

 60

UML-Based Integration Testing

Jean Hartmann
Siemens Corporate Research

755 College Road East
Princeton NJ 08540
++1 609 734 3361

jhartmann@scr.siemens.com

Claudio Imoberdorf
Siemens Corporate Research

755 College Road East
Princeton NJ 08540
++1 609 734 3688

claudio@scr.siemens.com

Michael Meisinger
Technical University, Munich

 Arcisstraße 21
80333 München

 ++49 (89) 289-01
meisinger@gmx.de

Abstract

Increasing numbers of software developers are using the Unified
Modeling Language (UML) and associated visual modeling tools
as a basis for the design and implementation of their distributed,
component-based applications. At the same time, it is necessary to
test these components, especially during unit and integration
testing.
At Siemens Corporate Research, we have addressed the issue of
testing components by integrating test generation and test
execution technology with commercial UML modeling tools such
as Rational Rose; the goal being a design-based testing
environment.
In order to generate test cases automatically, developers first
define the dynamic behavior of their components via UML
Statecharts, specify the interactions amongst them and finally
annotate them with test requirements. Test cases are then derived
from these annotated Statecharts using our test generation engine
and executed with the help of our test execution tool. The latter
tool was developed specifically for interfacing to components
based on COM/DCOM and CORBA middleware.
In this paper, we present our approach to modeling components
and their interactions, describe how test cases are derived from
these component models and then executed to verify their
conformant behavior. We outline the implementation strategy of
our TnT environment and use it to evaluate our approach by
means of a simple example.

Keywords

Distributed components, functional testing, test generation, test
execution, UML statecharts, COM/DCOM, CORBA.

1. Introduction
While standardized testing strategies and tools have been
available for IC (hardware) components for many years, the
research and development of standardized testing techniques and
tools for distributed software components has just begun [18].
Three key technological factors are not only allowing developers
to design and implement components, but at the same time, they
are contributing towards the development of such testing
strategies.

These factors include:

• The definition of the Unified Modeling Language (UML)
[14,15], a standardized way of modeling the static structure
and dynamic behavior of components and their interfaces;

• The standardization of object-oriented middleware, for
example, Microsoft’s COM/DCOM and OMG’s CORBA;

• The continued refinement of object-oriented programming
languages, such as Java and C++, and integrated
development environments that provide extensive support for
creating distributed components.

As a result, developers are implementing large numbers of
components ranging from relatively simple graphical user
interface (GUI) components to sophisticated server-side
application logic [4]. In this paper, we are focusing on the latter
type of component development.
As developers are delivering these complex, server-side
components, they must also ensure that each component is
delivered with a concise and unambiguous definition of its
interfaces, and the legal order in which operations may be
invoked on them. Component interfaces and their protocol
specifications are being described or modeled in a variety of ways.
For example, in the case of the Enterprise Java Beans
Specification [10], this is achieved through contracts and UML
Sequence Diagrams (also known as Message Sequence Charts).
While a Sequence Diagram is useful at describing a specific
interaction scenario, it may require a large number of such
diagrams to completely specify the interaction of a complex
component with its client(s). A more concise and compact way,
however, of representing these scenarios is to depict them using a
UML Statechart Diagram. It is this dynamic, behavioral
description that is used in this paper as a basis for modeling
components and their interfaces.
Stimulating the interfaces to individual or groups of distributed
components with inputs and monitoring as well as verifying the
resulting responses is considered to be a functional or black-box
testing strategy [2]. In our approach, we use Statecharts as a basis
for generating such black-box tests, which developers can use for
unit and integration testing. If the components have not been
developed in-house or the source code is not available, as in the
case of third-party components, then it may be possible to derive
an abstracted Statechart for each or a subsystem of components.
In Section 2, we describe our approach for modeling components
and their interactions by means of Statecharts. Section 3 outlines
the way in which the individual Statecharts are combined into a
global behavioral model. In Section 4, we present the way in
which test cases are generated and executed using the global

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA’00, Portland, Oregon.
Copyright 2000 ACM 1-58113-266-2/00/0008…$5.00.

 61

model. For Section 5 and 6, we provide an overview of the TnT
environment that realizes the approach and apply it to an example.
Related work, conclusions and future work are presented in
Section 7 and 8.

2. Modeling Components in UML
In this section, we describe the use of UML Statecharts in
modeling the dynamic behavior of components as well as the
communication between them1. To better convey the concepts, we
have illustrated the paper with an example.

 Figure 1: Alternating Bit Protocol Example

The example in Figure 1 represents an alternating bit
communication protocol2 in which there are four separate
components Timer, Transmitter, ComCh (Communication
Channel) and Receiver and several internal as well as external
interfaces and stimuli.
The protocol is a unidirectional, reliable communication protocol.
A user invokes a Transmitter component to send data messages
over a communication channel and to a Receiver component,
which then passes it on to another user. The communication
channel can lose data messages as well as acknowledgements. The
reliable data connection is implemented by observing possible
timeout conditions, repeatedly sending messages, if necessary,
and ensuring the correct order of the messages.

2.1 UML Statecharts
The Unified Modeling Language (UML) is a general-purpose
visual modeling language that is used to specify, visualize,
construct and document the artifacts of a software system.
In this paper, we focus on the dynamic views of UML, in
particular, Statechart Diagrams. A Statechart can be used to
describe the dynamic behavior of a component or should we say
object over time by modeling its lifecycle. The key elements
described in a Statechart are states, transitions, events, and
actions.
States and transitions define all possible states and changes of
state an object can achieve during its lifetime. State changes occur
as reactions to events received from the object’s interfaces.
Actions correspond to internal or external method calls.

1 The nomenclature in this paper refers to UML, Revision 1.3.
2 The name Alternating Bit Protocol stems from the message sequence

numbering technique used to recognize missing or redundant messages
and to keep up the correct order.

Figure 2 illustrates the Statechart for the Transmitter object
shown in Figure 1. It comprises six states with a start and an end
state. The transitions are labeled with call event descriptions
corresponding to external stimuli being received from the tuser
interface and internal stimuli being sent to the Timer component
via the timing interface and received from the ComCh component
via the txport interface. These internal/external interfaces and
components are shown in Figure 1. Moreover, the nomenclature
used for labeling the transitions is described in the next section
and relates to the way in which component interactions are
modeled.

Idle0

PrepareSend0

MessageSent0 PrepareSend1

MessageSent1

 _̂txport!data1:_timing!start _̂txport!data0:_timing!start

Idle1

_timing?timeout

_txport?ack _̂timing!cancel:_tuser!ack _tuser?msg

_timing?tim eout

_txport?ack t̂iming!cancel:_tuser!ack
_tuser?msg

Figure 2: Statechart Diagram for the Transmitter Object

2.2 Communicating Statecharts
In the following section, we describe how a developer would need
to model the communication between multiple Statecharts, when
using a commercial UML-based modeling tool. At present, UML
does not provide an adequate mechanism for describing the
communication between two components, so we adopted concepts
from CSP (Communicating Sequential Processes) [6] to enhance
its existing notation.

2.2.1 Communication Semantics
In our approach, we wanted to select communication semantics
that most closely relate to the way in which COM/DCOM and
CORBA components interact in current systems. While such
components allow both synchronous and asynchronous
communications, we focus on a synchronous mechanism for the
purposes of this paper.
In addition, there are two types of synchronous communication
mechanisms. The first, the shared (or global) event model, may
broadcast a single event to multiple components, all of which are
waiting to receive and act upon it in unison. The second model, a
point-to-point, blocking communication mechanism, can send a
single event to just one other component and it is only these two
components that are then synchronized. The originator of the
event halts its execution (blocks) until the receiver obtains the
event. It is this point-to-point model that we adopted, because it
most closely resembles the communication semantics of
COM/DCOM and CORBA.

 62

2.2.2 Transition Labeling
In order to show explicit component connections and to associate
operations on the interfaces with events within the respective
Statecharts, we defined a transition labeling convention based on
the notation used in CSP for communication operations3. A
unique name must be assigned by the developer to the connection
between two communicating Statecharts4. This name is used as a
prefix for trigger (incoming) and send (outgoing) events. A
transition label in a Statechart would be defined as follows:

 _timing?timeout ^_txport!data0

This transition label can be interpreted as receiving a trigger event
timeout from connection timing followed by a send event
data0 being sent to connection txport. Trigger (also known as
receive) events are identified by a separating question mark,
whereas send events are identified by a leading caret (an existing
UML notation) and a separating exclamation mark. In Figure 3
below, two dark arrows indicate how the timing interface
between the two components is used by the send and receive
events. Connections are considered bi-directional, although it is
possible to use different connection names for each direction, if
the direction needs to be emphasized.
Transitions can contain multiple send and receive events. Multiple
receive events within a transition label can be specified by
separating them with a plus sign. Multiple send events with
different event names can be specified by separating them by a
colon.

2.2.3 Example
Figure 3 shows two communicating Statecharts for the
Transmitter and Timer components. The labels on the transitions
in each Statechart refer to events occurring via the internal timing
interface, the interface txport with the ComCh component and two
external interfaces, timer and tuser.

Figure 3: Communicating Transmitter and Timer Components

The Transmitter component starts execution in state Idle0 and
waits for user input. If a message arrives from connection tuser,
the state changes to PrepareSend0. Now, the message is sent
to the communication channel. At the same time, the Timer
component receives a start event. The component is now in the

3 In CSP, operations are written as channel1!event1 which means

that event1 is sent via channel1. A machine input operation is
written as channel2?event1 where channel2 receives an event1.

4 This is currently a limitation of our tool implementation.

state MessageSent0 and waits until either the Timer
component sends a timeout event or the ComCh component
sends a message acknowledgement ack. In case of a timeout, the
message is sent again and the timer is also started again. If an ack
is received, an event is sent to the Timer component to cancel
the timer and the user gets an acknowledgement for successful
delivery of the message. Now, the same steps may be repeated,
but with a different message sequence number, which is expressed
by the event data1 instead of data0.

In addition to modeling the respective Statecharts and defining the
interactions between them, developers can specify test
requirements, that is, directives for test generation, which
influence the size and complexity of the resulting test suite.
However, this aspect is not shown in this example.

3. Establishing a Global Behavioral Model
In the following section, we describe the steps taken in
constructing a global behavioral model, which is internal to our
tool, from multiple Statecharts that have been defined by a
developer using a commercial UML-based modeling tool. In this
global behavioral model, the significant properties, that is,
behavior, of the individual state machines are preserved.

3.1 Definition of Subsystems
A prime concern with respect to the construction of such a global
model is scalability. Apart from utilizing efficient algorithms to
compute such a global model, we defined a mechanism whereby
developers can group components into subsystems and thus help
to reduce the size of a given model. The benefit of such a
subsystem definition is that it also reflects a commonly used
integration testing strategy described in Section 4.
Our approach allows developers to specify a subsystem of
components to be tested and the interfaces to be tested. If no
subsystem definition has been specified by a developer, then all
modeled components and interfaces are considered as part of the
global model.

3.2 Composing Statecharts
3.2.1 Finite State Machines
We consider Statecharts as Mealy finite state machines; they react
upon input in form of receive events and produce output in form
of send events. Such state machines define a directed graph with
nodes (representing the states) and edges (representing the
transitions). They have one initial state and possibly several final
states. The state transitions are described by a function:
Definition: A communicating finite state machine used for
component specification is defined as A = (S, M, T, δ, s0, F),
where

S is a set of states, unique to the state machine

M ⊂ S are states marked as intermediate states
T is an alphabet of valid transition annotations, consisting of
transition type, connection name and event name. Transition
type ∈ {INT, COMM, SEND, RECEIVE}

δ: S × T → S is a function describing the transitions between
states

s0 ∈ S is the initial state

F ⊂ S is a set of final states

 63

Initial and final states are regular states. The initial state gives a
starting point for a behavior description. Final states express
possible end points for the execution of a component.
The transition annotations T contain a transition type as well as a
connection name and an event name. Transition types can be
INTernal, SEND, RECEIVE and COMMunication. Transitions of
type SEND and RECEIVE are external events sent to or received
from an external interface to the component’s state machine.
SEND and RECEIVE transitions define the external behavior of a
component and are relevant for the external behavior that can be
observed. An INTernal transition is equivalent to a ε-transition
(empty transition) of a finite state machine [7]. It is not triggered
by any external event and has no observable behavior. It
represents arbitrary internal action. COMMunication transitions
are special types of internal transitions representing interaction
between two state machines. Such behavior is not externally
observable. When composing state machines, matching pairs of
SEND and RECEIVE transitions with equal connection and event
names are merged to form COMMunication transitions. For
example, the transitions highlighted by dark arrows in Figure 3
would be such candidates.
The definition of a state machine allows transitions that contain
single actions. Every action expressed by a transition annotation is
interpreted as an atomic action. Component interaction can occur
after each action. If several actions are grouped together without
the possibility of interruption, the states between the transitions
can be marked as intermediate states. Intermediate states (M ∈ S)
are introduced to logically group substructures of states and
transitions. The semantics of intermediate states provide a
behavioral description mechanism similar to microsteps. Atomic
actions are separated into multiple consecutive steps, the
microsteps, which are always executed in one run. These
microsteps are the outgoing transitions of intermediate states. This
technique is used in our approach as part of the process of
converting the UML Statecharts into an internal representation.
The result is a set of normalized state machines.

Idle

PrepareSend

MessageSent

TimerOn

 _̂timing!start

_txport! data0

GotAck

 ^_timing!cancel

_tuser?msg

_timing?timeout

_txport?ack

Figure 4: Normalized Transmitter Component

Figure 4 shows such a state machine for a simplified version of
the Transmitter object. Two additional, intermediate states

TimerOn and GotAck have been inserted to separate the
multiple events _txport!data0:^_timing_start and
txport?ack^timing!cancel between the PrepareSend,
MessageSent and Idle states shown in Figure 2.

3.2.2 Composed State Machines
A composed state machine can be considered as the product of
multiple state machines. It is itself a state machine with the
dynamic behavior of its constituents. As such, it would react and
generate output as a result of being stimulated by events specified
for the respective state machines. Based on the above definition of
a finite state machine, the structure of a composed state machine
can be defined as follows:

Definition: Let A = (S1, M1, T1, δ1, s01, sf1) and B = (S2, M2, T2,
δ2, s02, sf2) be two state machines and S1 ∩ S2 = ∅. The composed
state machine C = A#B has the following formal definition:

A#B = (S', M', T', δ', s0', F')
S' = S1 x S2

M' ⊂ (M1 × S2) ∪ (S1 × M2)

T' ⊂ T12 ∪ TCOMM

T12 = (T1 ∪ T2) \ {SEND, RECEIVE with connections
between A and B}
TCOMM = {COMM for matching events from T1 and T2}

δ': S' × T' → S'

 δ' is generated from δ1 and δ2 with the state machine
composition schema

s0' = (s01, s02) ∈ S'.

F' = {(s1, s2) ∈ S' s1 ∈ F1 ∧ s2 ∈ F2}
For example, a global state for A#B is defined as a two-tuple (s1,
s2), where s1 is a state of A and s2 is a state of B. These two states
are referred to as part states. Initial state and final states of A#B
are element and subset of this product. The possible transition
annotations are composed from the union of T1 and T2 and new
COMMunication transitions that result from the matching
transitions. Excluded are the transitions that describe possible
matches. Either COMMunication transitions are created from
them or they are omitted, because no communication is possible.

3.2.3 Composition Method
A basic approach for composing two state machines is to generate
the product state machine by applying generative multiplication
rules for states and transitions. This leads to a large overhead,
because many unreachable states are produced that have to be
removed in later steps. The resulting product uses more resources
than necessary as well as more computation time for generation
and minimization.
Instead, our approach incorporates an incremental composition
and reduction algorithm that uses reachability computations. A
global behavioral model is created stepwise. Beginning with the
global initial state, all reachable states and all transitions in
between are computed. Every state of the composed state machine
is evaluated only once. Due to the reachability algorithm, the
intermediate data structures are at no time larger than the result of
one composition step. States and transitions within the composed
state machines that are redundant in terms of external observation
are removed. By applying the reduction algorithm using heuristic

 64

rules, it is possible to detect redundancies and to reduce the size
of a composed state machine before the next composition step.
Defined subsystems are processed independently sequentially. For
each subsystem, the composition algorithm is applied. The inputs
for the composition algorithm are data structures representing the
normalized communicating state machines of the specified
components within the current subsystem. The connection
structure between these components is part of these data
structures. The order of the composition steps determines the size
and complexity of the result for the next step and therefore the
effectiveness of the whole algorithm. The worst case for
intermediate composition products is a composition of two
components with no interaction. The maximum possible number
of states and transitions created in this case resembles the product
of two state machines.
It is therefore important to select the most suitable component for
the next composition step. The minimal requirement for the
selected component is to have a common interface with the other
component. This means that at least one connection exists to the
existing previously calculated composed state machine.
A better strategy with respect to minimizing the size of
intermediate results is to select the state machine with the highest
relative number of communication relationships or interaction
points. A suitable selection norm is the ratio of possible
communication transitions to all transitions in a state machine.
The component with the highest ratio exposes the most extensive
interface to the existing state machine and should be selected.

Table 1 : Decision Table for Computing Successor States and
Transitions

This incremental composition and reduction method also specifies
a composition schema. For every combination of outgoing
transitions of the part states, a decision table (shown in Table 1) is
used to compute the new transitions for the composed state
machine.
If a new transition leads to a global state that is not part of the
existing structure of the composed state machine, it is added to an
unmarked list. The transition is added to the global model.
Exceptions exist, when part states are marked as intermediate.
Every reachable global state is processed and every possible new
global transition is inserted into the composed state machine. The
algorithm terminates when no unmarked states remain. This
means that every reachable global state was inserted into the

model and later processed. The schema we used was based on a
composition schema developed by Sabnani et al. [16]. We
enhanced it to include extensions for connections, communication
transitions, and intermediate states.
We are assuming throughout this composition process that the
individual as well as composed state machines have deterministic
behavior. We also ensure that the execution order of all
component actions is sequential. This is important as we then
wish to use the global model to create test cases that are
dependent on a certain flow of events and actions; we want to
generate linear and sequential test cases for a given subsystem.

3.2.4 Complexity Analysis
As we are composing the product of two state machines, the worst
case complexity would be O(n2) assuming n is the number of
states in a state machine. However, our approach often does much
better than this due to the application of the heuristic reduction
rules that can help to minimize the overall size of the global
model during composition and maintain its observational
equivalence [11].
Typically, the reduction algorithm being used has linear
complexity with respect to the number of states [16]. For example,
it was reported that the algorithm was applied to a complex
communication protocol (ISDN Q.931), where it was shown that
instead of generating over 60,000 intermediate states during
composition, the reduction algorithm kept the size of the model to
approximately 1,000 intermediate states. Similar results were
reported during use of the algorithm with other systems. The
algorithm typically resulted in a reduction in the number of
intermediate states by one to two orders of magnitude.

3.2.5 Example
Taking the normalized state machine of the Transmitter
component in Figure 4 and the Timer component in Figure 3, the
composition algorithm needs to perform only one iteration to
generate the global behavioral model in Figure 5.
A global initial state Idle_Stopped is created using the initial
states of the two state machines. This state is added to the list of
unmarked states. The composition schema is now applied for
every state within this list to generate new global states and
transitions until the list is empty. The reachability algorithm
creates a global state machine comprising six states and seven
transitions. Three COMMunication transitions are generated,
which are identified by a hash mark in the transition label
showing the communication connection and event.
The example shows the application of the decision table. In the
first global state, Idle_Stopped, part state Idle has an
outgoing receive transition to PrepareSend using an external
connection. Part state Stopped has also an outgoing receive
transition to Running with a connection to the other component.
According to the Decision Rule #4 of the table, the transition with
the external connection is inserted into the composed state
machine and the other transition is ignored. The new global
receive transition leads to the global state
PrepareSend_Stop.

For the next step, both part states include transitions, which use
internal connections. They communicate via the same connection
timing and the same event - these are matching transitions.
According to Decision Rule #1 of the table, a communication

 65

transition is included in the composed state machine that leads to
the global state TimerOn_Running. These rules are applied
repeatedly until all global states are covered.

Idle_Stop

PrepareSend_Stop

TimerOn_Running

MessageSent_Running

GotAck_Running MessageSent_Timeout

_tuser?msg

_timing#start

_timer?extTimeout_txport?ack

 ^_timing#timeout

 ^_timing#cancel

 _̂txport!data0

Figure 5: Global Behavioral Model for the TransmitterTimer
Subsystem

4. Test Generation and Execution
In the preceding sections, we discussed our approach to modeling
individual or collections of components using UML Statecharts,
and establishing a global behavioral model of the composed
Statecharts. In this section, we show how this model can be used
as the basis for automatic test generation and execution during
unit and integration testing.

4.1 Unit and Integration Testing
After designing and coding each software component, developers
perform unit testing to ensure that each component correctly
implements its design and is ready to be integrated into a system
of components. This type of testing is performed in isolation from
other components and relies heavily on the design and
implementation of test drivers and test stubs. New test drivers and
stubs have to be developed to validate each of the components in
the system.
After unit testing is concluded, the individual components are
collated, integrated into the system, and validated again using yet
another set of test drivers. At each level of testing, a new set of
custom test drivers is required to stimulate the components. While
each component may have behaved correctly during unit testing, it
may not do so when interacting with other components.
Therefore, the objective of integration testing is to ensure that all
components interact and interface correctly with each other, that
is, have no interface mismatches. This is commonly referred to as
bottom-up integration testing.
Our approach aims at minimizing the testing costs, time and effort
associated with initially developing customized test drivers, test
stubs, and test cases as well as repeatedly adapting and rerunning
them for regression testing purposes at each level of integration.

4.2 Test Generation
Before proceeding with a description of the test generation and
execution steps, we would like to emphasize the following:

• Our approach generates a set of conformance tests. These test
cases ensure the compliance of the design specification with
the resulting implementation.

• It is assumed that the implementation behaves in a
deterministic and externally controllable way. Otherwise, the
generated test cases may produce incorrect results.

4.2.1 Category-Partition Method
For test generation, we use the Test Development Environment
(TDE), a product developed at Siemens Corporate Research [1].
TDE processes a test design written in the Test Specification
Language (TSL). This language is based on the category-partition
method, which identifies behavioral equivalence classes within
the structure of a system under test.
A category or partition is defined by specifying all possible data
choices that it can represent. Such choices can be either data
values or references to other categories or partitions, or a
combination of both. The data values may be string literals
representing fragments of test scripts, code, or case definitions,
which later can form the contents of a test case.
A TSL test design is now created from the global behavioral
model by mapping its states and transitions to TSL categories or
partitions, and choices. States are the equivalence classes and are
therefore represented by partitions. Each transition from the state
is represented as a choice of the category/partition. Only partitions
are used for equivalence class definitions, because paths through
the state machine are not limited to certain outgoing transitions
for a state; this would be the case when using a category. Each
transition defines a choice for the current state, combining a test
data string (the send and receive event annotations) and a
reference to the next state. A final state defines a choice with an
empty test data string.

4.2.2 Generation Procedure
A recursive, directed graph is built by TDE that has a root
category/partition and contains all the different paths of choices to
plain data choices. This graph may contain cycles depending on
the choice definitions and is equivalent to the graph of the global
state machine. A test frame, that is, test case is one instance of the
initial data category or partition, that is, one possible path from
the root to a leaf of the (potentially infinite) reachability tree for
the graph.
An instantiation of a category or partition is a random selection of
a choice from the possible set of choices defined for that
category/partition. In the case of a category, the same choice is
selected for every instantiation of a test frame. This restricts the
branching possibilities of the graph. With a partition, however, a
new choice is selected at random with every new instantiation.
This allows full branching within the graph and significantly
influences test data generation. The contents of a test case consist
of all data values associated with the edges along a path in the
graph.

4.2.3 Coverage Requirements
The TSL language provides two types of coverage requirements:

 66

• Generative requirements control which test cases are
instantiated. If no generative test requirements are defined,
no test frames are created. For example, coverage statements
can be defined for categories, partitions and choices.

• Constraining requirements cause TDE to omit certain
generated test cases. For example, there are maximum
coverage definitions, rule-based constraints for
category/partition instantiation combinations, instantiation
preconditions and instantiation depth limitations. Such test
requirements can be defined globally within a TSL test
design or attached to individual categories, partitions or
choices.

TDE creates test cases in order to satisfy all specified coverage
requirements. Input sequences for the subsystem are equivalent to
paths within the global behavioral model that represents the
subsystem, starting with the initial states. Receive transitions with
events from external connections stimulate the subsystem. Send
transitions with events to external connections define the resulting
output that can be observed by the test execution tool. All
communication is performed through events. For unit test
purposes, the default coverage criterion is that all transitions
within a Statechart must be traversed at least once. For integration
testing, only those transitions that involve component interactions
are exercised. If a subsystem of components is defined as part of
the modeling process, coverage requirements are formulated to
ensure that those interfaces, that is, transitions are tested.

4.2.4 Example
Figure 6 presents the test case that is derived from the global
behavioral model shown in Figure 5. This one test case is
sufficient to exercise the interfaces, txport, tuser and
timer defined for the components. Each line of this generic test
case format represents either an input event or an expected output
event. We chose a test case format where the stimulating events
and expected responses use the strings SEND and RECEIVE
respectively, followed by the connection and event names.
Currently, the events have no parameters, but that will be
remedied in future work.

Figure 6: Test Case for TransmitterTimer Subsystem

The Sequence Diagrams for the execution of this test case are
shown in Figure 7. Note that the external connection timer has a
possible event extTimeout. This event allows a timeout to be
triggered without having a real hardware timer available.

 : Send User
 : Transmitter : Timer : Comch : Receiver

 : Receive User

msg
start

data0

data0 msg
ackack

cancel
ack

(a) Successful Transmission

 : Send User
 : Transmitter : Timer : Comch : Receiver

 : Receive User : Hardware Timer

msg
start

data0

extTimeout

timeout

data0
data0

msg
ack

ack

cancel
ack

(b) Timed Out Transmission

Figure 7: Sequence Diagrams for the Example

4.3 Test Execution
In this section, we show how the generated test cases can be
mapped to the COM/CORBA programming model. We describe
how an executable test driver (including stubs) is generated out of
such test cases.
As seen earlier, a test case consists of a sequence of SEND and
RECEIVE events such as the following:

*SEND _tuser.msg();

*RECEIVE _txport.data0();

The intent of the SEND event is to stimulate the object under test.
To do so, the connection _tuser is mapped to an object
reference, which is stored in a variable _tuser defined in the
test case5. The event msg is mapped to a method call on the object
referenced by _tuser.

The RECEIVE event represents a response from the object under
test, which is received by an appropriate sink object. To do so, the
connection _txport is mapped to an object reference that is
stored in a variable _txport. The event data0 is mapped to a
callback, such that the object under test fires the event by calling
back to a sink object identified by the variable _txport. The
sink object thus acts as a stub for an object that would implement
the txport interface on the next higher layer of software.

5 In the current implementation of TnT, the initialization code that

instantiates the Transmitter object and stores the object reference in the
variable _tuser has to be written manually.

 67

Typically, reactive software components expose an interface that
allows interested parties to subscribe for event notification6.

tuser
:Transmitter

txport
:Sink

1. msg()
tuser

2. data0()
txport

Test Driver

Layer XLayer X+1

Figure 8: Interaction with the Object under Test

The interactions between the test execution environment and the
Transmitter object are shown in Figure 8. The TestDriver calls the
method msg() on the Transmitter object referenced through the
variable _tuser. The Transmitter object notifies the sink object
via its outgoing _txport interface.

Test case execution involving RECEIVE events not only requires
a comparison of the out-parameters and return values with
expected values, but also the evaluation of event patterns. These
event patterns specify which events are expected in response to
particular stimuli, and when they are expected to respond by. To
accomplish this, the sink objects associated with the test cases
need to be monitored to see if the required sink methods are
invoked.

5. Implementation of TnT
The TnT environment was developed at Siemens Corporate
Research in order to realize the work described above. This
design-based testing environment consists of two tools, our
existing test generation tool, TDE with extensions for UML
(TDE/UML) and TECS, the test execution tool. Thus, the name -
TnT. Our new environment interfaces directly to the UML
modeling tools, Rose2000 and Rose Real-Time 6.0, by Rational
Software. Figure 9 shows how test case generation can be initiated
from within Rational Rose.
In this section, we briefly describe our implementation strategy.

5.1 TDE/UML
Figure 10 depicts the class diagram for TDE/UML. TDE/UML
accesses both Rose applications through Microsoft COM
interfaces. In fact, our application implements a COM server, that
is, a COM component waiting for events. We implemented
TDE/UML in Java using Microsoft’s Visual J++ as it can generate
Java classes for a given COM interface. Each class and interface
of the Rose object model can thus be represented as a Java class;
data types are converted and are consistent. The Rose applications
export administrative objects as well as model objects, which
represent the underlying Rose repository.
Rose also provides an extensibility interface (REI) to integrate
external tools known as Add-Ins. A new tool, such as TDE/UML
can be installed within the Rose application as an Add-In and
invoked via the Rose Tool menu. Upon invocation, the current
Rose object model is imported including the necessary

6 In the current implementation of TnT, the initialization code for

instantiating a sink object and registering it with the Transmitter
component has to be written manually.

Statecharts, processed using the techniques described in previous
sections, and the files needed for test generation and test
execution generated.

Figure 9: Generating Tests from within Rational Rose

Figure 10: Class Diagram for TDE/UML

5.2 TECS
The Test Environment for Distributed Component-Based
Software (TECS) specifically addresses test execution. While the
test generation method described in Section 4.2 can only support
components communicating synchronously, TECS already
supports both synchronous and asynchronous communication7.
The test environment is specifically designed for testing COM or
CORBA components during unit and integration testing. The
current version of TECS supports the testing of COM
components. It can be used as part of the TnT environment or as a
standalone tool, and includes the following features:

7 With asynchronous communication, a component under test can send

response events to a sink object at any time and from any thread.

 68

• Test Harness Library – this is a C++ framework that
provides the basic infrastructure for creating the executable
test drivers.

• Test Case Compiler – it is used to generate test cases in
C++ from a test case definition such as the one illustrated in
Figure 6. The generated test cases closely co-operate with the
Test Harness Library. A regular C++ compiler is then used to
create an executable test driver out of the generated code and
the Test Harness Library. The generated test drivers are
COM components themselves, exposing the interfaces
defined through the TECS environment.

• Sink Generator – it is used to generate C++ sink classes out
of an IDL interface definition file. The generated sink classes
also closely co-operate with the Test Harness Library.

• Test Control Center – it provides the user a means of
running test cases interactively through a graphical user
interface or in batch mode. The information generated during
test execution is written into an XML-based tracefile. The
Test Control Center provides different views of this data
such as a trace view, an error list, and an execution summary.
Further views can easily be defined by writing additional
XSL style sheets.

6. Evaluating the Example
In this section, we describe an evaluation of our approach using
the alternating bit protocol example. As discussed in Section 2,
the example comprises of four components, each with its own
Statechart and connected using the interfaces depicted in Figure 1.
We are currently applying this approach to a set of products
within different Siemens business units, but results from our
experimentation are not yet available. We are aiming to examine
issues such as the fault detection capabilities of our approach.

6.1.1 Component Statistics
Table 2 shows the number of states and transitions for the four
Statecharts before and after they were imported into TDE/UML
and converted into a normalized global model by the composition
steps described in Section 3.2. We realize that the size of these
components is moderate, but we use them to highlight a number
of issues. For the example, the normalized state machine for each
component is never more than twice the size of its associated
UML Statechart.

Table 2 : Component Statistics

6.1.2 Defining an Integration Test Strategy
An important decision for the developer is the choice of an
appropriate integration test strategy. Assuming that a bottom-up
integration test strategy is to be used, a developer may wish to
integrate the Transmitter and Timer components first
followed by the Receiver and Comch components. Afterwards,
the two subsystems would be grouped together to form the

complete system. In this case, only the interface between the two
subsystems, txport, would need to be tested. Below, we show
the subsystem definitions for the chosen integration test strategy.

subsystem TransmitterTimer {

 components: Transmitter, Timer; }

subsystem ComchReceiver {

 components: Comch, Receiver; }

subsystem ABProtocol {

components: Transmitter, Timer, Comch,
Receiver;

 interface: txport; }

6.1.3 Applying the Composition and Reduction Step
The time taken for the import of these four Statecharts as well as
the execution time for the composition algorithm was negligible.
Table 3 shows the number of states/transitions created during the
composition step as well as the values for when the reduction step
is not applied. Typically, the reduction algorithm is applied after
each composition step.
The values in italic show combinations of components with no
common interface. The numbers for these combinations are very
high as would be expected. Such combinations are generally not
used as intermediate steps. The values in bold indicate the number
of states/transitions used for the above integration test strategy.
The values show how the number of states/transitions can be
substantially reduced as in the case of all four components being
evaluated together as a complete system.

Table 3: Size of Intermediate Results

For this example, when composing a model without the
intermediate reduction steps and instead reducing it after the last
composition step, the same number of states and transitions are
reached. The difference, however, lies in the size of the
intermediate results and the associated higher execution times.
While in this case, the benefit of applying the reduction algorithm
were negligible due to the size of the example, theoretically it
could lead to a significant difference in execution time.

6.1.4 Generating and Executing the Test Cases
The time taken to generate the test cases for all three subsystems
in this example took less than five seconds. TDE/UML generated
a total of 7 test cases for all three subsystems – one test case for
the subsystem TransmitterTimer, three test cases for subsystem
ComchReceiver and three test cases for ABProtocol. In contrast,
an integration approach in which all four components were tested
at once with the corresponding interfaces resulted in a total of 4

 69

tests. In this case, the incremental integration test strategy resulted
in more test cases being generated than the big-bang approach,
but smaller integration steps usually result in a more stable system
and a higher percentage of detected errors. An examination of the
generated test cases shows that they are not free of redundancy or
multiple coverage of communication transitions, but they come
relatively close to the optimum.

7. Related Work
Over the years, there have been numerous papers dedicated to the
subject of test data generation [1,3,8,13,17,19,21]. Moreover, a
number of tools have been developed for use within academia and
the commercial market. These approaches and tools have been
based on different functional testing concepts and different input
languages, both graphical and textual in nature.
However, few received any widespread acceptance from the
software development community at large. There are a number of
reasons for this. First, many of these methods and tools required a
steep learning curve and a mathematical background. Second, the
modeling of larger systems beyond single components could not
be supported, both theoretically and practically. Third, the design
notation, which would be used as a basis for the test design, was
often used only in a particular application domain, for example,
SDL is used predominantly in the telecommunications and
embedded systems domain.
However, with the widespread acceptance and use of UML
throughout the software development community as well as the
availability of suitable tools, this situation may be about to
change. Apart from our approach, we know of only one other
effort in this area. Offutt et al. [12] present an approach similar to
ours in that they generate test cases from UML Statecharts.
However, their approach has a different focus in that they examine
different coverage requirements and are only able to generate tests
for a single component. Furthermore, they do not automate the
test execution step in order for developers to automatically
generate and execute their tests. In addition, they do not
specifically address the problems and issues associated with
modeling distributed, component-based systems.

8. Conclusion and Future Work
In this paper, we described an approach that aims at minimizing
the testing costs, time and effort associated with developing
customized test drivers and test cases for validating distributed,
component-based systems.
To this end, we describe and realize our test generation and test
execution technology and integrate it with a UML-based visual
modeling tool. We show how this approach supports both the unit
and integration testing phases of the component development
lifecycle and can be applied to both COM- and CORBA-based
systems. We briefly outline our implementation strategy and
evaluate the approach using the given example. In the following
paragraphs, we focus on some of the issues resulting from this
work.
Software systems, especially embedded ones, use asynchronous
communication mechanisms with message queuing or shared
(global) messages instead of the synchronous communication
mechanism adopted by our approach. Asynchronous
communication is more complex to model, because it requires the
modeling of these queued messages and events. Furthermore,
communication buffers must be included, when modeling and

composing. Dependent on the implementation, the size of the
event queue can be limited or not. If not, mechanisms have to be
implemented to detect the overflow of queues. When generating
test cases for asynchronously communicating systems, the
complexity may quickly lead to scalability problems that would
need to be examined and addressed in future work. Methods for
asynchronously communicating systems are presented in [5,9, 20].
Component interaction is modeled by our approach using an event
(message) exchange containing no parameters and values. Future
work will result in the modeling of ‘parameterized’
communication. To achieve this, the model specification must be
enhanced with annotations about possible data values and types as
well as test requirements for these values. TDE allows test case
generation using data variations with samples out of a possible
range of parameter values. Pre- and post-conditions can constrain
valid data values. These constraints can be checked during test
execution, which extends the error detecting possibilities.
UML allows users to model Statecharts with hierarchical state
machines and concurrent states. While the global behavioral
model presented in this paper can model components with nested
states and hierarchical state machines, the internal data conditions
of these state machines (meaning the global state machine
variables) influencing the transition behavior are not supported.
Concurrent states are also not supported as yet.
In future work, we hope to support the developer with an optimal
integration test strategy. By examining the type and extent of the
interactions between components, our environment could provide
suggestions to the developer as to the order in which components
need to be integrated. This could include analyses of the
intermediate composition steps as well as an initial graphical
depiction of the systems and its interfaces. Such an approach
could significantly influence the effectiveness, efficiency and
quality of the test design.
When modeling real-time systems, timing aspects and constraints
become essential. In future work, we hope to analyze real-time
modeling and testing requirements. For instance, test cases could
be annotated with real-time constraints. Assertions or post-
conditions within the model could also contain such information
which could be checked during test execution.

9. Acknowledgements
We would like to thank Tom Murphy, the Head of the Software
Engineering Department at Siemens Corporate Research as well
as Professor Manfred Broy and Heiko Lötzbeyer at the Technical
University, Munich.

10. References
[1] Balcer M., Hasling W., Ostrand T., Automatic

Generation of Test Scripts from Formal Test
Specifications, Proceedings of ACM SIGSOFT'89 -
Third Symposium on Software Testing, Verification,
and Analysis (TAVS-3), ACM Press, pp. 257-71, June
1990.

[2] Beizer, Boris, Software Testing Techniques, Second
Edition. Van Nostrand Reinhold, 1990.

[3] Derrick J., Boiten E.A.: Testing Refinements by
Refining Tests, ZUM'98 - The Z Formal Specification
Notation, Springer-Verlag, pp. 265-83, Sept. 1998.

 70

[4] Grasso Max, Distributed Component Systems: The
New Computing Model, Application Development
Trends, pp. 43-51, Nov. 1999.

[5] Henniger O., One test case generation from
asynchronously communicating state machines, in:
Testing of Communicating Systems Vol. 10, Chapman
& Hall, Sept. 1997.

[6] Hoare C. A. R, Communicating Sequential Processes.
Prentice Hall, 1987.

[7] Hopcroft J., Ullman J., Introduction to Automata
Theory, Languages and Computation, 3rd Edition,
Addison-Wesley, 1994.

[8] Ince D.C., The Automatic Generation of Test Data,
The Computer Journal, vol. 30, no. 1, pp. 62-9,
February 1987.

[9] Kim M., Shin J., Chanson S.T., Kang S.: An Approach
for Testing Asynchronous Communicating Systems,
IEICE Transactions or Communications, Vol. E82-B,
No. 1, Jan. 1999.

[10] Matena V., Hapner M., Enterprise Java Beans
Specification, Version 1.1, Sun Microsystems, Dec.
1999.

[11] Milner R., Communication and Concurrency, Prentice-
Hall, 1st Edition, 1995.

[12] Offutt J., Abdurazik A., Generating Test Cases from
UML Specifications. Proceedings of 2nd International
Confererence on UML’99, Oct. 1999.

[13] Poston R., T: The Automatic Test Case Data
Generator, Proceedings of 4th Annual Pacific
Northwest Software Quality Assurance Conference, pp.
168-76, Sept. 1986.

[14] Rumbaugh J., Blaha M., Premerlani W., Eddy F.,
Lorensen W.: Object-Oriented Modeling and Design.
Prentice Hall, 1991.

[15] Rumbaugh J., Jacobson I., Booch G.: The Unified
Modeling Language Reference Manual, Addision-
Wesley, 1999.

[16] Sabnani K. K., Lapone Aleta M., Uyar M. Ümit: An
Algorithmic Procedure for Checking Safety Properties
of Protocols. IEEE Transactions on Communications,
Vol. 37, No. 9, Sept. 1989.

[17] Sarikaya B., Protocol Test Generation, Trace Analysis,
and Verification Techniques, Proceedings of Second
Workshop on Software Testing, Verification, and
Analysis (TAVS-2), IEEE Computer Society Press, pp.
123-30, July 1988.

[18] Szyperski Clemens: Component Software. Beyond
Object-Oriented Programming. Addison-Wesley
Longman Ltd., 1998.

[19] Tai K.C., Predicate-Based Test Generation for
Computer Programs, Proceedings of 15th International
Conference on Software Engineering (ICSE), IEEE
Computer Society Press, pp. 267-76, May 1993.

[20] Waeselynck H. and Thevenod-Fosse P., A Case Study
in Statistical Testing of Reuseable Concurrent Objects,
Proceedings of 3rd European Dependable Computing
Conference (EDCC-3), LNCS 1667, pp. 401-418,
1999.

[21] White L.J., and Sahay P.N., A Computer System for
Generating Test Data using the Domain Strategy,
Proceedings of SOFTFAIRII - 2nd Conference on
Software Development Tools, Techniques and
Alternatives, IEEE Computer Society Press, pp. 38-45,
Dec. 1985.

