, which in essence is the coverage of all
interactions (message exchanges) of the user with the
system. Hartmann et al [6] proposed an automatic test
case generation methodology based on the interactions
between the system and its user. To model interactions,
they semi-automatically convert the textual description
of use cases into activity diagrams. Their approach
manually annotates the design before the test case
generation. Riebisch et al. [11] generate system-level
test cases from usage models.

Briand and Labiche [4] describe the TOTEM
(Testing Object orienTed systEms with the unified
Modeling language) system testing methodology.

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI

190

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.26

190

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.26

196

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.26

196

System test requirements are derived from early UML
analysis artifacts such as, use case diagrams and
sequence diagrams associated with each use case and
class diagrams. They capture the sequential
dependencies between use cases into the form of an
activity diagram with the intervention of application
domain experts and derive test cases from it. Based on
these sequential dependencies, they generate legal
sequences of use cases for test case generation. Their
approach is, in essence, a semi-automatic way of
scenario coverage with pre-specified initial conditions
and test oracles.

For testing different aspects of object interaction,
several researchers have proposed different technique
based on UML interaction diagrams (sequence and
collaboration diagram) [2, 7, 8, 12, 16, 17].
Bertolino and Basanieri [16] proposed a method to
generate test cases using the UML use case and
interaction diagrams (specifically, the message
sequence diagram). It basically aims at integration
testing to verify that the pre-tested system components
interact correctly. They use category partition method
[18] and generate test cases manually following the
sequences of messages between components over the
sequence diagram. In another work, Basanieri et al. [8]
describe the CowSuite approach which provides a
method to derive the test suites and a strategy for test
prioritization and selection. This approach constructs a
graph which is a mapping of the project architecture by
analyzing the use case diagrams and sequence
diagrams. This graph is then traversed using a modified
version of the depth-first search algorithm and use
category partition method [18] for generating tests
manually. An approach proposed in [7] focuses on
real-time systems only. The approach proposed in [12]
generates test cases based on UML sequence diagram
that are reverse engineered from the code under test.

3. Proposed Approach
In our proposed approach we convert a system under
test into a graph called System Testing Graph (STG),
which is an integration of use case and sequence
diagram. We first transform an use case diagram (UD)
into a use case diagram graph (UDG), sequence
diagram (SD) into a sequence diagram graph (SDG)
and then integrate UDG and SDG to form STG.
Information necessary to derive test cases is pre-stored
into this graph. These information are retrieved from
the use case template (also called extended use case),
class diagrams, and data dictionary expressed in the
form of object constrained language (OCL), which are
associated with the UML diagrams. The graph so
obtained is then traversed to generate test cases
automatically based on a coverage criteria and a fault

model. In the following sections, we discuss the
different steps of our approach.

3.1 Transformation of an UD into an UDG
In this section, we first define an UDG. Subsequently,
we present our methodology to transform a UD into an
UDG.
Definition of UDG:

{ }UDGUDGUDGUDG FqSUDG ,0,,∑= , where

SUDG = AUC ∪ where { }iUUUUC ,...,, 21= is a finite
set of nodes representing use cases. { }jAAAA ,...,, 21=
is a finite set of nodes representing actors.

∑UDG
= UDAU ∪ , where { } { }AUUAAU ×∪×= is

a set of associations between an actor AAi ∈ and a
use case UUi ∈ , { }UUUD ×= represents use case
dependency relationships between two use cases

UUU ji ∈, .

UDGq0 { }iAAA ,...,, 21∈ is the set of start node
representing those actors that act as data source such
that AUUq UDG ∈×0 .
FUDG { }jAAA ,...,, 21∈ is the set of final nodes
representing those actors that act as data sinks such that

{ }AUFU UDG ×∈× .
Now, we discuss the transformation of a UCD into a

UDG. A use case in UCD can be mapped to a node in
UDG. All actors would be mapped to either a start
node or a final node or both. A directed edge from a
node Ui to Uj is used to represent the sequential
dependency of Uj on Ui.

From the definition of UDG, it may be noted that
for some use case diagrams no actor may correspond to
a final node and in that case the set FUDG is a null set.
Further, an actor may belong to both the sets UDGq0
and FUDG and hence a node in UDG may be both a start
node as well as a final node. Fig. 1(a) shows the UD of
an online purchase system and the corresponding UDG
is shown in Fig. 1(b).

The following information are required to be stored
in nodes in an UDG.

• Data from an actor to a use case or from a use case
to an actor.

• Pre- and post- conditions of a use case.

3.2 Transformation of an SD into an SDG
In this section, we first define an SDG. Subsequently,
we present our methodology to transform a sequence
diagram into an SDG.
Definition of SDG:

{ }SDGSDGSDGSDG FqSSDG ,0,,∑= , where

191191197197

SSDG is the set of all nodes representing various
states of operation scenarios; Each node basically
represents an event.

∑SDG
 is the set of edges representing transitions

from one state to another.
SDGq0 is the initial node representing a state from

which an operation begins.
FSDG is the set of final nodes representing states
where an operation terminates.

In order to formulate a methodology, we define an
operation scenario as a quadruple, aOpnScn: <ScnId;
StartState; MessageSet; NextState>. A unique number
called ScnID identifies each operation scenario. Here,
StartState is a starting point of the ScnId, that is, where
a scenario starts. MessageSet denotes the set of all
events that occur in an operation scenario. NextState is
the state that a system enters after the completion of a
scenario. This is the end state a use case. It may be
noted that an SDG has a single start state and one or
more end state depending on different operation
scenarios.

An event in a MessageSet is denoted by a tuple,
aEvent: <messageName; fromObject; toObject
[/guard]> where, messageName is the name of the
message with its signature, fromObject is the sender of
the message and toObject is the receiver of the
message and the optional part /guard is the guard
condition subject to which the aEvent will take place.
An aEvent with * indicates it is an iterative event.

Fig. 2(a) shows a sequence diagram associated with
the use case PIN Authentication in a usual ATM
system amd its five scenarios is shown in Fig. 2(c).
The SDG of SD in Fig. 2(a) is shown in Fig. 2(b).
 It is evident that each node in the SDG is mapped to
an interaction with or without a guard between two
objects oi and oj through a message mk. Information
regarding this needs to be stored in its corresponding
node in the SDG. The following data needs to be
stored: attributes of the corresponding objects at that
state, arguments in the method, and predicate of the
guard if any, involved in the interaction. This
information is collected from the class diagram. In
addition to this a node also stores range of values of all
attributes of the objects at the state. This information
can be obtained from the data dictionary associated
with the given design. Further, a node stores the
expected results for an occurrence of an event.

Create Order

Shipping

Process Order

Update Stock

(A2)

(a) A use case diagram (UCD)

U1

Manger

U2

U3

U4 (A3)

Inventory
System

(b) Use case diagram graph (UDG)

(A1)
Customer

A3

U1

U2

U3A2

U4

A1

Fig. 1 Creating a UDG from a UCD

a : cardReader b : sessionMgr c : displayMgr d : keyReader e : aBank

cardInfo()
m1()

c1()[!validATMcard]
eject()m2()

checkCard()
m3()

status
[status.isStolen]

c2()
m4() retain()

[status.closeAccount]
eject()m2()

[!validPIN && try < 4]

c3()

requestPIN()

m5()

c4()

readPIN()
m6()valuePIN

verifyPIN()
m7()

displayHello()

[!validPIN]c5()

m8()

x x

x

x

x

begin
session

m2() eject()

s1

StateX

s4

s7

s6

s2

s9

s5

s3

s8
s10

StateY

StateZ
 (a) Sequence diagram of PIN Authentication use case in an ATM system (b) SDG of the sequence diagram in

<scn1
 StateX
 s1: (m1, a, b)
 s2: (m2, b, a) |c1
 StateY>

<scn2
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s4: (m4, b, a)|c2
 StateY>

<scn3
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s5: (m2, b, a)|c3
 StateY>

<scn4
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s6: (m5, b, c)|c4*
 s7: (m6, b, d)|c4*
 s8: (m7, b, e)|c4*
 s9: (m2, b, a)|c5 StateY>

<scn5
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s6: (m5, b, c)|c4*
 s7: (m6, b, d)|c4*
 s8: (m7, b, e)|c4*
 s10: (m8, b, c) StateZ>

(c) Five operation scenarios represented in the form of quadruples

Fig. 2 Illustration of creating SDG
3.3 Integration of UDG and SDG into STG
After the creation of UDG and SDG the next step is to
integrate these two graphs into a single graph called the

system testing graph (STG). In the following, we
define an STG.
Definition of STG:
 >∑=< FqSSTG ,,,, 0δ where

192192198198

S = SDGUDG SS ∪ is the set of all nodes in the STG

∑∑ ∑∑ ∪∪=
GUDG SDG

where

()SDGUDGG
qS 0×=∑ denotes connectivity

between UDG to SDGs

UDGSTG qq 00 = is the set of start nodes in the STG.
 UDGSDGSTG FFF ∪= is the set of final nodes in the
STG.
 Starting with an UDG, we integrate the SDGs into
it following the definition of STG as mentioned above.
A link from the use case node to the start node of the
corresponding SDG is maintained.

4. Test Case Generation
Having stored all essential information for test
generation in the STG, we now traverse the STG to
generate test cases. We design an algorithm
TestSuiteGeneration to automatically traverse the STG
so as to generate test cases in accordance with a
coverage criterian. The TestSuiteGeneration traverse
the STG at two levels. The traversal begins with the
UDG. We term this traversal as Level 1 traversal. This
traversal visits all use cases and generates test cases for
detecting initialization faults. At Level 2 traversal,
starting from a use case node the corresponding SDG is
visited and test cases are generated to detect
operational faults. Finally, we enumerate all paths in
the UDG to identify all use case dependency and
generate test case to detect use case dependency faults.
We propose the following two coverage criteria to
generate test cases.

Coverage criteria (C1): All use case and all use case
dependency relations criterion: Given a test set T and
a use case diagram D, T must cause each use case and
each dependency path to be exercised at least once.
Coverage criteria (C2): All sequence diagram
message path sequence coverage criterion: Given a
test set T and a sequence diagram D, T must cause
each sequence of message path to be exercised at least
once.
 The algorithms TestSuiteGenerationUDG and
TestSetGenerationforSDG satisfying the coverage
criteria C1 and C2, respectively is stated below.
Algorithm TestSuiteGeneration
Input: System testing graph STG
Output: Test suite T

1. Φ←T
/* Find all initialization faults and operational faults */

2. Call TestSetGenerationUDG(UDG)
/* Find all use case dependency faults */

3. P = EnumerateAllPaths (UDG)
4. For each path Ppi ∈ do

5. UD = FindAllUseCaseDependency(UDG)
6. For each UDUDi ∈ do
7. For each ij UDU ∈ do
8. AUD = FindActorToUC(Ui) // The set of actor-
 // to-use case association in the use case Uj
9. For each AUDauk ∈ do
10. I = GetInputDomain(auk)
11. O = GetOutputDomain(auk)
12. preC = pre-condition of Uj
13. postC = post-Condition of Uj
14. { }postCpreCOICaseSelectTestt ,,,=
15. tTT ∪←
16. EndFor
17. EndFor
18. EndFor
19. Stop

4.1 Test Case Generation from UDG
Every use case is implemented as the collaborative
actions of several objects. However, for a use case to
successfully execute, the objects must be in certain
desired states for the use case to start. In other words,
proper context must exist for a use case to execute as
per specification and produce correct results. Further,
a use case specifies a set of responses to be produced
for some specific combinations of external inputs and
system state. A system leads to an operational fault if
each use case does not obey the desired input-output
relationships. It may also be noted that use cases often
have sequential dependencies among each other [4]. In
other words, to accomplish a task some use cases need
to be executed before the others can execute. In this
case, a use case may produce some intermediate results
necessary for the successful execution(s) of subsequent
use case(s). For example, in an on-line purchase
system, an order should be created through a Create
Order use case before processing a Process Order use
case. Errors may occur when a use case begins its
execution without satisfying the required dependency.
A test set is therefore necessary to detect these above
mentioned faults if any. We follow the coverage
criterion (C1) stated above to derive the test set.

Algorithm TestSetGenerationUDG
Input: Use case diagram graph UDG
Output: Test set 1T
1. For each use case UDGU i ∈ do
2. O = FindObjects(iU) //Find all objects involved in Ui
3. For each Ooij ∈ do
4. M = FindAttributes ()ijo
5. I = IdentifyInputDomain(M)
6. O = IdentifyOutputDomain (I, M)

193193199199

7. t = SelectTestCase(i,o) // Ii ∈ , Oo ∈
 // Generate test case for detecting initialization faults
8. tTT ∪←
9. EndFor
10. SDGUi →=α //Denotes a link from Ui to its SDG
11. T1 = TestSetGenerationForSDG(α)
 // Generate test case for detecting operational faults
12. 1TTT ∪=
13. EndFor
14. Stop

4.2. Test Case Generation from SDG
A sequence diagram represents various interactions
possible among different objects during an operation.
Several faults such as incorrect response to a message,
correct message passed to a wrong object or incorrect
message passed to the right object, message invocation
with improper or incorrect arguments, message passed
to yet to be instantiated objects, incorrect or missing
output etc. may occur in an interaction [9]. Further, a
sequence diagram depicts several operation scenarios.
Each scenario corresponds to a different sequence of
message path in the sequence diagram. For a given
operation scenario, sequence of message may not
follow the desired path due to incorrect condition
evaluation, abnormal termination etc. [3]. A test set is
therefore necessary to detect faults if any when an
object invokes a method of another object and whether
the right sequence of message passing is followed to
accomplish an operation. From the SDG it is evident
that covering all paths from the start node to a final
node would eventually cover all interactions as well as
all message sequence paths. We follow the coverage
criterion (C2) stated above to derive the test set.
 To generate test cases that satisfy the criterion C2,
we first enumerate all possible paths from the start
node to a final node in the SDG. Each path then is
visited to generate test cases. The algorithm to generate
test set satisfying the coverage criterion is stated in the
Algorithm TestSetGenerationForSDG.
5. Implementation of our approach
We used MagicDraw v. 10.0 to produce the UML
design artifact. This design artifact is exported in XML
format. We have written a parser that reads a UML use
case and sequence diagram in XMI/XML format and
convert it into UDG and SDG respectively. The nodes
of UDG and SDG is defined as “generic” using
template definition in C++, and the structure is decided
so that it can dynamically store any number of links
and any amount of information. We consider the use
case template according to the Extended UC Model in
IBM’s Rational Rose software [14]. The structure is
also similar to the template proposed in [5]. The OCL

2.0 syntax is followed to represent data dictionary. For
the specification of a test case, we consider the test
specification language according to the IEEE Standard
829 of TSL [14]. Test cases generated are recorded in a
temporary file for future references.

Algorithm TestSetGenerationforSDG
Input: Sequence diagram graph SDG
Output: Test suite T
Steps:

1. P = EnumerateAllPaths(SDG)
2. For each path PPi ∈ do
3. xj nn = // start with nx, the start node
4. preCi = FindPreCond (nx)
5. Φ←it // The test case for the scenario scni

6. For each node jn of path iP do

7. =je FindEvent (jn) // The event

 //corresponding to the node nj
4. If Λ=c //If there is no guard condition
5. () (){ }postCdddOaaaIpreCt ml ,,...,,,,...,,, 2121=
 // preC = precondition of the method m

 // ()laaaI ,...,, 21 = set of input values for the
 method m(…) in fromObject
 // ()mdddO ,...,, 21 = set of resultant values in the
 toObject when the method m(…) is executed
 // postC = the postcondition of the method m(…)

6. EndIf
7. If Λ≠c then
8. ()lcccvc ,...,,)(21= // The set of value of
 // clauses on the path Pi

9. () (){ }postCvcdddOaaaIpreCt ml),(,,...,,,,...,,, 2121=
10. Endif
11. ttt ii ∪=
12. EndFor
13. itTT ∪←
14. Return (T)
15. Stop

6. Conclusions
We have presented a novel approach of generating test
cases from UML design artifacts namely, use case and
sequence diagrams. We convert the models into an
intermediate representation called system testing
graph, which is an integration of intermediate
representation of use case and sequence diagrams.
Integration of these representations is helpful for the
following reasons. Our approach covers three
important faults, which usually occur in a system: use
case initialization faults, use case dependency faults
and operational faults. The first two category of faults
can be covered from the UDG, whereas the later from
the SDG. It may be noted that SDG models the

194194200200

operational details of a use case. Hence, if a use case
initialization fault occurs then it is imperative to
assume faults in its operations and therefore no need to
apply test cases corresponding to the operation, that is,
those test cases that are derived from the SDG of the
use case. Same is true to check the dependency faults
where a use case is preceding another use case. The
integration will help us to guide whether a test driver
needs to apply a specific test suite or not. Another,
important reason of integrating is that test data those
are necessary for test case are mined once and used in
different level such as, use case (to test initialization
faults and dependency faults), sequence diagram (to
test operational fault) etc. Otherwise, we have to mine
same data repeatedly, if they are considered
independently. In fact deciding test data, which are
embedded in design artifacts is computationally
intensive task and our approach significantly able to
score in this issue.

References
[1] Abdurazik A. and Ofutt J., Generating Tests from

UML Specifications, in the Proceedings of 2nd
 International Conference on Unified Modeling
 Language (UML’99), Fort Collins, CO, 1999.
[2] A.. Abdurazik A., Offutt J., Using UML

Collaboration diagrams for static checking and
test generation, in: Proceedings of the Third
International Conference on the UML, Lecture
Notes in Computer Science, Springer-Verlag
GmbH, York, UK, vol. 939, 2000, pp. 383–395.

[3] Binder R. V. , Testing Object-Oriented System
Models, Patterns, and Tools, Addison-Wesley,
NY, 1999

[4] Briand L. and Labiche Y., A UML-Based Approach
to System Testing, in the Journal of Software and
Systems Modeling, Springer Verlag, Vol. 1, pp.
10-42, 2002.

[5] Fröhlick P. and Link J., Automated Test cases
Generation from Dynamic Models, in the
Proceedings of the European Conference on
Object-Oriented Programming, Springer Verlag,
LNCS 1850, pp. 472-491, 2000.

[6] Hartmann J., Vieira M., Foster H., Ruder A., A
UML-based Approach to System Testing, Journal
of Innovations System Software Engineering, Vol.
1, PP. 12-24, 2005.

[7] Lettrari M. and Klose J., Scenario-Based
Monitoring and Testing of Real Time UML
Models, in the Proceedings of UML 2001,
Springer Verlag, pp. 312-328.

[8] F. Basanieri, A. Bertolino, E. Marchetti, The cow
suit approach to planning and deriving test suites
in UML projects Proceedings of the Fifth

International Conference on the UML, LNCS,
2460, Springer-Verlag GmbH, Dresden, Germany,
2002, pp. 383–397.

[9] McGregor J. D., and Sykes D. A., A Practical
Guide to Testing Object-Oriented Software,
Addison Wesley, NJ, 2001.

[10] Pilone Dan and Pitman Neil, UML 2.0 in a
Nutshell, O’Reilly, NY, USA, 2005.

[11] Riebisch M., Philippow I, and Gotze M., UML-
Based Statistical Test Case Generation, in the
Proceeding of ECOOP 2003, Springer Verlag,
LNCS 2591, pp. 394-411, 2003.

[12] Tonella, P., Potrich, A. Reverse Engineering of the
Interaction Diagrams from C++ Code, in the
Proceedings of IEEE International Conference on
Software Maintenance (2003) 159–168.

[13] Object Constraint Language 2.0 is available from
Object Mangement Group’s web site
(http://www.omg.org/).

[14] A Rational Approach to Software Development
using Rational Rose 4.0, IBM’s Rational Rose,
(http://www.ibm.com/)

[15] Walton, G.H., Poore, J.H., Statistical testing of
software based on usage model, Software-Practice
and Experience, Vol 25, 1995, pp 97-108.

[16] A. Bertolino, F. Basanieri, A practical approach to
UML-based derivation of integration tests, in:
Proceedings of the Fourth International Software
Quality Week Europe and International Internet
Quality Week Europe (QWE), Brussels, Belgium,
2000.

[17] F. Fraikin, T. Leonhardt, SEDITEC-testing based
on sequence diagrams, in: Proceedings 17th IEEE
International Conference on Automated Software
Engineering, 2002, pp. 261–266.

[18] T.J. Ostrand, M.J. Balcer, The category-partition
method for specifying and generating functional
tests, Communications of the ACM 31 (6) (1998).

195195201201

