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Feature Subset Selection Methods for
COCOMO Based Software Effort Estimation

Daniel Baker,Tim Menzies Member, IEEE

Abstract— This paper demonstrates the results of feature
subset selection methods for the COCOMO model. Two algo-
rithms are tested, COCOMIN and COCOMOST. COCOMIN was
designed as a ‘strawman‘ approach to feature subset selection.
COCOMOST was designed to efficiently evaluate every subset in
the attribute space instead of using heuristics because the domain
of software cost estimation is sufficiently data starved to warrant
exhaustive methods.

I. INTRODUCTION

CURRENTLY cost estimation is accomplished using mod-
els such as COCOMO [?]. These models predict the

development cost for a new software project based on past
project data. For an accurate prediction the training data needs
quantity, quality, and relevance to the new project. Unfortu-
nately this is difficult in practice and estimates are often made
using inadequate training data. Consequently, these models are
plagued with problems including highly inaccurate predictions
and the variance problem. It has been shown that the variance
can be reduced by feature subset selection methods that discard
irrelevant, redundant, noisy, and unreliable attributes. This
paper explores some of these attribute pruning techniques.

II. BACKGROUND

A. COCOMO

The case study material for this paper uses COCOMO-
format data. COCOMO (the COnstructive COst MOdel) was
originally developed by Barry Boehm in 1981 [?] and was
extensively revised in 2000 [?]. The core intuition behind
COCOMO-based estimation is that as a program grows in size,
the development effort grows exponentially. More specifically:

effort(personmonths) = a ∗
“
KLOCb

”
∗

0@Y
j

EMj

1A (1)

Here, KLOC is thousands of delivered source instructions.
KLOC can be estimated directly or via a function point
estimation. Function points are a product of five defined
data components (inputs, outputs, inquiries, files, external
interfaces) and 14 weighted environment characteristics (data
comm, performance, reusability, etc.) [?], [?]. A 1,000 line
Cobol program would typically implement about 14 function
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points, while a 1,000-line C program would implement about
seven1.

In Equation ??, EMj is one of effort multipliers such
as cplx (complexity) or pcap (programmer capability). In
order to model the effects of EMj on development effort,
Boehm proposed reusing numeric values which he generated
via regression on historical data for each value of EMi.

In practice, effort data forms exponential distributions. Ap-
pendix B describes methods for using such distributions in
effort modeling.

Note that in COCOMO 81, Boehm identified three common
types of software: embedded, semi-detached, and organic.
Each has their own characteristic “a” and “b” (see Figure ??).
COCOMO-II ignores these distinctions. This study used data
sets in both the COCOMO 81 and COCOMO-II format.
For more on the differences between COCOMO 81 and
COCOMO-II, see Appendix A.

B. Data

The software project data we used in this study came
from two sources (see Figure ??). Coc81 is the original
COCOMO data used by Boehm to calibrate COCOMO 81.
Nasa93 comes from a NASA-wide database recorded in
the COCOMO 81 format. This data has been in the public
domain for several years but few have been aware of it. It
can now be found on-line in several places including the
PROMISE (Predictor Models in Software Engineering) web
site2. Nasa93 was originally collected to create a NASA-
tuned version of COCOMO, funded by the Space Station
Freedom Program. Nasa93 contains data from six NASA
centers including the Jet Propulsion Laboratory. Hence, it
covers a very wide range of software domains, development
processes, languages, and complexity as well as fundamental
differences in culture and business practices between each
center. All of these factors contribute to the large variances
observed in this data set.

When the nasa93 data was collected, it was required that
there be multiple interviewers with one person leading the
interview and one or two others recording and checking
documentation. Each data point was cross-checked with either
official records or via independent subjective inputs from other
project personnel who fulfilled various roles on the project.
After the data was translated into the COCOMO 81 format,
the data was reviewed with those who originally provided
the data. Once sufficient data existed the data was analyzed

1http://www.qsm.com/FPGearing.html
2http://promise.site.uottawa.ca/SERepository/ and

http://unbox.org/wisp/trunk/cocomo/data.
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Mode a b notes
Organic 3.2 1.05 projects from relatively small software

teams develop software in a highly fa-
miliar, in-house environment.

Embedded 2.8 1.2 projects operating within (is embedded
in) a strongly coupled complex of hard-
ware, software, regulations, and opera-
tional procedures.

Semi-Detached 3.0 1.12 An intermediary mode between organic
and embedded.

Fig. 1. Standard COCOMO 81 development modes.

to identify outliers and the data values were re-verified with
the development teams once again if deemed necessary. This
typically required from two to four trips to each NASA center.
All of the supporting information was placed in binders, which
we still on occasion reference even today.

Using Boehm’s COCOMO-I “local calibration“ the nasa93
data has been shown to contain large deviations due to the wide
variety of projects in that data set, and not poor data collection.
Our belief is that nasa93 was collected using methods equal
to, or better, than standard industrial practice. If so, then
industrial data would suffer from deviations equal to or lager
than those seen in the nasa93 data.

C. Performance Measures

The performance of models generating continuous output
can be assessed in many ways, including PRED(30), MMRE,
correlation, etc. PRED(30) is a measure calculated from the
relative error, or RE, which is the relative size of the difference
between the actual and estimated value. One way to view
these measures is to say that training data contains records
with variables 1, 2, 3, .., N and performance measures add
additional new variables N + 1, N + 2, ....

The magnitude of the relative error, or MRE, is the absolute
value of that relative error:

MRE = |predicted− actual|/actual

The mean magnitude of the relative error, or MMRE, is the
average percentage of the absolute values of the relative errors
over an entire data set. MMRE results were shown in Figure ??
in the mean% average test error column. Given T tests,
MMRE is calculated as follows:

MMRE =
100

T

TX
i

|predictedi − actuali|
actuali

PRED(N) reports the average percentage of estimates that
were within N% of the actual values. Given T tests, then:

PRED(N) =
100

T

TX
i


1 if MREi ≤ N

100
0 otherwise

For example, a PRED(30)=50% means that half the estimates
are within 30% of the actual.

Another performance measure of a model predicting nu-
meric values is the correlation between predicted and actual
values. Correlation ranges from +1 to -1 and a correlation of
+1 means that there is a perfect positive linear relationship

between variables. Appendix C shows how to calculate corre-
lation.

All these performance measures (correlation, MMRE and
PRED) address subtly different issues. Overall, PRED mea-
sures how well an effort model performs while MMRE mea-
sures poor performance. A single large mistake can skew the
MMREs and not effect the PREDs. Shepperd and Schofield
comment that:

MMRE is fairly conservative with a bias against
overestimates while PRED(30) will identify those
prediction systems that are generally accurate but
occasionally wildly inaccurate [?, p736].

Since they measure different aspects of model performance,
COSEEKMO uses combinations of PRED, MMRE, and cor-
relation (using the methods described later in this paper).

III. COCOMIN

FOLLOWING the slow but steady success of
COSEEKMO, it becomes necessary to find a similarly

accurate algorithm which is fast enough to be used by business
users in the real world. We decided to begin the search for such
an algorithm using a minimal approach, that is, a feature subset
selection algorithm that used a greedy search to minimize
evaluations of the attribute space. This algorithm was named
COCOMIN because it was a minimal approach to feature
subset selection on the COCOMO model. Pseudocode for
COCOMIN is in Figure ??. The code can be found at http:
//unbox.org/wisp/trunk/cocomost/cocomin.
We decided to rank the attributes using correlation and to
use the ranked results as the order to grow the attribute set
in the case of a forward select greedy search, or prune the
set in the case of a backward elimination greedy search.
At each step the attribute set is evaluated with the MMRE,
Pred(30), deviation, and correlation after using COCOMO
regression with the attribute set in question. If the change
is considered an improvement then it is kept and the search
continues, otherwise it stops. We introduced a stale variable
that could be set to allow for the search to continue even
without improvement.

Early results showed that this algorithm wasn’t very ac-
curate. Also, by noticing that the results tended to improve
with higher stale values, we reasoned that the attribute space
needed more exploration. Finally, with a dataset as small as
the COC81 and NASA93 datasets, the importance of heuristics
to prune the state space explosion were examined. Next we
decided to build an efficient algorithm that evaluated all 32,768
attribute combinations.

IV. COCOMOST

THE COCOMOST algorithm, as outlined in Figure ??,
uses feature subset selection to prune irrelevant, redun-

dant, noisy, and unreliable attributes from the COCOMO
model. The code begins at http://unbox.org/wisp/
trunk/cocomost/cocomost. It executes a complete
search of the attribute space, evaluating attribute sets using
local calibration. Thus, it is a “wrapper“ attribute selection
technique instead of a “filter“ because it evaluates using the
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Data
sources

Coc81:63 records in the COCOMO 81 format. Source: [?, p496-497].
Download from http://unbox.org/wisp/trunk/cocomo/data/coc81modeTypeLangType.csv.

Nasa93: 93 NASA records in the COCOMO 81 format.
Download from http://unbox.org/wisp/trunk/cocomo/data/nasa93.csv.

CocII: 161 records in the COCOMO II format from the COCOMO consortium (co-ordinated by USC). This data is not in the public domain.

Data
subsets

All: selects all records from a particular source; e.g. ”coc81 all”.
Category: is a NASA-specific designation selecting the type of project; e.g. avionics, data capture, etc.
Dev: indicates the development methodology; e.g. div.waterfall.
DevEnd: shows the last year of the software project.
Fg: selects either “f” (flight) or “g” (ground) software.
Kind: selects records relating to the development platform; max= mainframe and mic= microprocessor.
Lang: selects records about different development languages.
Project and center: nasa93 designations selecting records relating to where the software was built and the name of the project.
Mode=e:

selects records relating to the embedded COCOMO 81 development mode. The different COCOMO 81 development models were
described in Figure ??.

Mode=o:
selects COCOMO 81 organic mode records.

Mode=sd:
selects COCOMO 81 semi-detached mode records.

Org: is a cocII designation showing what organization provided the data.
Size: is a cocII specific designation grouping the records into (e.g.) those around 100KLOC.
Type: selects different coc81 designations and include “bus” (for business application) or “sys” (for system software).
Year: is a nasa93 term that selects the development years, grouped into units of five; e.g. 1970,1971,1972,1973,1974 are labeled “1970”.

Fig. 2. Data sets (top) and parts (bottom) of the data used in this study.

target learner [?]. However, it shares several of the advantages
of a filter. Unlike most wrappers, COCOMOST is fast enough
to search the entire attribute space instead of using heuristics
to limit the state space explosion. This introduces the vulner-
ability that every attribute beyond the 15 used in this study

for attribute in rankedList
newSet = bestSet + attribute
if (search==backward)
tmpSet=inverse(newSet)

else
tmpSet = newSet

oldScore = newScore
results = LC(train, train, tmpSet)
newScore = results.eval
if (newScore better than oldScore)
bestSet = newSet
staleCount = stale

else
newScore = oldScore
staleCount--

if (staleCount < 1)
exit for

next attribute
if (search==backward)
bestSet=inverse(bestSet)

return bestSet

Fig. 3. The cocomin algorithm which builds a subset of attributes using a
greedy search guided by an attribute ranking.

attributes = null
bestMMRE = LC(train, attributes)
bestAttributes = null
for attributes in 2ˆ15
newMMRE = LC(train, attributes)
if newMMRE > bestMMRE

bestMMRE = newMMRE
bestAttributes = attributes

return bestAttributes

Fig. 4. Cocomost performs a complete search over the attribute space and
evaluates the attribute sets using the target learner: COCOMO-based local
calibration.

will double COCOMOST’s execution time.

V. EXPERIMENTAL DESIGN

CONSIDERING the small amount of data available,
we decided to use n-fold cross validation to compare

the COCOMIN and COCOMOST learners against standard
COCOMO-based local calibration as shown in Figure ??. The
code for this experiment can be found at http://unbox.
org/wisp/trunk/cocomost/compete.

VI. QUARTILE CHARTS OF PERFORMANCE DELTAS

One method we used to assess the experimental results
was to create quartile charts of the performance deltas of

for data in dataSets
num = countRecords(data)
for i in 1 to num
test = data.i
train = data - test
attr = (all COCOMO 81 attributes)
results = LC(test, train, attr)
print variables and results
attr = cocomost(train)
results = LC(test, train, attr)
print variables and results
for attr in COCOMO_81_attributes
rank correlation using LC(train, train, attr)
order += sorted list of ranked attrs

for search in "forward backward"
for stale in "0 1 2 4 8 16"
for eval in "mmre sd_mre pred30 corr"
attr=cocomin(test,train,search,stale,eval,order)
results = LC(test, train, attrs)
print variables and results

Fig. 5. This experiment benchmarks standard COCOMO-based local
calibration against local calibration that uses cocomost to perform feature
subset selection, or local calibration that uses each customization of cocomin
for feature subset selection.
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the learners. We prefer quartile charts of performance deltas
to other summarization methods for M*N studies. Firstly,
they offer a very succinct summary of a large number of
experiments. Secondly, they are a non-parametric display; i.e.
they make no assumptions about the underling distribution.
Standard practice in data mining is to compare the mean
performance of different methods using t-test [?]. T-tests are a
parametric method that assume that the underling population
distribution is a Gaussian. Recent results suggest that there are
many statistical issues left to explore regarding how to best to
apply those t-tests for summarizing M*N-way studies [?].

The performance deltas were computed using simple sub-
traction, defined as follows. A positive performance delta for
method X means that method X has out-performed some other
method in one comparison. Using performance deltas, we say
that the best method is the one that generates the largest
performance deltas over all comparisons.

The performance deltas for each method were sorted and
displayed as quartile charts. To generate these charts, the
performance deltas for some method were sorted to find the
lowest and highest quartile as well as the median value; e.g.

lowest quartilez }| {
−59|{z}
min

,−19,−19,−16,−14,−10, −10|{z}
median

, 5, 14, 39,

highest quartilez }| {
42, 62, 69|{z}

max

In a quartile chart, the upper and lower quartiles are marked
with black lines; the median is marked with a black dot; and
vertical bars are added to mark (i) the zero point and (ii) the
minimum possible value and (iii) the maximum possible value
(in our case, -100% and 100%). The above numbers would
therefore be drawn as follows:

−100% u 100%

method median

cocomin-f-0-sd-mre 4.9 -808.2% u 808.2%

cocomin-f-0-pred30 4.9 -808.2% u 808.2%

cocomin-f-0-mmre 4.9 -808.2% u 808.2%

cocomin-f-0-corr 4.9 -808.2% u 808.2%

cocomin-f-1-pred30 4.1 -808.2% u 808.2%

cocomin-f-1-sd-mre 2.2 -808.2% u 808.2%

cocomin-f-1-mmre 1.7 -808.2% u 808.2%

cocomin-f-2-pred30 1.5 -808.2% u 808.2%

cocomin-b-16-sd-mre 0.0 -808.2% u 808.2%

cocomin-b-8-sd-mre 0.0 -808.2% u 808.2%

cocomin-f-4-pred30 0.0 -808.2% u 808.2%

cocomin-b-4-sd-mre 0.0 -808.2% u 808.2%

cocomin-f-4-sd-mre 0.0 -808.2% u 808.2%

cocomin-f-1-corr 0.3 -808.2% u 808.2%

cocomin-f-2-sd-mre 0.0 -808.2% u 808.2%

cocomin-f-16-sd-mre 0.0 -808.2% u 808.2%

cocomin-f-8-sd-mre 0.0 -808.2% u 808.2%

cocomin-f-8-pred30 0.0 -808.2% u 808.2%

cocomin-f-16-pred30 0.0 -808.2% u 808.2%

cocomin-b-16-pred30 0.0 -808.2% u 808.2%

cocomin-b-2-sd-mre 0.0 -808.2% u 808.2%

cocomin-f-2-mmre 0.0 -808.2% u 808.2%

cocomin-b-8-pred30 0.0 -808.2% u 808.2%

cocomin-b-4-pred30 0.0 -808.2% u 808.2%

cocomin-b-1-sd-mre 0.0 -808.2% u 808.2%

cocomin-b-1-pred30 0.0 -808.2% u 808.2%

cocomin-f-2-corr 0.0 -808.2% u 808.2%

cocomin-b-8-mmre -0.3 -808.2% u 808.2%

cocomin-b-16-mmre -0.5 -808.2% u 808.2%

cocomin-f-8-corr 0.0 -808.2% u 808.2%

cocomin-f-4-corr 0.0 -808.2% u 808.2%

cocomin-f-16-corr 0.0 -808.2% u 808.2%

cocomin-b-8-corr 0.0 -808.2% u 808.2%

cocomin-b-16-corr 0.0 -808.2% u 808.2%

cocomin-b-0-sd-mre 0.0 -808.2% u 808.2%

cocomin-b-0-pred30 0.0 -808.2% u 808.2%

cocomin-b-0-mmre 0.0 -808.2% u 808.2%

cocomin-b-0-corr 0.0 -808.2% u 808.2%

cocomin-b-2-pred30 0.0 -808.2% u 808.2%

cocomin-b-2-corr 0.0 -808.2% u 808.2%

LC -1.3 -808.2% u 808.2%

cocomin-b-4-corr 0.0 -808.2% u 808.2%

cocomin-b-1-mmre 0.0 -808.2% u 808.2%

cocomin-b-1-corr 0.0 -808.2% u 808.2%

cocomin-b-4-mmre -0.2 -808.2% u 808.2%

cocomin-f-4-mmre -0.7 -808.2% u 808.2%

cocomin-b-2-mmre -0.6 -808.2% u 808.2%

cocomin-f-8-mmre -0.7 -808.2% u 808.2%

cocomin-f-16-mmre -0.7 -808.2% u 808.2%

cocomost -2.0 -808.2% u 808.2%

VII. RESULTS

Figure ?? shows the performance deltas of LC, COCO-
MOST, and each variation of COCOMIN. COCOMOST per-
forms the best but by a slight margin. In addition, some
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variations of COCOMIN outperformed standard COCOMO-
based local calibration. Another depiction of these slight yet
clear differences can be seen in Figure ??.

Over all 19 datasets, COCOMIN works best when a forward
select is used, the Stale factor is set to 16, correlation is
used to rank the attributes, and MMRE is used to evaluate
improvement. For the rest of this paper we will consider
COCOMIN as this variation only. In Figure ??, one can also

Average # of Attributes Used: 13.6

Average # of Dropped Attributes: 1.4

Percentage of Times Each Attribute is Dropped:
rely : 2.4%
data : 11.0%
cplx : 9.0%
time : 0.5%
stor : 12.9%
virt : 1.4%
turn : 64.3%
acap : 1.0%
aexp : 0.0%
pcap : 0.0%
vexp : 0.0%
lexp : 1.9%
modp : 19.0%
tool : 17.1%
sced : 0.5%

Fig. 6. Attributes Dropped by COCOMOST for the COC81 data.

Average # of Attributes Used: 8.1

Average # of Dropped Attributes: 6.9

Percentage of Times Each Attribute is Dropped:
rely : 34.1%
data : 5.3%
cplx : 30.9%
time : 9.7%
stor : 67.0%
virt : 30.9%
turn : 15.0%
acap : 25.0%
aexp : 32.6%
pcap : 68.0%
vexp : 61.5%
lexp : 72.2%
modp : 75.6%
tool : 82.9%
sced : 79.4%

Fig. 7. Attributes Dropped by COCOMOST for the NASA93 data.

Average # of Attributes Used: 13.6

Average # of Dropped Attributes: 1.4

Percentage of Times Each Attribute is Dropped:
rely : 1.0%
data : 14.3%
cplx : 13.8%
time : 10.0%
stor : 2.4%
virt : 1.9%
turn : 36.2%
acap : 11.4%
aexp : 0.5%
pcap : 2.4%
vexp : 7.1%
lexp : 7.1%
modp : 12.4%
tool : 13.8%
sced : 01.0%

Fig. 8. Attributes Dropped by COCOMIN for the COC81 data.

observe the tendency of higher stale values to outperform
lower stale values, except with backward select searches. A
backward select search with a low stale value would tend to
keep most of the attributes and thus be similar to LC which
explains this phenomenon.

It is clear from Figure ?? and Figure ?? that the effec-
tiveness of feature subset selection, at least as seen from the
COCOMOST and COCOMIN algorithms, is highly dependent
on the underlying data.

Figure ?? shows that both COCOMOST and COCOMIN
were able to reduce the deviation of the mean relative error.
Interestingly, Figure ?? and Figure ?? both show that COCO-
MOST and COCOMIN tend to help in the worse cases, as
the deviation and mmre rise, but don’t make improvements
on the better predictions. Note that this is consistent with the
observation that the effectiveness of feature subset selection is
highly dependent on the underlying data, i.e. the learners had a
positive impact on the Nasa93 data but not on the Coc81 data.
In addition, the effectiveness of the feature subset selectors on
the worse estimates but not the better estimates explains the
higher Pred30 values for LC seen in Figure ??.

Information about how many and which attributes were
dropped by COCOMOST can be found in Figure ?? and
Figure ??, and Figure ?? and Figure ?? for COCOMIN. Note
that the attributes from the NASA93 dataset were discarded
far more often than those from the COC81 dataset.

Finally, in this experiment COCOMOST took about 2 sec-
onds for each execution while COCOMIN took about 27. This
is because the core of COCOMOST was written in C++ and
optimized while COCOMIN uses lots of bash and gawk calls.
Local Calibration took less than a second for each execution.

VIII. CONCLUSION

THE results show that feature subset selection can improve
upon the error and deviation of COCOMO estimates,

but this effectiveness is highly dependent on the underlying
data. If the effort multipliers aren’t properly correlated to the
output then it is more likely that a feature subset selector
will find improvement by discarding them. In addition, this
improvement was observed on the datasets that gave the worst
errors and deviations but not the datasets with better error

Average # of Attributes Used: 7.7

Average # of Dropped Attributes: 7.3

Percentage of Times Each Attribute is Dropped:
rely : 36.8%
data : 45.5%
cplx : 41.0%
time : 6.1%
stor : 52.2%
virt : 21.0%
turn : 16.6%
acap : 22.5%
aexp : 35.2%
pcap : 60.2%
vexp : 58.7%
lexp : 65.3%
modp : 93.9%
tool : 88.0%
sced : 82.5%

Fig. 9. Attributes Dropped by COCOMIN for the NASA93 data.
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Fig. 10. Mean Magnitude of Relative Error
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Fig. 11. Standard Deviation of Magnitude of Relative Error
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Fig. 12. PRED(30)

rates and deviations, standard COCOMO showed better Pred30
values due to this effect. In addition, more complete searches
of the attribute space were shown to be more effective than
limited searches. COCOMOST was found to have the best
MMRE of the learners used in the experiment, and was also
shown to be effective at lowering the standard devation of the
errors which will make it easier to distinguish rival methods.
Finallly, while COCOMOST ran quickly in this set up it
clearly won’t scale well to growing numbers of attributes in
the dataset.

IX. FUTURE WORK

THERE is a lot of work to be done in improving software
cost estimation models. Some possibilities suggested by

this research include:
• Feature Subset Selection using other evaluation methods

and learners.
• Expanding upon COCOMOST with more data mining

techniques such as bagging.

• More comparisons of learners using COCOMOST as a
“strawman“ FSS model.

• Due to COCOMOST’s fairly quick runtime it could be
used by WRAPPER algorithms such as COSEEKMO.
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APPENDIX

APPENDIX A - COCOMO-I vs COCOMO-II: In CO-
COMO II, the exponential COCOMO 81 term b was expanded
into the following expression:

b + 0.01 ∗
X

j

SFj (2)

where b is 0.91 in COCOMO II 2000, and SFj is one
of five scale factors that exponentially influence effort. Other
changes in COCOMO II included dropping the development
modes of Figure ?? as well as some modifications to the list of
effort multipliers and their associated numeric constants (see
appendix E).

APPENDIX B - Calculating Correlation: Given a test set
of size T , correlation is calculated as follows:

p̄ =
PT

I predictedi

T ā =
PT

I actuali
T

Sp =
PT

i (predictedi−p̄)2

T−1 Sa =
PT

i (actuali−ā)2

T−1

Spa =
PT

i (predictedi−p̄)(actuali−ā)

T−1

corr = Spa/
√

Sp ∗ Sa

APPENDIX C - Local Calibration: This approach as-
sumes that a matrix Di,j holds:
• The natural log of the KLOC estimates;
• The natural log of the actual efforts for projects i ≤j≤ t;
• The natural logarithm of the cost drivers (the scale factors

and effort multipliers) at locations 1 ≤ i ≤ 15 (for
COCOMO 81) or 1 ≤ i ≤ 22 (for COCOMO-II).

With those assumptions, Boehm [?] shows that for COCOMO
81, the following calculation yields estimates for “a” and “b”
that minimizes the sum of the squares of residual errors:

EAFi =
PN

j Di,j

a0 = t
a1 =

Pt
i KLOCi

a2 =
Pt

i(KLOCi)
2

d0 =
Pt

i (actuali − EAFi)
d1 =

Pt
i ((actuali − EAFi) ∗KLOCi)

b = (a0d1 − a1 ∗ d0)/(a0a2 − a2
1)

a3 = (a2d0 − a1d1)/(a0a2 − a2
1)

a = ea3


(3)

APPENDIX D - COCOMO Numerics: Figure ?? shows
the COCOMO 81 EMj (effort multipliers). The effects of that
multiplier on the effort are shown in Figure ??. Increasing the
upper and lower groups of variables will decrease or increase
the effort estimate, respectively.

Figure ?? shows the COCOMO 81 effort multipliers of
Figure ??, rounded and simplified to two significant figures.

Figure ??, Figure ?? and Figure ?? show the COCOMO-
II values analogies to Figure ??, Figure ?? and Figure ??
(respectively).

upper: acap: analysts capability
increase pcap: programmers capability
these to aexp: application experience
decrease modp: modern programming practices
effort tool: use of software tools

vexp: virtual machine experience
lexp: language experience

middle sced: schedule constraint
lower: data: data base size
decrease turn: turnaround time
these to virt: machine volatility
increase stor: main memory constraint
effort time: time constraint for cpu

rely: required software reliability
cplx: process complexity

Fig. 13. COCOMO 81 effort multipliers.

very very extra
low low nominal high high high

upper ACAP 1.46 1.19 1.00 0.86 0.71
(increase PCAP 1.42 1.17 1.00 0.86 0.70
these to AEXP 1.29 1.13 1.00 0.91 0.82
decrease MODP 1.2 1.10 1.00 0.91 0.82
effort) TOOL 1.24 1.10 1.00 0.91 0.83

VEXP 1.21 1.10 1.00 0.90
LEXP 1.14 1.07 1.00 0.95

middle SCED 1.23 1.08 1.00 1.04 1.10
lower DATA 0.94 1.00 1.08 1.16
(increase TURN 0.87 1.00 1.07 1.15
these to VIRT 0.87 1.00 1.15 1.30
increase STOR 1.00 1.06 1.21 1.56
effort) TIME 1.00 1.11 1.30 1.66

RELY 0.75 0.88 1.00 1.15 1.40
CPLX 0.70 0.85 1.00 1.15 1.30 1.65

Fig. 14. The precise COCOMO 81 effort multiplier values.

very very extra
low low nominal high high high

upper ACAP 1.2 1.1 1.00 0.9 0.8
(increase PCAP 1.2 1.1 1.00 0.9 0.8
these to AEXP 1.2 1.1 1.00 0.9 0.8
decrease MODP 1.2 1.1 1.00 0.9 0.8
effort) TOOL 1.2 1.1 1.00 0.9 0.8

VEXP 1.2 1.1 1.00 0.9
LEXP 1.2 1.1 1.00 0.9

middle SCED 1.2 1.1 1.00 1.1 1.2
lower DATA 0.9 1.00 1.1 1.2
(increase TURN 0.9 1.00 1.1 1.2
these to VIRT 0.9 1.00 1.1 1.2
increase STOR 1.00 1.1 1.2 1.3
effort) TIME 1.00 1.1 1.2 1.3

RELY 0.8 0.9 1.00 1.1 1.2
CPLX 0.8 0.9 1.00 1.1 1.2 1.3

Fig. 15. Rounded COCOMO 81 effort multiplier values.

scale prec: have we done this before?
factors flex: development flexibility
(exponentially resl: any risk resolution activities?
decrease team: team cohesion
effort) pmat: process maturity
upper acap: analyst capability
(linearly pcap: programmer capability
decrease pcon: programmer continuity
effort) aexp: analyst experience

pexp: programmer experience
ltex: language and tool experience
tool: tool use
site: multiple site development

sced: length of schedule
lower rely: required reliability
(linearly data: secondary memory storage requirements
increase cplx: program complexity
effort) ruse: software reuse

docu: documentation requirements
time: runtime pressure
stor: main memory requirements

pvol: platform volatility

Fig. 16. The COCOMO II scale factors and effort multipliers.
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extra very very extra
low low low nominal high high high

scale prec 6.20 4.96 3.72 2.48 1.24 0.00
factors flex 5.07 4.05 3.04 2.03 1.01 0.00
(exponentially resl 7.07 5.65 4.24 2.83 1.41 0.00
decreases team 5.48 4.38 3.29 2.19 1.10 0.00
effort) pmat 7.80 6.24 4.68 3.12 1.56 0.00
upper acap 1.42 1.19 1.00 0.85 0.71
(linearly pcap 1.34 1.15 1.00 0.88 0.76
decreases pcon 1.29 1.12 1.00 0.90 0.81
effort) aexp 1.22 1.10 1.00 0.88 0.81

pexp 1.19 1.09 1.00 0.91 0.85
ltex 1.20 1.09 1.00 0.91 0.84
tool 1.17 1.09 1.00 0.90 0.78
site 1.22 1.09 1.00 0.93 0.86 0.80
sced 1.43 1.14 1.00 1.00 1.00

lower rely 0.82 0.92 1.00 1.10 1.26
(linearly data 0.90 1.00 1.14 1.28
increases cplx 0.73 0.87 1.00 1.17 1.34 1.74
effort) ruse 0.95 1.00 1.07 1.15 1.24

docu 0.81 0.91 1.00 1.11 1.23
time 1.00 1.11 1.29 1.63
stor 1.00 1.05 1.17 1.46
pvol 0.87 1.00 1.15 1.30

Fig. 17. The precise COCOMO II numerics.

extra very very extra
low low low nominal high high high

Scale PREC 6.3 5.1 3.8 2.5 1.3 0
Factors FLEX 6.3 5.1 3.8 2.5 1.3 0

RESL 6.3 5.1 3.8 2.5 1.3 0
TEAM 6.3 5.1 3.8 2.5 1.3 0
PMAT 6.3 5.1 3.8 2.5 1.3 0

upper ACAP 1.3 1.1 1.0 0.9 0.8
PCAP 1.3 1.1 1.0 0.9 0.8
PCON 1.3 1.1 1.0 0.9 0.8
AEXP 1.3 1.1 1.0 0.9 0.8
PEXP 1.3 1.1 1.0 0.9 0.8
LTEX 1.3 1.1 1.0 0.9 0.8
TOOL 1.3 1.1 1.0 0.9 0.8
SITE 1.3 1.1 1.0 0.9 0.8 0.8
SCED 1.3 1.1 1.0 0.9 0.8

lower RELY 0.8 0.9 1.0 1.1 1.3
DATA 0.9 1.0 1.1 1.3
CPLX 0.8 0.9 1.0 1.1 1.3 1.5
RUSE 0.9 1.0 1.1 1.3 1.5
DOCU 0.8 0.9 1.0 1.1 1.3
TIME 1.0 1.1 1.3 1.5
STOR 1.0 1.1 1.3 1.5
PVOL 0.9 1.0 1.1 1.3

Fig. 18. The rounded COCOMO II numerics.


