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Feature Subset Selection Methods for
COCOMO Based Software Effort Estimation

Daniel Baker,Tim Menzies Member, IEEE

Abstract— This paper demonstrates the results of feature
subset selection methods for the COCOMO model.

I. INTRODUCTION

IN 2005...(START WITH QUOTE AND REFERENCE
ABOUT MONEY LOST FROM INACURRATE SOFT-

WARE COST ESTIMATION/BUDGETING) Currently cost
estimation is accomplished using models such as CO-
COMO [1], (LIST MANY OTHER METHODS WITH REF-
ERENCES). These models predict the development cost for
a new software project based on past project data. For an
accurate prediction the training data needs quantity, qual-
ity, and relevance to the new project(ADD REFERENCES).
Unfortunately this is difficult in practice and estimates are
often made using inadequate training data. Consequently, these
models are plagued with problems including highly inaccu-
rate predictions(FIND BEST REFERENCE) and the variance
problem(INSERT REFERENCE). It has been shown that the
variance can be reduced by feature subset selection meth-
ods that discard irrelevant, redundant, noisy, and unreliable
attributes(LOTS OF REF HERE). This paper explores some
of these attribute pruning techniques.

II. BACKGROUND

A. COCOMO

The case study material for this paper uses COCOMO-
format data. COCOMO (the COnstructive COst MOdel) was
originally developed by Barry Boehm in 1981 [1] and was
extensively revised in 2000 [3]. The core intuition behind
COCOMO-based estimation is that as a program grows in size,
the development effort grows exponentially. More specifically:

effort(personmonths) = a ∗
“
KLOCb

”
∗

0@Y
j

EMj

1A (1)

Here, KLOC is thousands of delivered source instructions.
KLOC can be estimated directly or via a function point
estimation. Function points are a product of five defined
data components (inputs, outputs, inquiries, files, external
interfaces) and 14 weighted environment characteristics (data
comm, performance, reusability, etc.) [2], [3]. A 1,000 line
Cobol program would typically implement about 14 function
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points, while a 1,000-line C program would implement about
seven1.

In Equation 1, EMj is one of effort multipliers such as
cplx (complexity) or pcap (programmer capability). In order
to model the effects of EMj on development effort, Boehm
proposed reusing numeric values which he generated via
regression on historical data for each value of EMi.

In practice, effort data forms exponential distributions. Ap-
pendix B describes methods for using such distributions in
effort modeling.

Note that in COCOMO 81, Boehm identified three common
types of software: embedded, semi-detached, and organic.
Each has their own characteristic “a” and “b” (see Figure 1).
COCOMO-II ignores these distinctions. This study used data
sets in both the COCOMO 81 and COCOMO-II format.
For more on the differences between COCOMO 81 and
COCOMO-II, see Appendix A.

B. Data

The software project data we used in this study came from
two sources (see Figure 2). Coc81 is the original COCOMO
data used by Boehm to calibrate COCOMO 81. Nasa93
comes from a NASA-wide database recorded in the COCOMO
81 format. This data has been in the public domain for
several years but few have been aware of it. It can now be
found on-line in several places including the PROMISE (Pre-
dictor Models in Software Engineering) web site2. Nasa93
was originally collected to create a NASA-tuned version of
COCOMO, funded by the Space Station Freedom Program.
Nasa93 contains data from six NASA centers including the
Jet Propulsion Laboratory. Hence, it covers a very wide range
of software domains, development processes, languages, and
complexity as well as fundamental differences in culture and
business practices between each center. All of these factors
contribute to the large variances observed in this data set.

When the nasa93 data was collected, it was required that
there be multiple interviewers with one person leading the
interview and one or two others recording and checking
documentation. Each data point was cross-checked with either
official records or via independent subjective inputs from other
project personnel who fulfilled various roles on the project.
After the data was translated into the COCOMO 81 format,
the data was reviewed with those who originally provided
the data. Once sufficient data existed the data was analyzed
to identify outliers and the data values were re-verified with

1http://www.qsm.com/FPGearing.html
2http://promise.site.uottawa.ca/SERepository/ and

http://unbox.org/wisp/trunk/cocomo/data.
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Mode a b notes
Organic 3.2 1.05 projects from relatively small software

teams develop software in a highly fa-
miliar, in-house environment.

Embedded 2.8 1.2 projects operating within (is embedded
in) a strongly coupled complex of hard-
ware, software, regulations, and opera-
tional procedures.

Semi-Detached 3.0 1.12 An intermediary mode between organic
and embedded.

Fig. 1. Standard COCOMO 81 development modes.

the development teams once again if deemed necessary. This
typically required from two to four trips to each NASA center.
All of the supporting information was placed in binders, which
we still on occasion reference even today.

Using Boehm’s COCOMO-I “local calibration“ the nasa93
data has been shown to contain large deviations due to the wide
variety of projects in that data set, and not poor data collection
(ADD REFERENCE TO COSEEKMO PAPER). Our belief is
that nasa93 was collected using methods equal to, or better,
than standard industrial practice. If so, then industrial data
would suffer from deviations equal to or lager than those seen
in the nasa93 data.

C. Performance Measures

The performance of models generating continuous output
can be assessed in many ways, including PRED(30), MMRE,
correlation, etc. PRED(30) is a measure calculated from the
relative error, or RE, which is the relative size of the difference
between the actual and estimated value. One way to view
these measures is to say that training data contains records
with variables 1, 2, 3, .., N and performance measures add
additional new variables N + 1, N + 2, ....

The magnitude of the relative error, or MRE, is the absolute
value of that relative error:

MRE = |predicted− actual|/actual

The mean magnitude of the relative error, or MMRE, is the
average percentage of the absolute values of the relative errors
over an entire data set. MMRE results were shown in Figure ??
in the mean% average test error column. Given T tests,
MMRE is calculated as follows:

MMRE =
100

T

TX
i

|predictedi − actuali|
actuali

PRED(N) reports the average percentage of estimates that
were within N% of the actual values. Given T tests, then:

PRED(N) =
100

T

TX
i


1 if MREi ≤ N

100
0 otherwise

For example, a PRED(30)=50% means that half the estimates
are within 30% of the actual.

Another performance measure of a model predicting nu-
meric values is the correlation between predicted and actual
values. Correlation ranges from +1 to -1 and a correlation of
+1 means that there is a perfect positive linear relationship

between variables. Appendix C shows how to calculate corre-
lation.

All these performance measures (correlation, MMRE and
PRED) address subtly different issues. Overall, PRED mea-
sures how well an effort model performs while MMRE mea-
sures poor performance. A single large mistake can skew the
MMREs and not effect the PREDs. Shepperd and Schofield
comment that:

MMRE is fairly conservative with a bias against
overestimates while PRED(30) will identify those
prediction systems that are generally accurate but
occasionally wildly inaccurate [10, p736].

Since they measure different aspects of model performance,
COSEEKMO uses combinations of PRED, MMRE, and cor-
relation (using the methods described later in this paper).

III. ATTRIBUTE RANKING DRIVEN GREEDY SEARCH
FEATURE SUBSET SELECTION

FOLLOWING the slow but steady success of
COSEEKMO, it becomes necessary to find a similarly

accurate algorithm which is fast enough to be used by
business users in the real world. We decided to begin the
search for such an algorithm using a minimal approach, that
is, a feature subset selection algorithm that used a greedy
search to minimize evaluations of the attribute space. We
decided to rank the attributes using correlation and to use
the ranked results as the order to grow the attribute set in
the case of a forward select greedy search, or prune the
set in the case of a backward elimination greedy search.
At each step the attribute set is evaluated with the MMRE,
Pred(30), deviation, and correlation from using COCOMO
regression with the attribute set in question. If the change
is considered an improvement then it is kept and the search
continues, otherwise it stops. We introduced a horizon
variable that could be set to allow for the search to continue
even without improvement. An extensive experiment was run
to benchmark the many customizations of the greedy FSS
approach against standard COCOMO least squares regression
as described in the pseudocode in Figure 3. The results are
shown in Figure 14 and Figure 15. For the COC81 dataset,
standard COCOMO least squares regression was found to
be far superior. However, for the NASA93 dataset, many
customizations of the greedy feature subset selection had
similar or slighty better MMRE and Pred(30) values, and
lower deviations. (refer to background on datasets to explain
this).

Although quick, this algorithm is not accurate enough to
be an acceptable replacement for even avoiding feature subset
selection entirely. Although it had some slight success with
the NASA93 dataset it failed to provide similar results to
COCOMO regression on the COC81 dataset. Noticing that
the results tended to improve with higher horizon values,
we reasoned that the attribute space needed more explo-
ration. Finally, with a dataset as small as the COC81 and
NASA93 datasets, the importance of heuristics to prune the
state space explosion were examined. Next we decided to
build an efficient algorithm that evaluated all 32,768 attribute
combinations.
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Data
sources

Coc81:63 records in the COCOMO 81 format. Source: [1, p496-497].
Download from http://unbox.org/wisp/trunk/cocomo/data/coc81modeTypeLangType.csv.

Nasa93: 93 NASA records in the COCOMO 81 format.
Download from http://unbox.org/wisp/trunk/cocomo/data/nasa93.csv.

CocII: 161 records in the COCOMO II format from the COCOMO consortium (co-ordinated by USC). This data is not in the public domain.

Data
subsets

All: selects all records from a particular source; e.g. ”coc81 all”.
Category: is a NASA-specific designation selecting the type of project; e.g. avionics, data capture, etc.
Dev: indicates the development methodology; e.g. div.waterfall.
DevEnd: shows the last year of the software project.
Fg: selects either “f” (flight) or “g” (ground) software.
Kind: selects records relating to the development platform; max= mainframe and mic= microprocessor.
Lang: selects records about different development languages.
Project and center: nasa93 designations selecting records relating to where the software was built and the name of the project.
Mode=e:

selects records relating to the embedded COCOMO 81 development mode. The different COCOMO 81 development models were
described in Figure 1.

Mode=o:
selects COCOMO 81 organic mode records.

Mode=sd:
selects COCOMO 81 semi-detached mode records.

Org: is a cocII designation showing what organization provided the data.
Size: is a cocII specific designation grouping the records into (e.g.) those around 100KLOC.
Type: selects different coc81 designations and include “bus” (for business application) or “sys” (for system software).
Year: is a nasa93 term that selects the development years, grouped into units of five; e.g. 1970,1971,1972,1973,1974 are labeled “1970”.

Fig. 2. Data sets (top) and parts (bottom) of the data used in this study.

IV. COCOMOST

for data in dataSets
for i in 1 to 30
test = randomRecords(data,10)
train = data - test
attributes = (all COCOMO 81 attributes)
results = LC(test, train, attributes)
print variables and results
for attribute in COCOMO_81_attributes
rank correlation using LC(train, train, attribute)
rankedList += sorted list of ranked attributes

for search in "forward backward"
for horizon in "0 1 2 4 8 16"
for eval in "mmre sd_mre pred30 correlation"
attr(test, train, search, horizon, eval, rankedList)

attr()
for attribute in rankedList
newSet = bestSet + attribute
if (search==backward)
tmpSet=inverse(newSet)

else
tmpSet = newSet

oldScore = newScore
results = LC(train, train, tmpSet)
newScore = results.eval
if (newScore better than oldScore)
bestSet = newSet
stale = horizon

else
newScore = oldScore
stale--

if (stale < 1)
exit for

next attribute
if (search==backward)
bestSet=inverse(bestSet)

finalResults = LC(test, train, bestSet)
print variables and results

Fig. 3. This pseudocode outlines an experiment that compared standard
COCOMO 81 local calibration with an approach that ranks the attributes
based on correlation, and then builds a subset of attributes using a greedy
search guided by the attribute ranking.

THE COCOMOST algorithm, as outlined in Figure 5, uses
feature subset selection to prune irrelevant, redundant,

noisy, and unreliable attributes from the COCOMO model. It
executes a complete search of the attribute space, evaluating
attribute sets using local calibration. Thus, it is a “wrapper“
attribute selection technique instead of a “filter“ because it
evaluates using the target learner [5]. However, it shares
several of the advantages of a filter. Unlike most wrappers,
COCOMOST is fast enough to search the entire attribute space
instead of using heuristics to limit the state space explosion.
This introduces the vulnerability that every attribute beyond

for data in dataSets
for i in 1 to 30

test = randomRecord(data)
train = data - test
attributes = (all COCOMO 81 attributes)
results = LC(test, train, attributes)
print variables and results
attributes = cocomost(train)
results = LC(test, train, attributes)
print variables and results

Fig. 4. This experiment benchmarks standard COCOMO-based local
calibration against local calibration that uses cocomost to perform feature
subset selection.

attributes = null
bestMMRE = LC(train, attributes)
bestAttributes = null
for attributes in 2ˆ15
newMMRE = LC(train, attributes)
if newMMRE > bestMMRE

bestMMRE = newMMRE
bestAttributes = attributes

return bestAttributes

Fig. 5. Cocomost performs a complete search over the attribute space and
evaluates the attribute sets using the target learner: COCOMO-based local
calibration.
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Fig. 7. Standard Deviation of Mean Magnitude of Relative Error

the 15 used in this study will double COCOMOST’s execution
time.

To compare the effectiveness of standard local calibration
versus feature subset selection with COCOMOST followed
by local calibration, we randomly pulled a test set from the
training data 30 times and made estimates with each learner
as described in Figure 4.

V. RESULTS

(PULL QUARTILE CHARTS TEXT FROM MENZIES
PAPER)

Figure 6 shows the mean magnitude of relative error for
each of the 19 subsets of data. Standard local calibration
is shown in red and COCOMOST is in green. The results
show similar errors between the learners. Figure 7 is similarly
structured, except it displays the standard deviation of the
error. These results show that COCOMOST greatly reduces
the variance for a large portion of the datasets.

VI. CONCLUSION

THE results show the limits of feature subset selection
using local calibration as the evaluation criteria. CO-

COMOST produced statistically equivalent errors as Boehm’s
COCOMO model. Since the attribute space was searched com-
pletely, this indicates that more involved evaluation methods
or models need to be explored to reduce the error. However,
COCOMOST was able to reduce the variance in the model
which will make it easier to distinguish rival methods. This
will provide a stepping stone for further research. In addition,
for this evaluation method, heuristics were found to be less
effective and slower than a finely tuned complete search of
the attribute space.

VII. FUTURE WORK

THERE is a lot of work to be done in improving software
cost estimation models. Some possibilities suggested by

this research include:
• Feature Subset Selection using other evaluation methods

and learners.
• Expanding upon COCOMOST with more data mining

techniques such as bagging(ADD REFERENCE).
• More comparisons of learners using COCOMOST as a

“strawman“ FSS model.
• Due to COCOMOST’s fairly quick runtime it could

be used by WRAPPER algorithms (add ref?) such as
COSEEKMO.
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APPENDIX

APPENDIX A - COCOMO-I vs COCOMO-II: In CO-
COMO II, the exponential COCOMO 81 term b was expanded
into the following expression:

b + 0.01 ∗
X

j

SFj (2)

where b is 0.91 in COCOMO II 2000, and SFj is one
of five scale factors that exponentially influence effort. Other
changes in COCOMO II included dropping the development
modes of Figure 1 as well as some modifications to the list of
effort multipliers and their associated numeric constants (see
appendix E).

APPENDIX B - Calculating Correlation: Given a test set
of size T , correlation is calculated as follows:

p̄ =
PT

I predictedi

T ā =
PT

I actuali
T

Sp =
PT

i (predictedi−p̄)2

T−1 Sa =
PT

i (actuali−ā)2

T−1

Spa =
PT

i (predictedi−p̄)(actuali−ā)

T−1

corr = Spa/
√

Sp ∗ Sa

APPENDIX C - Local Calibration: (CHANGE TO
METHOD WITHOUT USING LOGGED NUMERICS) This
approach assumes that a matrix Di,j holds:
• The natural log of the KLOC estimates;
• The natural log of the actual efforts for projects i ≤j≤ t;
• The natural logarithm of the cost drivers (the scale factors

and effort multipliers) at locations 1 ≤ i ≤ 15 (for
COCOMO 81) or 1 ≤ i ≤ 22 (for COCOMO-II).

With those assumptions, Boehm [1] shows that for COCOMO
81, the following calculation yields estimates for “a” and “b”
that minimizes the sum of the squares of residual errors:

EAFi =
PN

j Di,j

a0 = t
a1 =

Pt
i KLOCi

a2 =
Pt

i(KLOCi)
2

d0 =
Pt

i (actuali − EAFi)
d1 =

Pt
i ((actuali − EAFi) ∗KLOCi)

b = (a0d1 − a1 ∗ d0)/(a0a2 − a2
1)

a3 = (a2d0 − a1d1)/(a0a2 − a2
1)

a = ea3


(3)

APPENDIX D - COCOMO Numerics: Figure 8 shows
the COCOMO 81 EMj (effort multipliers). The effects of that
multiplier on the effort are shown in Figure 9. Increasing the

upper: acap: analysts capability
increase pcap: programmers capability
these to aexp: application experience
decrease modp: modern programming practices
effort tool: use of software tools

vexp: virtual machine experience
lexp: language experience

middle sced: schedule constraint
lower: data: data base size
decrease turn: turnaround time
these to virt: machine volatility
increase stor: main memory constraint
effort time: time constraint for cpu

rely: required software reliability
cplx: process complexity

Fig. 8. COCOMO 81 effort multipliers.

very very extra
low low nominal high high high

upper ACAP 1.46 1.19 1.00 0.86 0.71
(increase PCAP 1.42 1.17 1.00 0.86 0.70
these to AEXP 1.29 1.13 1.00 0.91 0.82
decrease MODP 1.2 1.10 1.00 0.91 0.82
effort) TOOL 1.24 1.10 1.00 0.91 0.83

VEXP 1.21 1.10 1.00 0.90
LEXP 1.14 1.07 1.00 0.95

middle SCED 1.23 1.08 1.00 1.04 1.10
lower DATA 0.94 1.00 1.08 1.16
(increase TURN 0.87 1.00 1.07 1.15
these to VIRT 0.87 1.00 1.15 1.30
increase STOR 1.00 1.06 1.21 1.56
effort) TIME 1.00 1.11 1.30 1.66

RELY 0.75 0.88 1.00 1.15 1.40
CPLX 0.70 0.85 1.00 1.15 1.30 1.65

Fig. 9. The precise COCOMO 81 effort multiplier values.

upper and lower groups of variables will decrease or increase
the effort estimate, respectively.

Figure 10 shows the COCOMO 81 effort multipliers of
Figure 9, rounded and simplified to two significant figures.

Figure 11, Figure 12 and Figure 13 show the COCOMO-
II values analogies to Figure 8, Figure 9 and Figure 10
(respectively).

APPENDIX E:

very very extra
low low nominal high high high

upper ACAP 1.2 1.1 1.00 0.9 0.8
(increase PCAP 1.2 1.1 1.00 0.9 0.8
these to AEXP 1.2 1.1 1.00 0.9 0.8
decrease MODP 1.2 1.1 1.00 0.9 0.8
effort) TOOL 1.2 1.1 1.00 0.9 0.8

VEXP 1.2 1.1 1.00 0.9
LEXP 1.2 1.1 1.00 0.9

middle SCED 1.2 1.1 1.00 1.1 1.2
lower DATA 0.9 1.00 1.1 1.2
(increase TURN 0.9 1.00 1.1 1.2
these to VIRT 0.9 1.00 1.1 1.2
increase STOR 1.00 1.1 1.2 1.3
effort) TIME 1.00 1.1 1.2 1.3

RELY 0.8 0.9 1.00 1.1 1.2
CPLX 0.8 0.9 1.00 1.1 1.2 1.3

Fig. 10. Rounded COCOMO 81 effort multiplier values.
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scale prec: have we done this before?
factors flex: development flexibility
(exponentially resl: any risk resolution activities?
decrease team: team cohesion
effort) pmat: process maturity
upper acap: analyst capability
(linearly pcap: programmer capability
decrease pcon: programmer continuity
effort) aexp: analyst experience

pexp: programmer experience
ltex: language and tool experience
tool: tool use
site: multiple site development

sced: length of schedule
lower rely: required reliability
(linearly data: secondary memory storage requirements
increase cplx: program complexity
effort) ruse: software reuse

docu: documentation requirements
time: runtime pressure
stor: main memory requirements

pvol: platform volatility

Fig. 11. The COCOMO II scale factors and effort multipliers.

extra very very extra
low low low nominal high high high

scale prec 6.20 4.96 3.72 2.48 1.24 0.00
factors flex 5.07 4.05 3.04 2.03 1.01 0.00
(exponentially resl 7.07 5.65 4.24 2.83 1.41 0.00
decreases team 5.48 4.38 3.29 2.19 1.10 0.00
effort) pmat 7.80 6.24 4.68 3.12 1.56 0.00
upper acap 1.42 1.19 1.00 0.85 0.71
(linearly pcap 1.34 1.15 1.00 0.88 0.76
decreases pcon 1.29 1.12 1.00 0.90 0.81
effort) aexp 1.22 1.10 1.00 0.88 0.81

pexp 1.19 1.09 1.00 0.91 0.85
ltex 1.20 1.09 1.00 0.91 0.84
tool 1.17 1.09 1.00 0.90 0.78
site 1.22 1.09 1.00 0.93 0.86 0.80
sced 1.43 1.14 1.00 1.00 1.00

lower rely 0.82 0.92 1.00 1.10 1.26
(linearly data 0.90 1.00 1.14 1.28
increases cplx 0.73 0.87 1.00 1.17 1.34 1.74
effort) ruse 0.95 1.00 1.07 1.15 1.24

docu 0.81 0.91 1.00 1.11 1.23
time 1.00 1.11 1.29 1.63
stor 1.00 1.05 1.17 1.46
pvol 0.87 1.00 1.15 1.30

Fig. 12. The precise COCOMO II numerics.

extra very very extra
low low low nominal high high high

Scale PREC 6.3 5.1 3.8 2.5 1.3 0
Factors FLEX 6.3 5.1 3.8 2.5 1.3 0

RESL 6.3 5.1 3.8 2.5 1.3 0
TEAM 6.3 5.1 3.8 2.5 1.3 0
PMAT 6.3 5.1 3.8 2.5 1.3 0

upper ACAP 1.3 1.1 1.0 0.9 0.8
PCAP 1.3 1.1 1.0 0.9 0.8
PCON 1.3 1.1 1.0 0.9 0.8
AEXP 1.3 1.1 1.0 0.9 0.8
PEXP 1.3 1.1 1.0 0.9 0.8
LTEX 1.3 1.1 1.0 0.9 0.8
TOOL 1.3 1.1 1.0 0.9 0.8
SITE 1.3 1.1 1.0 0.9 0.8 0.8
SCED 1.3 1.1 1.0 0.9 0.8

lower RELY 0.8 0.9 1.0 1.1 1.3
DATA 0.9 1.0 1.1 1.3
CPLX 0.8 0.9 1.0 1.1 1.3 1.5
RUSE 0.9 1.0 1.1 1.3 1.5
DOCU 0.8 0.9 1.0 1.1 1.3
TIME 1.0 1.1 1.3 1.5
STOR 1.0 1.1 1.3 1.5
PVOL 0.9 1.0 1.1 1.3

Fig. 13. The rounded COCOMO II numerics.

Avg Avg Avg Avg Avg
Data Learn Search Hrzn Eval MMRE SD Pred30 Corr Attr
coc81 LC N/A N/A N/A 44.72 37.28 38.75 0.94 15.00
coc81 attr forward 0 mmre 93.63 101.68 27.92 0.80 1.00
coc81 attr forward 0 sd mre 93.63 101.68 27.92 0.80 1.00
coc81 attr forward 0 pred30 93.63 101.68 27.92 0.80 1.00
coc81 attr forward 0 corr 93.63 101.68 27.92 0.80 1.00
coc81 attr forward 1 mmre 49.42 42.23 36.25 0.92 13.60
coc81 attr forward 1 sd mre 65.11 59.69 32.50 0.88 8.97
coc81 attr forward 1 pred30 83.87 81.42 26.67 0.84 2.90
coc81 attr forward 1 corr 64.39 58.99 30.00 0.88 9.63
coc81 attr forward 2 mmre 45.73 37.66 38.75 0.94 14.80
coc81 attr forward 2 sd mre 51.27 45.17 37.08 0.92 13.30
coc81 attr forward 2 pred30 76.11 70.23 26.67 0.86 5.27
coc81 attr forward 2 corr 57.77 50.99 32.50 0.90 11.67
coc81 attr forward 4 mmre 45.73 37.66 38.75 0.94 14.80
coc81 attr forward 4 sd mre 49.08 42.47 37.92 0.93 13.67
coc81 attr forward 4 pred30 72.18 67.43 28.75 0.87 6.73
coc81 attr forward 4 corr 53.95 46.20 33.75 0.90 12.37
coc81 attr forward 8 mmre 45.73 37.66 38.75 0.94 14.80
coc81 attr forward 8 sd mre 49.08 42.47 37.92 0.93 13.67
coc81 attr forward 8 pred30 69.70 63.81 27.50 0.88 7.37
coc81 attr forward 8 corr 53.95 46.20 33.75 0.90 12.37
coc81 attr forward 16 mmre 45.73 37.66 38.75 0.94 14.80
coc81 attr forward 16 sd mre 49.08 42.47 37.92 0.93 13.67
coc81 attr forward 16 pred30 69.53 63.22 27.08 0.88 7.43
coc81 attr forward 16 corr 53.95 46.20 33.75 0.90 12.37
coc81 attr back 0 mmre 49.99 43.76 35.00 0.93 14.00
coc81 attr back 0 sd mre 49.99 43.76 35.00 0.93 14.00
coc81 attr back 0 pred30 49.99 43.76 35.00 0.93 14.00
coc81 attr back 0 corr 49.99 43.76 35.00 0.93 14.00
coc81 attr back 1 mmre 49.99 43.76 35.00 0.93 14.00
coc81 attr back 1 sd mre 50.32 44.34 35.00 0.93 13.93
coc81 attr back 1 pred30 52.50 45.07 34.17 0.92 13.67
coc81 attr back 1 corr 51.20 45.19 36.25 0.92 13.73
coc81 attr back 2 mmre 50.18 43.67 35.00 0.93 13.97
coc81 attr back 2 sd mre 50.41 44.64 35.00 0.93 13.87
coc81 attr back 2 pred30 54.01 45.74 32.92 0.92 13.27
coc81 attr back 2 corr 53.51 46.26 32.50 0.90 12.57
coc81 attr back 4 mmre 51.47 44.53 34.17 0.92 13.87
coc81 attr back 4 sd mre 52.70 48.03 33.75 0.93 13.40
coc81 attr back 4 pred30 55.97 47.29 31.67 0.91 12.30
coc81 attr back 4 corr 54.05 46.27 32.50 0.90 12.40
coc81 attr back 8 mmre 52.43 45.89 33.75 0.92 13.53
coc81 attr back 8 sd mre 54.46 49.98 35.42 0.92 12.67
coc81 attr back 8 pred30 58.27 49.29 27.50 0.90 11.47
coc81 attr back 8 corr 54.31 46.56 32.08 0.90 12.30
coc81 attr back 16 mmre 52.43 45.89 33.75 0.92 13.53
coc81 attr back 16 sd mre 54.66 50.33 35.83 0.92 12.53
coc81 attr back 16 pred30 59.70 50.37 27.50 0.90 11.23
coc81 attr back 16 corr 54.31 46.56 32.08 0.90 12.30

Fig. 14. Standard COCOMO Local Calibration vs. Greedy FSS for the
COC81 dataset.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 7

APPENDIX F:

Avg Avg Avg Avg Avg
Data Learn Search Hrzn Eval MMRE SD Pred30 Corr Attr
nasa93 LC N/A N/A N/A 43.95 49.96 52.92 0.90 15.00
nasa93 attr forward 0 mmre 52.88 54.98 47.08 0.77 1.00
nasa93 attr forward 0 sd mre 52.88 54.98 47.08 0.77 1.00
nasa93 attr forward 0 pred30 52.88 54.98 47.08 0.77 1.00
nasa93 attr forward 0 corr 52.88 54.98 47.08 0.77 1.00
nasa93 attr forward 1 mmre 45.94 46.05 49.17 0.86 5.73
nasa93 attr forward 1 sd mre 48.45 50.57 50.42 0.83 2.40
nasa93 attr forward 1 pred30 48.77 49.74 48.33 0.83 1.97
nasa93 attr forward 1 corr 44.16 43.57 47.50 0.86 5.47
nasa93 attr forward 2 mmre 44.21 44.06 50.00 0.87 7.20
nasa93 attr forward 2 sd mre 48.45 50.19 49.17 0.83 2.67
nasa93 attr forward 2 pred30 46.20 45.71 47.08 0.85 6.30
nasa93 attr forward 2 corr 43.23 43.17 51.25 0.87 6.97
nasa93 attr forward 4 mmre 44.51 44.06 50.42 0.88 8.33
nasa93 attr forward 4 sd mre 47.22 50.29 50.00 0.84 3.57
nasa93 attr forward 4 pred30 46.73 46.90 48.75 0.85 7.80
nasa93 attr forward 4 corr 41.95 42.06 53.75 0.87 7.80
nasa93 attr forward 8 mmre 44.05 44.23 51.67 0.88 8.40
nasa93 attr forward 8 sd mre 46.88 49.17 50.00 0.83 4.90
nasa93 attr forward 8 pred30 46.02 47.31 50.83 0.86 8.10
nasa93 attr forward 8 corr 41.72 41.72 53.33 0.88 7.93
nasa93 attr forward 16 mmre 44.05 44.23 51.67 0.88 8.40
nasa93 attr forward 16 sd mre 46.82 49.42 49.58 0.83 5.10
nasa93 attr forward 16 pred30 46.02 47.31 50.83 0.86 8.10
nasa93 attr forward 16 corr 41.72 41.72 53.33 0.88 7.93
nasa93 attr back 0 mmre 42.34 43.50 52.08 0.90 14.00
nasa93 attr back 0 sd mre 42.34 43.50 52.08 0.90 14.00
nasa93 attr back 0 pred30 42.34 43.50 52.08 0.90 14.00
nasa93 attr back 0 corr 42.34 43.50 52.08 0.90 14.00
nasa93 attr back 1 mmre 41.66 41.23 52.50 0.89 11.70
nasa93 attr back 1 sd mre 41.77 43.19 52.08 0.90 11.07
nasa93 attr back 1 pred30 42.45 42.11 52.92 0.90 13.10
nasa93 attr back 1 corr 42.85 41.65 50.00 0.88 10.43
nasa93 attr back 2 mmre 44.76 44.95 50.00 0.87 9.33
nasa93 attr back 2 sd mre 48.67 51.18 48.75 0.82 4.53
nasa93 attr back 2 pred30 41.93 41.19 51.25 0.89 12.67
nasa93 attr back 2 corr 42.23 43.24 50.83 0.88 8.10
nasa93 attr back 4 mmre 45.72 46.65 52.08 0.86 8.23
nasa93 attr back 4 sd mre 47.60 48.90 49.17 0.82 3.77
nasa93 attr back 4 pred30 42.79 43.44 50.83 0.88 11.13
nasa93 attr back 4 corr 41.87 42.37 51.25 0.88 7.63
nasa93 attr back 8 mmre 45.77 47.00 54.58 0.85 7.73
nasa93 attr back 8 sd mre 47.60 48.90 49.17 0.82 3.77
nasa93 attr back 8 pred30 44.52 45.91 49.17 0.88 10.40
nasa93 attr back 8 corr 41.91 42.59 52.08 0.88 7.47
nasa93 attr back 16 mmre 45.77 47.00 54.58 0.85 7.73
nasa93 attr back 16 sd mre 47.60 48.90 49.17 0.82 3.77
nasa93 attr back 16 pred30 44.78 46.42 48.75 0.88 10.30
nasa93 attr back 16 corr 41.91 42.59 52.08 0.88 7.47

Fig. 15. Standard COCOMO Local Calibration vs. Greedy FSS for the
NASA93 dataset.


