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Abstract 

Increasing numbers of software developers are using the Unified 
Modeling Language (UML) and associated visual modeling tools 
as a basis for the design and implementation of their distributed, 
component-based applications. At the same time, it is necessary to 
test these components, especially during unit and integration 
testing. 
At Siemens Corporate Research, we have addressed the issue of 
testing components by integrating test generation and test 
execution technology with commercial UML modeling tools such 
as Rational Rose; the goal being a design-based testing 
environment.  
In order to generate test cases automatically, developers first 
define the dynamic behavior of their components via UML 
Statecharts, specify the interactions amongst them and finally 
annotate them with test requirements. Test cases are then derived 
from these annotated Statecharts using our test generation engine 
and executed with the help of our test execution tool. The latter 
tool was developed specifically for interfacing to components 
based on COM/DCOM and CORBA middleware. 
In this paper, we present our approach to modeling components 
and their interactions, describe how test cases are derived from 
these component models and then executed to verify their 
conformant behavior. We outline the implementation strategy of 
our TnT environment and use it to evaluate our approach by 
means of a simple example.  
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1. Introduction 
While standardized testing strategies and tools have been 
available for IC (hardware) components for many years, the 
research and development of standardized testing techniques and 
tools for distributed software components has just begun [18]. 
Three key technological factors are not only allowing developers 
to design and implement components, but at the same time, they 
are contributing towards the development of such testing 
strategies.  

These factors include: 

• The definition of the Unified Modeling Language (UML) 
[14,15], a standardized way of modeling the static structure 
and dynamic behavior of components and their interfaces;  

• The standardization of object-oriented middleware, for 
example, Microsoft’s COM/DCOM and OMG’s CORBA; 

• The continued refinement of object-oriented programming 
languages, such as Java and C++, and integrated 
development environments that provide extensive support for 
creating distributed components. 

As a result, developers are implementing large numbers of 
components ranging from relatively simple graphical user 
interface (GUI) components to sophisticated server-side 
application logic [4]. In this paper, we are focusing on the latter 
type of component development. 
As developers are delivering these complex, server-side 
components, they must also ensure that each component is 
delivered with a concise and unambiguous definition of its 
interfaces, and the legal order in which operations may be 
invoked on them. Component interfaces and their protocol 
specifications are being described or modeled in a variety of ways. 
For example, in the case of the Enterprise Java Beans 
Specification [10], this is achieved through contracts and UML 
Sequence Diagrams (also known as Message Sequence Charts). 
While a Sequence Diagram is useful at describing a specific 
interaction scenario, it may require a large number of such 
diagrams to completely specify the interaction of a complex 
component with its client(s). A more concise and compact way, 
however, of representing these scenarios is to depict them using a 
UML Statechart Diagram. It is this dynamic, behavioral 
description that is used in this paper as a basis for modeling 
components and their interfaces.  
Stimulating the interfaces to individual or groups of distributed 
components with inputs and monitoring as well as verifying the 
resulting responses is considered to be a functional or black-box 
testing strategy [2]. In our approach, we use Statecharts as a basis 
for generating such black-box tests, which developers can use for 
unit and integration testing. If the components have not been 
developed in-house or the source code is not available, as in the 
case of third-party components, then it may be possible to derive 
an abstracted Statechart for each or a subsystem of components. 
In Section 2, we describe our approach for modeling components 
and their interactions by means of Statecharts. Section 3 outlines 
the way in which the individual Statecharts are combined into a 
global behavioral model. In Section 4, we present the way in 
which test cases are generated and executed using the global 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ISSTA’00, Portland, Oregon. 
Copyright 2000 ACM 1-58113-266-2/00/0008…$5.00. 



 

 61 

model. For Section 5 and 6, we provide an overview of the TnT 
environment that realizes the approach and apply it to an example. 
Related work, conclusions and future work are presented in 
Section 7 and 8. 

2. Modeling Components in UML 
In this section, we describe the use of UML Statecharts in 
modeling the dynamic behavior of components as well as the 
communication between them1. To better convey the concepts, we 
have illustrated the paper with an example.  

 Figure 1: Alternating Bit Protocol Example 

The example in Figure 1 represents an alternating bit 
communication protocol2 in which there are four separate 
components Timer, Transmitter, ComCh (Communication 
Channel) and Receiver and several internal as well as external 
interfaces and stimuli.  
The protocol is a unidirectional, reliable communication protocol. 
A user invokes a Transmitter component to send data messages 
over a communication channel and to a Receiver component, 
which then passes it on to another user. The communication 
channel can lose data messages as well as acknowledgements. The 
reliable data connection is implemented by observing possible 
timeout conditions, repeatedly sending messages, if necessary, 
and ensuring the correct order of the messages. 

2.1 UML Statecharts 
The Unified Modeling Language (UML) is a general-purpose 
visual modeling language that is used to specify, visualize, 
construct and document the artifacts of a software system.  
In this paper, we focus on the dynamic views of UML, in 
particular, Statechart Diagrams. A Statechart can be used to 
describe the dynamic behavior of a component or should we say 
object over time by modeling its lifecycle. The key elements 
described in a Statechart are states, transitions, events, and 
actions.  
States and transitions define all possible states and changes of 
state an object can achieve during its lifetime. State changes occur 
as reactions to events received from the object’s interfaces. 
Actions correspond to internal or external method calls.  

                                                                 
1 The nomenclature in this paper refers to UML, Revision 1.3. 
2 The name Alternating Bit Protocol stems from the message sequence 

numbering technique used to recognize missing or redundant messages 
and to keep up the correct order. 

Figure 2 illustrates the Statechart for the Transmitter object 
shown in Figure 1. It comprises six states with a start and an end 
state. The transitions are labeled with call event descriptions 
corresponding to external stimuli being received from the tuser 
interface and internal stimuli being sent to the Timer component 
via the timing interface and received from the ComCh component 
via the txport interface. These internal/external interfaces and 
components are shown in Figure 1. Moreover, the nomenclature 
used for labeling the transitions is described in the next section 
and relates to the way in which component interactions are 
modeled. 

Idle0

PrepareSend0

MessageSent0 PrepareSend1

MessageSent1

 _̂txport!data1:_timing!start _̂txport!data0:_timing!start

Idle1

_timing?timeout

_txport?ack _̂timing!cancel:_tuser!ack _tuser?msg

_timing?tim eout

_txport?ack t̂iming!cancel:_tuser!ack
_tuser?msg

Figure 2: Statechart Diagram for the Transmitter Object 

2.2 Communicating Statecharts 
In the following section, we describe how a developer would need 
to model the communication between multiple Statecharts, when 
using a commercial UML-based modeling tool. At present, UML 
does not provide an adequate mechanism for describing the 
communication between two components, so we adopted concepts 
from CSP (Communicating Sequential Processes) [6] to enhance 
its existing notation. 

2.2.1 Communication Semantics  
In our approach, we wanted to select communication semantics 
that most closely relate to the way in which COM/DCOM and 
CORBA components interact in current systems. While such 
components allow both synchronous and asynchronous 
communications, we focus on a synchronous mechanism for the 
purposes of this paper. 
In addition, there are two types of synchronous communication 
mechanisms. The first, the shared (or global) event model, may 
broadcast a single event to multiple components, all of which are 
waiting to receive and act upon it in unison. The second model, a 
point-to-point, blocking communication mechanism, can send a 
single event to just one other component and it is only these two 
components that are then synchronized. The originator of the 
event halts its execution (blocks) until the receiver obtains the 
event. It is this point-to-point model that we adopted, because it 
most closely resembles the communication semantics of 
COM/DCOM and CORBA.  
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2.2.2 Transition Labeling 
In order to show explicit component connections and to associate 
operations on the interfaces with events within the respective 
Statecharts, we defined a transition labeling convention based on 
the notation used in CSP for communication operations3. A 
unique name must be assigned by the developer to the connection 
between two communicating Statecharts4. This name is used as a 
prefix for trigger (incoming) and send (outgoing) events. A 
transition label in a Statechart would be defined as follows: 

 _timing?timeout ^_txport!data0 

This transition label can be interpreted as receiving a trigger event 
timeout from connection timing followed by a send event 
data0 being sent to connection txport. Trigger (also known as 
receive) events are identified by a separating question mark, 
whereas send events are identified by a leading caret (an existing 
UML notation) and a separating exclamation mark. In Figure 3 
below, two dark arrows indicate how the timing interface 
between the two components is used by the send and receive 
events. Connections are considered bi-directional, although it is 
possible to use different connection names for each direction, if 
the direction needs to be emphasized. 
Transitions can contain multiple send and receive events. Multiple 
receive events within a transition label can be specified by 
separating them with a plus sign. Multiple send events with 
different event names can be specified by separating them by a 
colon. 

2.2.3 Example 
Figure 3 shows two communicating Statecharts for the 
Transmitter and Timer components. The labels on the transitions 
in each Statechart refer to events occurring via the internal timing 
interface, the interface txport with the ComCh component and two 
external interfaces, timer and tuser.  

 

Figure 3: Communicating Transmitter and Timer Components 

The Transmitter component starts execution in state Idle0 and 
waits for user input. If a message arrives from connection tuser, 
the state changes to PrepareSend0. Now, the message is sent 
to the communication channel. At the same time, the Timer 
component receives a start event. The component is now in the 

                                                                 
3 In CSP, operations are written as channel1!event1 which means 

that event1 is sent via channel1. A machine input operation is 
written as channel2?event1 where channel2 receives an event1. 

4 This is currently a limitation of our tool implementation. 

state MessageSent0 and waits until either the Timer 
component sends a timeout event or the ComCh component 
sends a message acknowledgement ack. In case of a timeout, the 
message is sent again and the timer is also started again. If an ack 
is received, an event is sent to the Timer component to cancel 
the timer and the user gets an acknowledgement for successful 
delivery of the message. Now, the same steps may be repeated, 
but with a different message sequence number, which is expressed 
by the event data1 instead of data0.  

In addition to modeling the respective Statecharts and defining the 
interactions between them, developers can specify test 
requirements, that is, directives for test generation, which 
influence the size and complexity of the resulting test suite. 
However, this aspect is not shown in this example. 

3. Establishing a Global Behavioral Model 
In the following section, we describe the steps taken in 
constructing a global behavioral model, which is internal to our 
tool, from multiple Statecharts that have been defined by a 
developer using a commercial UML-based modeling tool. In this 
global behavioral model, the significant properties, that is, 
behavior, of the individual state machines are preserved.  

3.1 Definition of Subsystems 
A prime concern with respect to the construction of such a global 
model is scalability. Apart from utilizing efficient algorithms to 
compute such a global model, we defined a mechanism whereby 
developers can group components into subsystems and thus help 
to reduce the size of a given model. The benefit of such a 
subsystem definition is that it also reflects a commonly used 
integration testing strategy described in Section 4. 
Our approach allows developers to specify a subsystem of 
components to be tested and the interfaces to be tested. If no 
subsystem definition has been specified by a developer, then all 
modeled components and interfaces are considered as part of the 
global model. 

3.2 Composing Statecharts 
3.2.1 Finite State Machines 
We consider Statecharts as Mealy finite state machines; they react 
upon input in form of receive events and produce output in form 
of send events. Such state machines define a directed graph with 
nodes (representing the states) and edges (representing the 
transitions). They have one initial state and possibly several final 
states. The state transitions are described by a function: 
Definition: A communicating finite state machine used for 
component specification is defined as A = (S, M, T, δ, s0, F), 
where 

S is a set of states, unique to the state machine 

M ⊂ S are states marked as intermediate states 
T is an alphabet of valid transition annotations, consisting of 
transition type, connection name and event name. Transition 
type ∈ {INT, COMM, SEND, RECEIVE} 

δ: S × T → S is a function describing the transitions between 
states 

s0 ∈ S is the initial state 

F ⊂ S is a set of final states  
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Initial and final states are regular states. The initial state gives a 
starting point for a behavior description. Final states express 
possible end points for the execution of a component. 
The transition annotations T contain a transition type as well as a 
connection name and an event name. Transition types can be 
INTernal, SEND, RECEIVE and COMMunication. Transitions of 
type SEND and RECEIVE are external events sent to or received 
from an external interface to the component’s state machine. 
SEND and RECEIVE transitions define the external behavior of a 
component and are relevant for the external behavior that can be 
observed. An INTernal transition is equivalent to a ε-transition 
(empty transition) of a finite state machine [7]. It is not triggered 
by any external event and has no observable behavior. It 
represents arbitrary internal action. COMMunication transitions 
are special types of internal transitions representing interaction 
between two state machines. Such behavior is not externally 
observable. When composing state machines, matching pairs of 
SEND and RECEIVE transitions with equal connection and event 
names are merged to form COMMunication transitions. For 
example, the transitions highlighted by dark arrows in Figure 3 
would be such candidates. 
The definition of a state machine allows transitions that contain 
single actions. Every action expressed by a transition annotation is 
interpreted as an atomic action. Component interaction can occur 
after each action. If several actions are grouped together without 
the possibility of interruption, the states between the transitions 
can be marked as intermediate states. Intermediate states (M ∈ S) 
are introduced to logically group substructures of states and 
transitions. The semantics of intermediate states provide a 
behavioral description mechanism similar to microsteps. Atomic 
actions are separated into multiple consecutive steps, the 
microsteps, which are always executed in one run. These 
microsteps are the outgoing transitions of intermediate states. This 
technique is used in our approach as part of the process of 
converting the UML Statecharts into an internal representation. 
The result is a set of normalized state machines.  

Idle

PrepareSend

MessageSent

TimerOn

 _̂timing!start

_txport! data0

GotAck

 ^_timing!cancel

_tuser?msg

_timing?timeout

_txport?ack

 

Figure 4: Normalized Transmitter Component 

Figure 4 shows such a state machine for a simplified version of 
the Transmitter object. Two additional, intermediate states 

TimerOn and GotAck have been inserted to separate the 
multiple events _txport!data0:^_timing_start and 
txport?ack^timing!cancel between the PrepareSend, 
MessageSent and Idle states shown in Figure 2. 

3.2.2 Composed State Machines 
A composed state machine can be considered as the product of 
multiple state machines. It is itself a state machine with the 
dynamic behavior of its constituents. As such, it would react and 
generate output as a result of being stimulated by events specified 
for the respective state machines. Based on the above definition of 
a finite state machine, the structure of a composed state machine 
can be defined as follows: 

Definition: Let A = (S1, M1, T1, δ1, s01, sf1) and B = (S2, M2, T2, 
δ2, s02, sf2) be two state machines and S1 ∩ S2 = ∅. The composed 
state machine C = A#B has the following formal definition: 

A#B = (S', M', T', δ', s0', F') 
S' = S1 x S2 

M' ⊂ (M1 × S2) ∪ (S1 × M2) 

T' ⊂ T12 ∪ TCOMM 

T12 = (T1 ∪ T2) \ {SEND, RECEIVE with connections 
between A and B} 
TCOMM = {COMM for matching events from T1 and T2} 

δ': S' × T'  → S' 

 δ' is generated from δ1 and δ2 with the state machine 
composition schema 

s0' = (s01, s02) ∈ S'.  

F' = {(s1, s2) ∈ S'  s1 ∈ F1 ∧ s2 ∈ F2} 
For example, a global state for A#B is defined as a two-tuple (s1, 
s2), where s1 is a state of A and s2 is a state of B. These two states 
are referred to as part states. Initial state and final states of A#B 
are element and subset of this product. The possible transition 
annotations are composed from the union of T1 and T2 and new 
COMMunication transitions that result from the matching 
transitions. Excluded are the transitions that describe possible 
matches. Either COMMunication transitions are created from 
them or they are omitted, because no communication is possible. 

3.2.3 Composition Method 
A basic approach for composing two state machines is to generate 
the product state machine by applying generative multiplication 
rules for states and transitions. This leads to a large overhead, 
because many unreachable states are produced that have to be 
removed in later steps. The resulting product uses more resources 
than necessary as well as more computation time for generation 
and minimization.  
Instead, our approach incorporates an incremental composition 
and reduction algorithm that uses reachability computations. A 
global behavioral model is created stepwise. Beginning with the 
global initial state, all reachable states and all transitions in 
between are computed. Every state of the composed state machine 
is evaluated only once. Due to the reachability algorithm, the 
intermediate data structures are at no time larger than the result of 
one composition step. States and transitions within the composed 
state machines that are redundant in terms of external observation 
are removed. By applying the reduction algorithm using heuristic 
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rules, it is possible to detect redundancies and to reduce the size 
of a composed state machine before the next composition step. 
Defined subsystems are processed independently sequentially. For 
each subsystem, the composition algorithm is applied. The inputs 
for the composition algorithm are data structures representing the 
normalized communicating state machines of the specified 
components within the current subsystem. The connection 
structure between these components is part of these data 
structures. The order of the composition steps determines the size 
and complexity of the result for the next step and therefore the 
effectiveness of the whole algorithm. The worst case for 
intermediate composition products is a composition of two 
components with no interaction. The maximum possible number 
of states and transitions created in this case resembles the product 
of two state machines. 
It is therefore important to select the most suitable component for 
the next composition step. The minimal requirement for the 
selected component is to have a common interface with the other 
component. This means that at least one connection exists to the 
existing previously calculated composed state machine.  
A better strategy with respect to minimizing the size of 
intermediate results is to select the state machine with the highest 
relative number of communication relationships or interaction 
points. A suitable selection norm is the ratio of possible 
communication transitions to all transitions in a state machine. 
The component with the highest ratio exposes the most extensive 
interface to the existing state machine and should be selected. 

 

Table 1 : Decision Table for Computing Successor States and 
Transitions 

This incremental composition and reduction method also specifies 
a composition schema. For every combination of outgoing 
transitions of the part states, a decision table (shown in Table 1) is 
used to compute the new transitions for the composed state 
machine.  
If a new transition leads to a global state that is not part of the 
existing structure of the composed state machine, it is added to an 
unmarked list. The transition is added to the global model. 
Exceptions exist, when part states are marked as intermediate. 
Every reachable global state is processed and every possible new 
global transition is inserted into the composed state machine. The 
algorithm terminates when no unmarked states remain. This 
means that every reachable global state was inserted into the 

model and later processed. The schema we used was based on a 
composition schema developed by Sabnani et al. [16]. We 
enhanced it to include extensions for connections, communication 
transitions, and intermediate states. 
We are assuming throughout this composition process that the 
individual as well as composed state machines have deterministic 
behavior. We also ensure that the execution order of all 
component actions is sequential. This is important as we then 
wish to use the global model to create test cases that are 
dependent on a certain flow of events and actions; we want to 
generate linear and sequential test cases for a given subsystem. 

3.2.4 Complexity Analysis 
As we are composing the product of two state machines, the worst 
case complexity would be O(n2) assuming n is the number of 
states in a state machine. However, our approach often does much 
better than this due to the application of the heuristic reduction 
rules that can help to minimize the overall size of the global 
model during composition and maintain its observational 
equivalence [11]. 
Typically, the reduction algorithm being used has linear 
complexity with respect to the number of states [16]. For example, 
it was reported that the algorithm was applied to a complex 
communication protocol (ISDN Q.931), where it was shown that 
instead of generating over 60,000 intermediate states during 
composition, the reduction algorithm kept the size of the model to 
approximately 1,000 intermediate states. Similar results were 
reported during use of the algorithm with other systems. The 
algorithm typically resulted in a reduction in the number of 
intermediate states by one to two orders of magnitude. 

3.2.5 Example 
Taking the normalized state machine of the Transmitter 
component in Figure 4 and the Timer component in Figure 3, the 
composition algorithm needs to perform only one iteration to 
generate the global behavioral model in Figure 5.   
A global initial state Idle_Stopped is created using the initial 
states of the two state machines. This state is added to the list of 
unmarked states. The composition schema is now applied for 
every state within this list to generate new global states and 
transitions until the list is empty. The reachability algorithm 
creates a global state machine comprising six states and seven 
transitions. Three COMMunication transitions are generated, 
which are identified by a hash mark in the transition label 
showing the communication connection and event. 
The example shows the application of the decision table. In the 
first global state, Idle_Stopped, part state Idle has an 
outgoing receive transition to PrepareSend using an external 
connection. Part state Stopped has also an outgoing receive 
transition to Running with a connection to the other component. 
According to the Decision Rule #4 of the table, the transition with 
the external connection is inserted into the composed state 
machine and the other transition is ignored. The new global 
receive transition leads to the global state 
PrepareSend_Stop.  

For the next step, both part states include transitions, which use 
internal connections. They communicate via the same connection 
timing and the same event - these are matching transitions. 
According to Decision Rule #1 of the table, a communication 
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transition is included in the composed state machine that leads to 
the global state TimerOn_Running. These rules are applied 
repeatedly until all global states are covered. 

Idle_Stop

PrepareSend_Stop

TimerOn_Running

MessageSent_Running

GotAck_Running MessageSent_Timeout

_tuser?msg

_timing#start

_timer?extTimeout_txport?ack

 ^_timing#timeout

 ^_timing#cancel

 _̂txport!data0

 

Figure 5: Global Behavioral Model for the TransmitterTimer 
Subsystem 

4. Test Generation and Execution 
In the preceding sections, we discussed our approach to modeling 
individual or collections of components using UML Statecharts, 
and establishing a global behavioral model of the composed 
Statecharts. In this section, we show how this model can be used 
as the basis for automatic test generation and execution during 
unit and integration testing. 

4.1 Unit and Integration Testing 
After designing and coding each software component, developers 
perform unit testing to ensure that each component correctly 
implements its design and is ready to be integrated into a system 
of components. This type of testing is performed in isolation from 
other components and relies heavily on the design and 
implementation of test drivers and test stubs. New test drivers and 
stubs have to be developed to validate each of the components in 
the system.  
After unit testing is concluded, the individual components are 
collated, integrated into the system, and validated again using yet 
another set of test drivers. At each level of testing, a new set of 
custom test drivers is required to stimulate the components. While 
each component may have behaved correctly during unit testing, it 
may not do so when interacting with other components. 
Therefore, the objective of integration testing is to ensure that all 
components interact and interface correctly with each other, that 
is, have no interface mismatches. This is commonly referred to as 
bottom-up integration testing. 
Our approach aims at minimizing the testing costs, time and effort 
associated with initially developing customized test drivers, test 
stubs, and test cases as well as repeatedly adapting and rerunning 
them for regression testing purposes at each level of integration. 

4.2 Test Generation 
Before proceeding with a description of the test generation and 
execution steps, we would like to emphasize the following: 

• Our approach generates a set of conformance tests. These test 
cases ensure the compliance of the design specification with 
the resulting implementation.  

• It is assumed that the implementation behaves in a 
deterministic and externally controllable way. Otherwise, the 
generated test cases may produce incorrect results. 

4.2.1 Category-Partition Method 
For test generation, we use the Test Development Environment 
(TDE), a product developed at Siemens Corporate Research [1]. 
TDE processes a test design written in the Test Specification 
Language (TSL). This language is based on the category-partition 
method, which identifies behavioral equivalence classes within 
the structure of a system under test. 
A category or partition is defined by specifying all possible data 
choices that it can represent. Such choices can be either data 
values or references to other categories or partitions, or a 
combination of both. The data values may be string literals 
representing fragments of test scripts, code, or case definitions, 
which later can form the contents of a test case.  
A TSL test design is now created from the global behavioral 
model by mapping its states and transitions to TSL categories or 
partitions, and choices. States are the equivalence classes and are 
therefore represented by partitions. Each transition from the state 
is represented as a choice of the category/partition. Only partitions 
are used for equivalence class definitions, because paths through 
the state machine are not limited to certain outgoing transitions 
for a state; this would be the case when using a category. Each 
transition defines a choice for the current state, combining a test 
data string (the send and receive event annotations) and a 
reference to the next state. A final state defines a choice with an 
empty test data string. 

4.2.2 Generation Procedure 
A recursive, directed graph is built by TDE that has a root 
category/partition and contains all the different paths of choices to 
plain data choices. This graph may contain cycles depending on 
the choice definitions and is equivalent to the graph of the global 
state machine. A test frame, that is, test case is one instance of the 
initial data category or partition, that is, one possible path from 
the root to a leaf of the (potentially infinite) reachability tree for 
the graph. 
An instantiation of a category or partition is a random selection of 
a choice from the possible set of choices defined for that 
category/partition. In the case of a category, the same choice is 
selected for every instantiation of a test frame. This restricts the 
branching possibilities of the graph. With a partition, however, a 
new choice is selected at random with every new instantiation. 
This allows full branching within the graph and significantly 
influences test data generation. The contents of a test case consist 
of all data values associated with the edges along a path in the 
graph. 

4.2.3 Coverage Requirements 
The TSL language provides two types of coverage requirements: 
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• Generative requirements control which test cases are 
instantiated. If no generative test requirements are defined, 
no test frames are created. For example, coverage statements 
can be defined for categories, partitions and choices. 

• Constraining requirements cause TDE to omit certain 
generated test cases. For example, there are maximum 
coverage definitions, rule-based constraints for 
category/partition instantiation combinations, instantiation 
preconditions and instantiation depth limitations. Such test 
requirements can be defined globally within a TSL test 
design or attached to individual categories, partitions or 
choices.  

TDE creates test cases in order to satisfy all specified coverage 
requirements. Input sequences for the subsystem are equivalent to 
paths within the global behavioral model that represents the 
subsystem, starting with the initial states. Receive transitions with 
events from external connections stimulate the subsystem. Send 
transitions with events to external connections define the resulting 
output that can be observed by the test execution tool. All 
communication is performed through events. For unit test 
purposes, the default coverage criterion is that all transitions 
within a Statechart must be traversed at least once. For integration 
testing, only those transitions that involve component interactions 
are exercised. If a subsystem of components is defined as part of 
the modeling process, coverage requirements are formulated to 
ensure that those interfaces, that is, transitions are tested. 

4.2.4 Example 
Figure 6 presents the test case that is derived from the global 
behavioral model shown in Figure 5. This one test case is 
sufficient to exercise the interfaces, txport, tuser and 
timer defined for the components. Each line of this generic test 
case format represents either an input event or an expected output 
event. We chose a test case format where the stimulating events 
and expected responses use the strings SEND and RECEIVE 
respectively, followed by the connection and event names. 
Currently, the events have no parameters, but that will be 
remedied in future work. 

 

Figure 6: Test Case for TransmitterTimer Subsystem 

The Sequence Diagrams for the execution of this test case are 
shown in Figure 7. Note that the external connection timer has a 
possible event extTimeout. This event allows a timeout to be 
triggered without having a real hardware timer available. 

 : Send User
 : Transmitter  : Timer  : Comch  : Receiver

 : Receive User

msg
start

data0

data0 msg
ackack

cancel
ack

 
(a) Successful Transmission  

 : Send User
 : Transmitter  : Timer  : Comch  : Receiver

 : Receive User : Hardware Timer

msg
start

data0

extTimeout

timeout

data0
data0

msg
ack

ack

cancel
ack

 
(b) Timed Out Transmission 

Figure 7: Sequence Diagrams for the Example 

4.3 Test Execution 
In this section, we show how the generated test cases can be 
mapped to the COM/CORBA programming model. We describe 
how an executable test driver (including stubs) is generated out of 
such test cases.  
As seen earlier, a test case consists of a sequence of SEND and 
RECEIVE events such as the following: 

*SEND _tuser.msg(); 

*RECEIVE _txport.data0(); 

The intent of the SEND event is to stimulate the object under test. 
To do so, the connection _tuser is mapped to an object 
reference, which is stored in a variable _tuser defined in the 
test case5. The event msg is mapped to a method call on the object 
referenced by _tuser.  

The RECEIVE event represents a response from the object under 
test, which is received by an appropriate sink object. To do so, the 
connection _txport is mapped to an object reference that is 
stored in a variable _txport. The event data0 is mapped to a 
callback, such that the object under test fires the event by calling 
back to a sink object identified by the variable _txport. The 
sink object thus acts as a stub for an object that would implement 
the txport interface on the next higher layer of software. 

                                                                 
5 In the current implementation of TnT, the initialization code that 

instantiates the Transmitter object and stores the object reference in the 
variable _tuser has to be written manually. 
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Typically, reactive software components expose an interface that 
allows interested parties to subscribe for event notification6.  

tuser
:Transmitter

txport
:Sink

1. msg()
tuser

2. data0()
txport

Test Driver

Layer XLayer X+1

 

Figure 8: Interaction with the Object under Test 

The interactions between the test execution environment and the 
Transmitter object are shown in Figure 8. The TestDriver calls the 
method msg() on the Transmitter object referenced through the 
variable _tuser. The Transmitter object notifies the sink object 
via its outgoing _txport interface. 

Test case execution involving RECEIVE events not only requires 
a comparison of the out-parameters and return values with 
expected values, but also the evaluation of event patterns. These 
event patterns specify which events are expected in response to 
particular stimuli, and when they are expected to respond by. To 
accomplish this, the sink objects associated with the test cases 
need to be monitored to see if the required sink methods are 
invoked. 

5. Implementation of TnT 
The TnT environment was developed at Siemens Corporate 
Research in order to realize the work described above. This 
design-based testing environment consists of two tools, our 
existing test generation tool, TDE with extensions for UML 
(TDE/UML) and TECS, the test execution tool. Thus, the name - 
TnT. Our new environment interfaces directly to the UML 
modeling tools, Rose2000 and Rose Real-Time 6.0, by Rational 
Software. Figure 9 shows how test case generation can be initiated 
from within Rational Rose.  
In this section, we briefly describe our implementation strategy. 

5.1 TDE/UML 
Figure 10 depicts the class diagram for TDE/UML. TDE/UML 
accesses both Rose applications through Microsoft COM 
interfaces. In fact, our application implements a COM server, that 
is, a COM component waiting for events. We implemented 
TDE/UML in Java using Microsoft’s Visual J++ as it can generate 
Java classes for a given COM interface. Each class and interface 
of the Rose object model can thus be represented as a Java class; 
data types are converted and are consistent. The Rose applications 
export administrative objects as well as model objects, which 
represent the underlying Rose repository.  
Rose also provides an extensibility interface (REI) to integrate 
external tools known as Add-Ins. A new tool, such as TDE/UML 
can be installed within the Rose application as an Add-In and 
invoked via the Rose Tool menu. Upon invocation, the current 
Rose object model is imported including the necessary 
                                                                 
6 In the current implementation of TnT, the initialization code for 

instantiating a sink object and registering it with the Transmitter 
component has to be written manually. 

Statecharts, processed using the techniques described in previous 
sections, and the files needed for test generation and test 
execution generated. 

 

Figure 9: Generating Tests from within Rational Rose 

Figure 10: Class Diagram for TDE/UML 

5.2 TECS 
The Test Environment for Distributed Component-Based 
Software (TECS) specifically addresses test execution. While the 
test generation method described in Section 4.2 can only support 
components communicating synchronously, TECS already 
supports both synchronous and asynchronous communication7.  
The test environment is specifically designed for testing COM or 
CORBA components during unit and integration testing. The 
current version of TECS supports the testing of COM 
components. It can be used as part of the TnT environment or as a 
standalone tool, and includes the following features: 

                                                                 
7 With asynchronous communication, a component under test can send 

response events to a sink object at any time and from any thread. 
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• Test Harness Library – this is a C++ framework that 
provides the basic infrastructure for creating the executable 
test drivers. 

• Test Case Compiler – it is used to generate test cases in 
C++ from a test case definition such as the one illustrated in 
Figure 6. The generated test cases closely co-operate with the 
Test Harness Library. A regular C++ compiler is then used to 
create an executable test driver out of the generated code and 
the Test Harness Library. The generated test drivers are 
COM components themselves, exposing the interfaces 
defined through the TECS environment. 

• Sink Generator – it is used to generate C++ sink classes out 
of an IDL interface definition file. The generated sink classes 
also closely co-operate with the Test Harness Library. 

• Test Control Center – it provides the user a means of 
running test cases interactively through a graphical user 
interface or in batch mode. The information generated during 
test execution is written into an XML-based tracefile. The 
Test Control Center provides different views of this data 
such as a trace view, an error list, and an execution summary. 
Further views can easily be defined by writing additional 
XSL style sheets. 

6. Evaluating the Example 
In this section, we describe an evaluation of our approach using 
the alternating bit protocol example. As discussed in Section 2, 
the example comprises of four components, each with its own 
Statechart and connected using the interfaces depicted in Figure 1.  
We are currently applying this approach to a set of products 
within different Siemens business units, but results from our 
experimentation are not yet available. We are aiming to examine 
issues such as the fault detection capabilities of our approach. 

6.1.1 Component Statistics 
Table 2 shows the number of states and transitions for the four 
Statecharts before and after they were imported into TDE/UML 
and converted into a normalized global model by the composition 
steps described in Section 3.2. We realize that the size of these 
components is moderate, but we use them to highlight a number 
of issues. For the example, the normalized state machine for each 
component is never more than twice the size of its associated 
UML Statechart. 

 

Table 2 : Component Statistics 

6.1.2 Defining an Integration Test Strategy 
An important decision for the developer is the choice of an 
appropriate integration test strategy. Assuming that a bottom-up 
integration test strategy is to be used, a developer may wish to 
integrate the Transmitter and Timer components first 
followed by the Receiver and Comch components. Afterwards, 
the two subsystems would be grouped together to form the 

complete system. In this case, only the interface between the two 
subsystems, txport, would need to be tested. Below, we show 
the subsystem definitions for the chosen integration test strategy. 

subsystem TransmitterTimer { 

    components: Transmitter, Timer; } 

subsystem ComchReceiver { 

    components: Comch, Receiver; } 

subsystem ABProtocol { 

components: Transmitter, Timer, Comch, 
Receiver; 

    interface: txport; } 

6.1.3 Applying the Composition and Reduction Step 
The time taken for the import of these four Statecharts as well as 
the execution time for the composition algorithm was negligible. 
Table 3 shows the number of states/transitions created during the 
composition step as well as the values for when the reduction step 
is not applied. Typically, the reduction algorithm is applied after 
each composition step. 
The values in italic show combinations of components with no 
common interface. The numbers for these combinations are very 
high as would be expected. Such combinations are generally not 
used as intermediate steps. The values in bold indicate the number 
of states/transitions used for the above integration test strategy. 
The values show how the number of states/transitions can be 
substantially reduced as in the case of all four components being 
evaluated together as a complete system. 

 

Table 3: Size of Intermediate Results 

For this example, when composing a model without the 
intermediate reduction steps and instead reducing it after the last 
composition step, the same number of states and transitions are 
reached. The difference, however, lies in the size of the 
intermediate results and the associated higher execution times. 
While in this case, the benefit of applying the reduction algorithm 
were negligible due to the size of the example, theoretically it 
could lead to a significant difference in execution time. 

6.1.4 Generating and Executing the Test Cases 
The time taken to generate the test cases for all three subsystems 
in this example took less than five seconds. TDE/UML generated 
a total of 7 test cases for all three subsystems – one test case for 
the subsystem TransmitterTimer, three test cases for subsystem 
ComchReceiver and three test cases for ABProtocol. In contrast, 
an integration approach in which all four components were tested 
at once with the corresponding interfaces resulted in a total of 4 
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tests. In this case, the incremental integration test strategy resulted 
in more test cases being generated than the big-bang approach, 
but smaller integration steps usually result in a more stable system 
and a higher percentage of detected errors. An examination of the 
generated test cases shows that they are not free of redundancy or 
multiple coverage of communication transitions, but they come 
relatively close to the optimum. 

7. Related Work 
Over the years, there have been numerous papers dedicated to the 
subject of test data generation [1,3,8,13,17,19,21]. Moreover, a 
number of tools have been developed for use within academia and 
the commercial market. These approaches and tools have been 
based on different functional testing concepts and different input 
languages, both graphical and textual in nature. 
However, few received any widespread acceptance from the 
software development community at large. There are a number of 
reasons for this. First, many of these methods and tools required a 
steep learning curve and a mathematical background. Second, the 
modeling of larger systems beyond single components could not 
be supported, both theoretically and practically. Third, the design 
notation, which would be used as a basis for the test design, was 
often used only in a particular application domain, for example, 
SDL is used predominantly in the telecommunications and 
embedded systems domain. 
However, with the widespread acceptance and use of UML 
throughout the software development community as well as the 
availability of suitable tools, this situation may be about to 
change. Apart from our approach, we know of only one other 
effort in this area. Offutt et al. [12] present an approach similar to 
ours in that they generate test cases from UML Statecharts. 
However, their approach has a different focus in that they examine 
different coverage requirements and are only able to generate tests 
for a single component. Furthermore, they do not automate the 
test execution step in order for developers to automatically 
generate and execute their tests. In addition, they do not 
specifically address the problems and issues associated with 
modeling distributed, component-based systems. 

8. Conclusion and Future Work 
In this paper, we described an approach that aims at minimizing 
the testing costs, time and effort associated with developing 
customized test drivers and test cases for validating distributed, 
component-based systems.  
To this end, we describe and realize our test generation and test 
execution technology and integrate it with a UML-based visual 
modeling tool. We show how this approach supports both the unit 
and integration testing phases of the component development 
lifecycle and can be applied to both COM- and CORBA-based 
systems. We briefly outline our implementation strategy and 
evaluate the approach using the given example. In the following 
paragraphs, we focus on some of the issues resulting from this 
work.  
Software systems, especially embedded ones, use asynchronous 
communication mechanisms with message queuing or shared 
(global) messages instead of the synchronous communication 
mechanism adopted by our approach. Asynchronous 
communication is more complex to model, because it requires the 
modeling of these queued messages and events. Furthermore, 
communication buffers must be included, when modeling and 

composing. Dependent on the implementation, the size of the 
event queue can be limited or not. If not, mechanisms have to be 
implemented to detect the overflow of queues. When generating 
test cases for asynchronously communicating systems, the 
complexity may quickly lead to scalability problems that would 
need to be examined and addressed in future work. Methods for 
asynchronously communicating systems are presented in [5,9, 20]. 
Component interaction is modeled by our approach using an event 
(message) exchange containing no parameters and values. Future 
work will result in the modeling of ‘parameterized’ 
communication. To achieve this, the model specification must be 
enhanced with annotations about possible data values and types as 
well as test requirements for these values. TDE allows test case 
generation using data variations with samples out of a possible 
range of parameter values. Pre- and post-conditions can constrain 
valid data values. These constraints can be checked during test 
execution, which extends the error detecting possibilities. 
UML allows users to model Statecharts with hierarchical state 
machines and concurrent states. While the global behavioral 
model presented in this paper can model components with nested 
states and hierarchical state machines, the internal data conditions 
of these state machines (meaning the global state machine 
variables) influencing the transition behavior are not supported. 
Concurrent states are also not supported as yet. 
In future work, we hope to support the developer with an optimal 
integration test strategy. By examining the type and extent of the 
interactions between components, our environment could provide 
suggestions to the developer as to the order in which components 
need to be integrated. This could include analyses of the 
intermediate composition steps as well as an initial graphical 
depiction of the systems and its interfaces. Such an approach 
could significantly influence the effectiveness, efficiency and 
quality of the test design. 
When modeling real-time systems, timing aspects and constraints 
become essential. In future work, we hope to analyze real-time 
modeling and testing requirements. For instance, test cases could 
be annotated with real-time constraints. Assertions or post-
conditions within the model could also contain such information 
which could be checked during test execution. 
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