
Automatic Test Case Generation from UML Sequence Diagrams

Monalisa Sarma Debasish Kundu Rajib Mall
Department of Computer Science

& Engineering
Indian Institute of Technology

Kharagpur WB 721302,
monalisas@cse.iitkgp.ernet.in

School of Information
Technology

Indian Institute of Technology
Kharagpur WB 721302,

dkundu@sit.iitkgp.ernet.in

Department of Computer Science
& Engineering

Indian Institute of Technology
Kharagpur WB 721302,
rajib@cse.iitkgp.ernet.in

Abstract

This paper presents a novel approach of generating
test cases from UML design diagrams. Our approach
consists of transforming a UML sequence diagram into
a graph called the sequence diagram graph (SDG) and
augmenting the SDG nodes with different information
necessary to compose test vectors. These information
are mined from use case templates, class diagrams and
data dictionary. The SDG is then traversed to
generate test cases. The test cases thus generated are
suitable for system testing and to detect interaction and
scenario faults.

1. Introduction

With the increasing complexity and size of software
applications more emphasis has been placed on object-
oriented design strategy to reduce software cost and
enhance software usability. However, object-oriented
environment for design and implementation of
software brings about new issues in software testing.
This is because the important features of an object
oriented program, such as, encapsulation, inheritance,
polymorphism, dynamic binding etc. create several
testing problems and bug hazards [3].

Last decade has witnessed a very slow but steady
advancement made to the testing of object-oriented
systems. One significant approach is the generation of
test cases from UML models. The main advantage with
this approach is that it can address the challenges posed
by object-oriented paradigms. Moreover, test cases can
be generated early in the development process and thus
it helps in finding out many problems in design if any
even before the program is implemented. However,
selection of test cases from UML model is one of the
most challenging tasks [1]. A test case consists of a test
input values, its expected output and the constraints,
that is the pre- and post condition for that input values.
This information may not be readily available in the
design artifacts. As a way out to this problem, several
researches propose to augment the design models with
testable information prior to the testing process [4].

However, this complicates the automatic test case
generation effort.

In this paper we propose an automatic test case
generation method using UML [10] models. We use
sequence diagram as a source of test case generation.
Our generated test suite aims to cover various
interaction faults as well as scenario faults. For
generating test data, sequence diagram alone may not
be enough to decide the different components, i.e.
input, expected output and pre- and post- condition of a
test case. We propose to collect this information from
the use case template, class diagram and data
dictionary. These are associated with the use case for
which the sequence diagram is considered. We
consider OCL 2.0 [13] in our work.

The rest of the paper is organized as follows.
Related work is discussed in Section 2. Our approach
is discussed in Section 3. Information to be stored in
the graph is discussed in Section 4. In Section 5,
coverage criteria, generation of test cases from the
graph is presented. Implementation of our approach is
discussed in Section 6. Finally, Section 7 concludes
this paper.

2. Related Work

Several research attempts have been reported on
scenario coverage based system testing [5, 6, 11].
These attempts are basically black box approaches and
do not take into consideration the structural and
behavioral design into consideration. Further, these
work [5, 6, 11] require using their proposed custom
modeling notations. Frohlich and Link [5] construct a
statechart model in which the states are abstractions
representing the interval between two successive
messages sent to the system by a user. The coverage
attempted is transition coverage of the statechart
model, which in essence is the coverage of all
interactions (message exchanges) of the user with the
system. Hartmann et al [6] proposed an automatic test
case generation methodology based on the interactions
between the system and its user. To model interactions,
they semi-automatically convert the textual description

15th International Conference on Advanced Computing and Communications

0-7695-3059-1/07 $25.00 © 2007 IEEE
DOI 10.1109/ADCOM.2007.68

60

of use cases into activity diagrams. Their approach
manually annotates the design before test generation.
Riebisch et al [11] generate system-level test cases
from usage models. A usage model is derived from
state diagrams, and is not amenable to full automation.

Briand and Labiche [4] describe the TOTEM
(Testing Object orienTed systEms with the unified
Modeling language) system testing methodology.
System test requirements are derived from early UML
analysis artifacts such as, use case diagrams and
sequence diagrams associated with each use case and
class diagrams. They capture the sequential
dependencies between use cases into the form of an
activity diagram with the intervention of application
domain experts and derive test cases from it. Based on
these sequential dependencies, they generate legal
sequences of use cases for test case generation. Their
approach is, in essence, a semi-automatic way of
scenario coverage with pre-specified initial conditions
and test oracles.

For testing different aspects of object interaction,
several researchers have proposed different technique
based on UML interaction diagrams (sequence and
collaboration diagram) [2, 7, 8, 12, 16, 17].
Bertolino and Basanieri [16] proposed a method to
generate test cases using the UML Use Case and
Interaction diagrams (specifically, the Message
Sequence diagram). It basically aims at integration
testing to verify that the pre-tested system components
interact correctly. They use category partition method
[18] and generate test cases manually following the the
sequences of messages between components over the
Sequence Diagram . In another interesting work,
Basanieri et al. [8] describe the CowSuite approach
which provides a method to derive the test suites and a
strategy for test prioritization and selection. This
approach construct a graph which is a mapping of the
project architecture by analysing the use case diagrams
and sequence diagrams. This graph is then traversed
using a modified version of the depth-first search
algorithm. and use category partition method [18] for
generating tests manually. An approach proposed in [7]
focuses on real-time systems only. The approach
proposed in [12] generates test cases based on UML
sequence diagram that are reverse engineered from the
code under test.

3. Proposed Approach

Given a sequence diagram (SD), we transform it
into a graphical representation called sequence diagram
graph (SDG). Each node in the SDG stores necessary
information for test case generation. This information
are collected from the use case template (also called
extended use case), class diagrams, and data dictionary

expressed in the form of object constrained language
(OCL), which are associated with the use case for
which the sequence diagram is considered. We then
traverse SDG and generate test cases based on a
coverage criteria and a fault model. A schematic
diagram of our approach is shown in Fig. 1. In the
following sections, we discuss the different steps of
our approach.

3.1 Transformation of an SD into an SDG

In this section, we first define an SDG.
Subsequently, we present our methodology to
transform a sequence diagram into an SDG.
Definition of SDG:

{ }SDGSDGSDGSDG FqSSDG ,0,,∑= , where
SSDG is the set of all nodes representing various

states of operation scenarios; Each node
basically represents an event.

∑SDG is the set of edges representing transitions from
one state to another.

SDGq0 is the initial node representing a state from
which an operation begins.

FSDG is the set of final nodes representing states
where an operation terminates.

In order to formulate a methodology, we define an
operation scenario as a quadruple, aOpnScn: <ScnId;
StartState; MessageSet; NextState>. A unique number
called ScnID identifies each operation scenario. Here,
StartState is a starting point of the ScnId, that is, where
a scenario starts. MessageSet denotes the set of all
events that occur in an operation scenario. NextState is
the state that a system enters after the completion of a
scenario. This is the end state of an activity or a use
case. It may be noted that an SDG has a single start
state and one or more end state depending on different
operation scenarios.

An event in a MessageSet is denoted by a tuple,
aEvent: <messageName; fromObject; toObject
[/guard]> where, messageName is the name of the
message with its signature, fromObject is the sender of
the message and toObject is the receiver of the
message and the optional part /guard is the guard
condition subject to which the aEvent will take place.
An aEvent with * indicates it is an iterative event.
aOpnScn and aEvent is illustrated in Example 1.

Example 1. Fig. 2(a) shows a sequence diagram
associated with the use case PIN Authentication in a
usual ATM system. This sequence diagram consists of
five operation scenarios as shown in Fig. 2(a).
Individual aOpnScn of this sequence diagram is shown
in Fig. 2(b). Here, si (i = 1...10) denotes a state
corresponding to a message mj (j = 1…8) between two

61

objects with a guard condition c, if any. The StartState
for the different scenarios as shown in Fig. 2(b) is
StateX and the two different NextStates are StateY (for
scn1…scn4) and StateZ (for scn5). An operation starts
with a starting state and undergoes a number of
intermediate states due to occurrence of various events.
For example, in operation scenario scn1, we see three
transitions: from StateX to s1, s1 to s2 and s2 to StateY.

Creation of SDG:
To create the SDG for any sequence diagram, we

first identify OpnScn, the set of all operation scenarios
where. OpnScn = {aOpnScn1, aOpnScn2, …,

Sequence
diagram

(SD)

Sequence
diagram graph

(SDG)

Use case
template Class daigram

Data dictionary
(OCL)

Test case
generation

Fig. 1 Schematic representation of our approach

aOpnScnm}. For each aOpnScni ∈ OpnScn, we
identify set of all aEvent. Initially SDG contains only
the start state i.e StartState. We then add each aEvent
of all aOpnScni ∈ OpnScn, followed by its
corresponding NextState, and remove duplicates, if
any. The various events in a loop (iteration) are shown
with cyclic edge. The SDG of SD in Fig. 2(a) is shown
in Fig. 2(c).

a : cardReader b : sessionMgr c : displayMgr d : keyReader e : aBank

cardInfo()
m1()

c1()[!validATMcard]
eject()m2()

checkCard()
m3()

status
[status.isStolen]

c2()
m4() retain()

[status.closeAccount]
eject()m2()

[!validPIN && try < 4]

c3()

requestPIN()

m5()

c4()

readPIN()
m6()valuePIN

verifyPIN()
m7()

displayHello()

[!validPIN]c5()

m8()

x x

x

x

x

begin
session

m2() eject()

s1

StateX

s4

s7

s6

s2

s9

s5

s3

s8
s10

StateY

StateZ
(a) Sequence diagram of PIN Authentication use case in an ATM system (c) SDG for the sequence diagram in (a)

<scn1
 StateX
 s1: (m1, a, b)
 s2: (m2, b, a) |c1
 StateY>

<scn2
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s4: (m4, b, a)|c2
 StateY>

<scn3
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s5: (m2, b, a)|c3
 StateY>

<scn4
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s6: (m5, b, c)|c4*
 s7: (m6, b, d)|c4*
 s8: (m7, b, e)|c4*
 s9: (m2, b, a)|c5

 StateY>

<scn5
 StateX
 s1: (m1, a, b)
 s3: (m3, b, e)
 s6: (m5, b, c)|c4*
 s7: (m6, b, d)|c4*
 s8: (m7, b, e)|c4*
 s10: (m8, b, c)
 StateZ>

(b) Five operation scenarios represented in the form of quadruples

Fig. 2 Sequence diagram and its formulation

4. Information to be stored in the SDG

SDG plays an important role in our automatic test
case generation scheme. For this, SDG contain certain
necessary information for test generation. It is evident
that each node in the SDG is mapped to an interaction

with or without a guard between two objects oi and oj
through a message mk. Information regarding this
needs to be stored in its corresponding node in the
SDG. The following data needs to be stored: attributes
of the corresponding objects at that state, arguments in
the method, and predicate of the guard if any, involved

62

in the interaction. This information is collected from
the class diagram. In addition to this a node also stores
range of values of all attributes of the objects at the
state. This information can be obtained from the data
dictionary associated to the given design. Further, a
node stores the expected results for an occurrence of an
event. For example, let us consider a method mi of an
object ok is invoked by another object oj, which results
in resetting some member elements d1, d2, .., dl, of the
object ok; then all these resultant values of d1, d2, .., dl
would be stored in the node. This information is
collected from constraints (such as pre- and post-
conditions expressed in OCL) specified in the
corresponding method in the class diagram and from
the use case template. Finally, suppose, the SDG under
consideration represents three scenarios scn1, scn2,
and scn3 and i1, i2, and i3 are the set of data which
trigger these three scenarios, respectively. Then the
StateX node should store all possible values for the set
of data i1, i2, and i3. These input and corresponding
expected outputs are obtained from the use case
template.

5. Test Case Generation

A sequence diagram represents various interactions
possible among different objects during an operation.
A test set is therefore necessary to detect faults if any
when an object invokes a method of another object and
whether the right sequence of message passing is
followed to accomplish an operation. From the SDG it
is evident that covering all paths from the start node to
a final node would eventually cover all interactions as
well as all message sequence paths. We follow the
coverage criterion stated below to derive the test set.

Coverage criteria: All sequence diagram message
path sequence coverage criterion: Given a test set T
and a sequence diagram D, T must cause each
sequence of message path exercise at least once.

To generate test cases that satisfy the criteria, we
first enumerate all possible paths from the start node to
a final node in the SDG. Each path then would be
visited to generate test cases. The algorithm to generate
test set satisfying the coverage criterion is precisely
stated in the Algorithm TestSetGeneration.

Every test strategy targets to detect certain
categories of faults called the fault model [3]. Our test
strategy is based on the following fault model.

Interaction fault: In object-oriented programs,
sequences of messages are exchanged among objects to
accomplish some operations of interest [3, 9]. Several
faults such as incorrect response to a message, correct
message passed to a wrong object or incorrect message

passed to the right object, message invocation with
improper or incorrect arguments, message passed to
yet to be instantiated objects, incorrect or missing
output etc. may occur in an interaction [9].

Scenario fault: A sequence diagram depicts several
operation scenarios. Each scenario corresponds to a
different sequence of message path in the sequence
diagram. For a given operation scenario, sequence of
message may not follow the desired path due to
incorrect condition evaluation, abnormal termination
etc. [3].

Algorithm TestSetGeneration
Input: Sequence diagram graph SDG
Output: Test suite T
Steps:

1. Enumerate all paths { }nPPPP ,...,, 21= from the
start node to a final node in the SDG.

2. For each path PPi ∈ do

3. xj nn = // nj is the current node; start with nx,
 // the start node
4. preCi is the precondition of the scenario
 corresponding to scni stored in nx
5. Φ←it // The test case for the scenario scni,
 initially empty
6. yj nn = // Move to the first node of the scenario
 // scni
7. While ()zj nn ≠ do // nz being a final node

8. cbame j ,,,= // The event
 // corresponding to the node nj

 // and m(…) is invoked with
 //a set of arguments ai, a2,…,al

9. If Λ=c then //If there is no guard condition
10. Select test case
 () (){ }postCdddOaaaIpreCt ml ,,...,,,,...,,, 2121=

 where preC = precondition of the method m
 ()laaaI ,...,, 21 = set of input values for the
 method m(…)from fromObject
 ()mdddO ,...,, 21 = set of resultant values in
 the toObject when the method m(…) is executed
 postC = the postcondition of the method m(…)

11. Add t to the test set ti, that is, ttt ii ∪=
12. EndIf
13. If Λ≠c then //method m is under guard condition
14. ()lcccvc ,...,,)(21= // The set of value of
 // clauses on the path Pi
15. Select test case
 () (){ }postCvcdddOaaaIpreCt ml),(,,...,,,,...,,, 2121=

 where preC = precondition of the method m
 ()laaaI ,...,, 21 = set of input values for
 the method m(…) obtained from fromObject

63

 ()mdddO ,...,, 21 = set of resultant values
 in the toObject when the method m(…) is executed
 postC = the postcondition of the method m(…)

16. Add t to the test set ti, that is, ttt ii ∪=
17. EndIf
18. kj nn = // Move to the next node nk on the path Pi

19. itTT ∪←
20. EndWhile
21. Determine the final output Oi and postCi for the
 scni stored in nz
22. { }iiii postCOIpreCt ,,,=
23. Add the test case t to the test case T, that is,

tTT ∪←
24. EndFor
25. Return (T)
26. Stop

TestSetGeneration starts by enumerating all paths in

the SDG, from the start node to the different final
nodes. Steps 2 to 24 are iterated for each path in the
SDG. A path essentially corresponds to a scenario.
Step 4 determines the initial precondition of the
scenario from the start node nx. For each considered
path, Steps 7 to 20 determine the various pre
conditions, input, output and post conditions for each
interaction of the considered scenario. This gives the
test cases for finding out interaction faults if any. And
finally Step 22 gives the test case corresponding to the
scenario as a whole.

6. Experimental Results

We used MagicDraw v. 10.0 to produce the UML
design artifact. This design artifact is exported in XML
format. We have written a parser that reads a UML
sequence diagram in XMI/XML format and convert it
into SDG. The nodes of SDG is defined as “generic”
using template definition in C++, and the structure is
decided so that it can dynamically store any number of
links and any amount of information. We consider the
use case template according to the Extended UC Model
in IBM’s Rational Rose software [14]. The structure is
also similar to the template proposed in [5]. The OCL
2.0 syntax is followed to represent data dictionary. We
consider breadth-first traversal algorithm to enumerate
all paths in an SDG. For the specification of a test case,
we consider the test specification language according
to the IEEE Standard 829 of TSL [14]. Test cases
generated are recorded in a temporary file for future
references.

We implement our approach using C++
programming language in Linux OS and run the
program in Intel Machine with P-IV processor at 2.6
GHz. A snapshot of a sample output on a run over the

example of ATM PIN Validation use case is shown in
Fig. 3. For brevity, Fig. 3 only shows the test case
corresponding to the scenario fault detection. We
enumerate 5 different paths on the SDG (in Fig. 2(c))
giving 5 test cases as shown in Fig. 3.

7. Conclusions

We focused on automatic generation of test cases
from sequence diagrams. A methodology has been
proposed to convert the UML sequence diagram into a
graph called sequence diagram graph. The information
those are required for the specification of input, output,
pre- and post- conditions etc. of a test case are
retrieved from the extended use cases, data dictionary
expressed in OCL 2.0, class diagrams (composed of
application domain classes and their contracts) etc. and
are stored in the SDG. The approach does not require
any modification in the UML models or manual
intervention to set input/output etc. to compute test
cases. Hence, our approach provides a tool that
straightway can be used to automate testing process.
We follow a graph based methodology and run-time
complexity is governed by the breadth-first search
algorithm to enumerate all paths, which is O(n2) in the
worst case for a graph of n nodes. This implies that our
approach can handle a large design efficiently.

References
[1] A. Abdurazik and J. Offutt, Generating Tests from
UML Specifications, in the Proceedings of 2nd
International Conference on Unified Modeling Language
(UML’99), Fort Collins, CO, 1999.

[2] A. Abdurazik, and J. Offutt, Using UML Collaboration
diagrams for static checking and test generation, in:
Proceedings of the Third International Conference on the
UML, Lecture Notes in Computer Science, Springer-Verlag
GmbH, York, UK, vol. 939, 2000, pp. 383–395.

[3] R. V. Binder, Testing Object-Oriented System Models,
Patterns, and Tools, Addison-Wesley, NY, 1999

[4] L. Briand and Y. Labiche, A UML-Based Approach to
System Testing, in the Journal of Software and Systems
Modeling, Springer Verlag, Vol. 1, pp. 10-42, 2002.

[5] P. Fröhlick and J. Link, Automated Test cases Generation
from Dynamic Models, in the Proceedings of the European
Conference on Object-Oriented Programming, Springer
Verlag, LNCS 1850, pp. 472-491, 2000.

[6] J. Hartmann, M. Vieira, H. Foster, and A. Ruder, A
UML-based Approach to System Testing, Journal of
Innovations System Software Engineering, Vol. 1, PP. 12-24,
2005.

[7] M. Lettrari M. and J. Klose, Scenario-Based Monitoring
and Testing of Real Time UML Models, in the Proceedings of
UML 2001, Springer Verlag, pp. 312-328.

64

[8] F. Basanieri, A. Bertolino, and E. Marchetti, The cow suit
approach to planning and deriving test suites in UML
projects, in Proceedings of the 5th International Conference
on the UML, LNCS, 2460, 2002, pp. 383–397.

[9] J. D. McGregor, and D. A. Sykes, A Practical Guide to
Testing Object-Oriented Software, Addison Wesley, NJ,
2001.

[10] D. Pilone and N. Pitman, UML 2.0 in a Nutshell,
O’Reilly, NY, USA, 2005.

[11] M. Riebisch, I. Philippow, and M. Gotze, UML-Based
Statistical Test Case Generation, in the Proceeding of
ECOOP 2003, Springer Verlag, LNCS 2591, pp. 394-411,
2003.

[12] P. Tonella, and Potrich, A. Reverse Engineering of the
Interaction Diagrams from C++ Code, in the Proceedings of

IEEE International Conference on Software Maintenance
(2003) 159–168.

[13] Object Constraint Language 2.0 is available from
Object Mangement Group’s web site (http://www.omg.org/).

[14] A Rational Approach to Software Development using
Rational Rose 4.0, IBM’s Rational Rose,
(http://www.ibm.com/)
[15] G.H. Walton, and J.H. Poore, Statistical testing of
software based on usage model, Software-Practice and
Experience, Vol 25, 1995, pp 97-108.

[16] A. Bertolino, and F. Basanieri, A practical approach to
UML-based derivation of integration tests, in Proceedings of
the Fourth International Software Quality Week Europe,
Brussels, Belgium, 2000.

[17] F. Fraikin, and T. Leonhardt, SEDITEC-testing based on
sequence diagrams, in Proceedings 17th IEEE International
Conference on ASE, 2002, pp. 261–266.

[18] T.J. Ostrand, and M.J. Balcer, The category-partition
method for specifying and generating fuctional tests,
Communications of the ACM 31 (6) (1998).

 1. Test name = “ATM PIN Validation”
2. Preconditions: ATM is idle and displaying a welcome

message. User inserts a card
3. Test case: Scenario 1
4. Input: Card = “Not ATM”
5. Output: Eject card
6. Postcondition: Displays welcome message
7. Test case: Scenario 2
8. Input: Card = “ATM”, Status = “Stolen”
9. Output: Eject card

10. Postcondition: Back to the initial state
11. Test case: Scenario 3
12. Input: Card = “ATM”, Status = “Okay”, Account = “Close”
13. Output: Eject card
14. Postcondition: Displays welcome message
15. Test case: Scenario 4
16. Input: Card = “ATM”, Status = “Okay”,

Account = “Open”, PIN = “Invalid”
17. Output: Message “Invalid PIN: Try Again”
18. Postcondition: Displays welcome message
19. Input: Card = “ATM”, Status = “Okay”,

Account = “Open”, PIN = “Invalid”
20. Output: Message “Invalid PIN: Try Again”
21. Postcondition: Displays welcome message
22. Input: Card = “ATM”, Status = “Okay”,

Account = “Open”, PIN = “Invalid”
23. Output: Message “Invalid PIN: Try Again”
24. Postcondition: Displays welcome message
25. Input: Card = “ATM”, Status = “Okay”,

 Account = “Open”. PIN = “Invalid”, Try = <4>
26. Output: Message “Invalid PIN: Try Later”

 Eject card
27. Postcondition: Displays welcome message
28. Test case: Scenario 5
29. Input: Card = “ATM”, Status = “Okay”,

 Account = “Open”, PIN = “Valid”
30. Output: Display “Hello”
31. Postcondition: Eject card
32. Postcondition: Display menu for transaction

 Fig. 3 Snapshot of test run with the sequence diagram of ATM PIN Validation

65

