
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 1

Singleton Attribute Ordering Criteria
for Greedy Search in Feature Subset Selection

Daniel Baker,Tim Menzies Member, IEEE

Abstract— The value of using static code attributes to learn
defect predictors has been widely debated. Prior work has
explored issues like the merits of “McCabes vs Halstead vs lines
of code counts” for generating defect predictors. We show here
that such debates are irrelevant since how the attributes are used
to build predictors is much more important than which particular
attributes are used. Also, contrary to prior pessimism, we show
that such defect predictors are demonstrably useful and, on the
data studied here, yield predictors with a mean probability of
detection of 71% and mean false alarms rates of 25%. These
predictors would be useful for prioritizing a resource-bound
exploration of code that has yet to be inspected.

I. INTRODUCTION

IN the 21st century it is now practical to quickly apply
artificial intelligence tools to discover previously unknown

patterns in historical data. In a software engineering project,
such data miners can learn predictors for software quality
from (e.g.) historical logs of defective and non-defective code
modules. When budget does not allow for complete testing of
an entire system, software managers can use such predictors
to focus the testing on parts of the system that seem defect-
prone. These potential defect-prone trouble spots can then be
examined in more detail by (e.g.) model checking, intensive
testing, etc.

The value of using static code attributes to learn defect
predictors has been widely debated. Some researchers endorse
them; e.g. [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?],
[?], [?], [?], [?], [?], [?], [?], [?], while others vehemently
oppose them [?], [?]. Recently, sharable public-domain defect
data sets have become available from the NASA Metrics Data
Program (MDP)1 and the PROMISE repository of software
engineering data2. These defect data sets can be used to resolve
this debate.

It is possible that prior studies may have reached different
conclusions since they were based on different data. This
potential conflation can now be removed since it is now
possible to define a baseline experiment using public-domain
data sets which different researchers can use to compare their
techniques. This paper defines and motivates such a baseline.

The baseline definition draws from standard practices in
the data mining community [?], [?] and addresses some of

Mr. Baker is with the Lane Department of Computer Science, West Virginia
University and can be reach at danielryanbaker@gmail.com

Dr. Menzies is with the Lane Department of Computer Science, West
Virginia University and can be reached at tim@menzies.us

This research was conducted with funds from the NASA Software Assur-
ance Research Program led by the NASA IV&V Facility.

Manuscript received January 1, 2006; revised XXX YY, 200Z.
1http://mpd.ivv.nasa.gov
2http://promise.site.uottawa.ca/SERepository

the drawbacks with certain prior experiments. For example,
prominent results in this area have based their conclusion on
just one or two data sets; e.g. [?], [?], [?]. Our preferred
experimental method, described below, draws its conclusions
after hundreds of thousands of calls to a suite of data miners
which examine numerous data sets.

To motivate others to use our proposed baseline experiment,
we must demonstrate that it can yield interesting results. The
baseline experiment of this article shows that the rule-based
or decision-tree learning methods used in prior work [?], [?],
[?], [?], [?] are clearly out-performed by a Näive Bayes data
miner with a log-filtering pre-processor on the numeric data
(the terms in italics are defined later in this paper).

Further, the experiment can explain why our preferred
Bayesian method performs best. That explanation is quite tech-
nical and comes from information theory. In this introduction,
we need only say that the space of “best” predictors is “brittle”;
i.e. minor changes in the data (e.g. a slightly different sample
used to learn a predictor) can make different attributes appear
most useful for defect prediction.

This brittleness result offers a new insight on prior work.
Prior results about defect predictors were so contradictory
since they were drawn from a large space of competing
conclusions with similar, but distinct properties. Different
studies could conclude that (e.g.) lines of code are better/worse
predictor for defects than the McCabes complexity attribute,
just because of small variations to the data. Bayesian methods
smooth over the brittleness problem by polling numerous
Gaussian approximations to the numerics distributions. Hence,
Bayesian methods don’t get confused by minor details about
candidate predictors.

Our conclusion is that, contrary to prior pessimism [?], [?],
data mining static code attributes to learn defect predictors
is useful. Given our new results on Näive Bayes and log-
filtering, these predictors are much better than previously
demonstrated. Also, prior contradictory results on the merits of
defect predictors can be explained in terms of the brittleness of
the space of “best” predictors. Further, our baseline experiment
clearly shows that it is a mis-directed discussion to debate
(e.g.) “lines of code vs McCabe” for predicting defects. As we
shall see, the choice of learning method is far more important
than which subset of the available data is used for learning.

II. BACKGROUND

FOR this study, we learn defect predictors from static
code attributes defined by McCabe [?] and Halstead [?].

McCabe (and Halstead) are “module”-based metrics where a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 2

module is the smallest unit of functionality3. We study defect
predictors learned from static code attributes since they are
useful, easy to use, and widely-used.

Useful: This paper finds defect predictors with a prob-
ability of detection of 71%. This is markedly higher than
other currently-used industrial methods such as manual code
reviews:

• A panel at IEEE Metrics 2002 [?] concluded that manual
software reviews can find ≈60% of defects4

• Raffo found that the defect detection capability
of industrial review methods can vary from
pd = TR(35, 50, 65)%5. for full Fagan inspections [?]
to pd = TR(13, 21, 30)% for less-structured inspections.

Easy to use: static code attributes (e.g. lines of code, the
McCabe/Halstead attributes) can be automatically and cheaply
collected, even for very large systems [?]. By contrast, other
methods such as manual code reviews are labor-intensive.
Depending on the review methods 8 to 20 LOC/minute can be
inspected and this effort repeats for all members of the review
team, which can be as large as four or six [?].

Widely used: Many researchers use static attributes to guide
software quality predictions; e.g. [?], [?], [?], [?], [?], [?],
[?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?], [?],
[?]. Verification and validation (V&V) textbooks (e.g. [?])
advise using static code complexity attributes to decide which
modules are worthy of manual inspections. For several years,
the first author worked on-site at the NASA software In-
dependent Verification and Validation facility and he knows
of several large government software contractors that won’t
review software modules unless tools like McCabe predict that
they are fault prone.

Nevertheless, static code attributes are hardly a complete
characterization of the internals of a function. Fenton offers
an insightful example where the same functionality is achieved
using different programming language constructs resulting in
different static measurements for that module [?]. Fenton uses
this example to argue the uselessness of static code attributes.

An alternative interpretation of Fenton’s example is that
static attributes can never be a certain indicator of the presence
of a fault. Nevertheless, they are useful as as probabilistic
statements that the frequency of faults tends to increase in
code modules that trigger the predictor.

Shepperd & Ince and Fenton & Pfleeger might reject the
alternative interpretation. They present empirical evidence
that the McCabe static attributes offer nothing more than un-
informative attributes such as lines of code. Fenton & Pfleeger
note that the main McCabe’s attribute (cyclomatic complexity,
or v(g)) is highly correlated with lines of code [?]. Also,
Shepperd & Ince remarks that “for a large class of software it
(cyclomatic complexity) is no more than a proxy for, and in
many cases outperformed by, lines of code” [?].

If Shepperd & Ince and Fenton & Pfleeger. are right, then:

3In C or Smalltalk, “modules” would be called “function” or “method”
respectively.

4That panel supported neither Fagan claim [?] that inspections can find 95%
of defects before testing or Shull’s claim that specialized directed inspection
methods can catch 35% more defects that other methods [?].

5TR(a, b, c) is a triangular distribution with min/mode/max of a, b, c.

probability of
data detection false alarm

pima diabetes 60 19
sonar 71 29

horse-colic 71 7
heart-statlog 73 21

rangeseg 76 30
credit rating 88 16

sick 88 1
hepatitis 94 56

vote 95 3
ionosphere 96 18

mean 81 20

Fig. 1. Some representative pds and pfs for prediction problems from the
UC Irvine machine learning database [?]. These values were generated using
the standard settings of a state-of-art decision tree learner (J48). For each data
set, ten experiments where conducted where a decision tree was learned on
90% of the data, then testes of the remaining 10%. The numbers shown here
are the average results across ten such experiments.

probability of
data detection false alarm
pc1 24 25
jm1 25 18
cm1 35 10
kc2 45 15
kc1 50 15

mean 36 17

Fig. 2. Prior results of learning defect predictors. From [?].

• The supposedly better static code attributes such as Hal-
stead and McCabes should perform no better than just
simple thresholds on lines of code.

• The performance of a predictor learned learned by a data
miner should be very poor;

Neither of these are true, at least for the data sets used in
this study. Our experimental method seeks the “best” subsets
of the available attributes that are most useful for predicting
defects. We will show that the best size for the “best” set is
larger than one; i.e. predictors based on single lines of code
counts do not perform as well as other methods.

Also, the predictors learned from those “best” sets perform
surprisingly well. Formally, learning a defect predictor is a
binary prediction problem where each modules in a database
has been labeled ”defect-free” or ”defective”. The learning
problem is to build some predictor which guesses the labels for
as-yet-unseen modules. Using the methods described below,
this paper offers new defect predictors with a probability of
detection (pd) and probability of false alarm (pf) of

mean(pd, pf) = (71%, 25%)

Figure 1 lets us compare our new results against standard
binary prediction results from the UC Irvine machine learning
repository [?]. Our new results of (pd,pf)=(71%,25%) are
close to the standard results of (pd,pf)=(81%,20%). which
is noteworthy in three ways:

1) It is unexpected. If static code attributes capture so little
about source code (as argued by Shepherd, Ince, Fenton
and Pfleeger), then we would expect lower probabilities
of defection much higher false alarm rates.

2) These new (pd,pf) figures are much larger than any of
our prior results. of mean(pd, pf) = (36%, 17%) [?]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 3

(see Figure 2). Despite much experimentation [?], [?],
the only way we could achieve a pd > 70% was to
accept a 50% false alarm rate.

3) There is still considerable room for improvement; e.g.
lower pfs and higher pds. We are actively researching
better code metrics which, potentially, will yield “better”
predictors.

This third point motivates much of this paper. Before we can
demonstrate “better”, we need to define “better than what?”.
That is, improvement can only be measured against a well-
defined baseline result. That baseline needs to be repeatable
and based on public-domain data set. Further, the basis for
comparatively assessing different data mining methods should
be well-justified and well-specified so that others can repeat,
improve, or refute prior results. Hence, much of the rest
of this paper is devoted to a meticulous description of our
experimental method.

The baseline experiment was selected in response to certain
shortcomings in other work. For example, Nagappan and
Ball [?, p6] report accuracies of 82.91% for their defect pre-
dictor. Accuracy attributes the number of times the predicted
class of a module (defect-free or defective) is the same as the
actual class. These accuracy values were found in a self-test;
i.e. the learned predictor was applied to the data used to train
it. In our study, we use neither accuracy nor self-tests:

• When the target class (defect-free or defective) is in
the minority, accuracy is a poor measure of a learner’s
performance. For example, a learner could score 90%
accuracy on a data set with 10% defective modules, even
if it predicts that all defective modules were defect-free.

• Self-tests are deprecated by the data mining community
since such self-tests can grossly over-estimate perfor-
mance [?]. If the goal is to understand how well a defect
predictor will work on future projects, it is best to assess
the predictor via hold out modules not used in to generate
that predictor.

Hence, for this study, we use attributes other than accuracy
including pd, pf and several others defined below. Also, our
learned predictors will be assessed using hold out modules.

III. THREATS TO VALIDITY

Like any empirical data mining paper, our conclusions are
biased according to what data was used to generate them.
Issues of sampling bias threaten any data mining experiment;
i.e. what matters there may not be true here. For example,
the sample used here comes from NASA, which works in a
unique market niche.

Nevertheless, we argue that results from NASA are relevant
to the general software engineering industry. NASA makes
extensive use of contractors who are contractually obliged
(ISO-9O01) to demonstrate their understanding and usage
of current industrial best practices. These contractors service
many other industries; e.g. Rockwell-Collins builds systems
for many government and commercial organizations. For these
reasons, other noted researchers such as Basili, Zelbowitz,
et al. [?] have argued that conclusions from NASA data are
relevant to the general software engineering industry.

All inductive generalization suffers from a sampling bias.
The best we can do is define our methods and publicize our
data such that other researchers can try to repeat our results
and, perhaps, point out a previously unknown bias in our anal-
ysis. Hopefully, other researchers will emulate our methods
in order to repeat, refute or improve our results. We would
encourage such researchers to offer not just their conclusions,
but the data used to generate those conclusions. The MDP
is a repository for NASA data sets and the PROMISE code
repository are places to store and discuss software engineering
data sets from other organizations.

Another source of bias in this study is the set of learners
explored by this study. Data mining is a large and active field
and any single study can only use a small subset of the known
data mining algorithms. For example, neural networks [?] and
genetic algorithms [?] were not used for this study as they
can be very slow. The experiment described in this paper took
weeks to debug and a full day to run once debugged. We
were therefore not motivated to explore other, slower, learners
but would encourage other researchers with access to super-
computers or a large CPU-farm to do so.

IV. DATA

An experiment needs three things:
• Data to be processed;
• A processing method;
• A reporting method;
This section discusses the data used in this study. Processing

via data miners and our reporting methods are discussed later.
All our data comes from the MDP. At the time of this

writing, ten data sets are available in that repository. Two of
those data sets have a different format to the rest and were
not used in this study. This left eight, shown in Figure 3.
Each module of each data sets describes the attributes of that
module, plus the number of defects known for that module.
This data comes from eight sub-systems taken from four sys-
tems. These systems were developed in different geographical
locations across North America. Within a system, the sub-
systems shared some a common code base but did not pass
personnel or code between sub-systems. Figure 4 shows the
module sizes of our data; e.g. there are 126 modules in the
kc4 data set, most of them are under 100 lines of code, but a
few of them are over 1000 lines of code long.

Each data set was pre-processed by removing the module
identifier attribute (which is different for each row). Also, the
error count column was converted into a boolean attribute
called defective? as follows: defective? = (error count ≥
1). Finally, the error density column was removed (since it
can be derived from line counts and error count). The pre-
processed data sets had 38 attributes, plus one target attribute
(defective?) shown in Figure 5 and include Halstead, McCabe,
lines of code, and other miscellaneous attributes.

The Halstead attributes were derived by Maurice Halstead
in 1977. He argued that modules that are hard to read are
more likely to be fault prone [?]. Halstead estimates reading
complexity by counting the number of operators and operands
in a module: see the h attributes of Figure 5. These three raw

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 4

system language sub-system data set total LOC # modules % defective
spacecraft instrument C cm1-05 17K 506 9

storage management for ground data Java kc3 8K 459 9
kc4 25K 126 49

Db C mw1 8K 404 7
Flight software for earth orbiting satellite C pc1-05 26K 1,108 6

pc2 25K 5,590 0.4
pc3 36K 1,564 10
pc4 30K 1,458 12

Fig. 3. Data sets used in this study. The datasets cm1-05 and pc1-05 updates data sets cm1 and pc1 processed previously by the author; e.g. in [?].

 1

 10

 100

 1000

 5000 500 50 5

lin
es

 o
f c

od
e

(lo
c(

t)
)

all modules (sorted by size)

cm1
kc3

kc4

mw1

pc1 pc2pc3

pc4

Fig. 4. Log-log plot of module sizes in the Figure 3 data.

most m = Mccabe v(g) cyclomatic complexity
iv(G) design complexity
ev(G) essential complexity

locs loc loc total (one line = one count
loc(other) loc blank

loc code and comment
loc comments
loc executable
number of lines (opening to clos-
ing brackets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 + N2

V volume: V = N ∗ log2µ
L level: L = V ∗/V where

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)
D difficulty: D = 1/L

I content: I = L̂ ∗ V where
L̂ = 2

µ1
∗ µ2

N2
E effort: E = V/L̂
B error est
T prog time: T = E/18 seconds

misc = Miscellaneous branch count
call pairs
condition count
decision count
decision density
design density
edge count
global data complexity
global data density
maintenance severity
modified condition count
multiple condition count
node count
normalized cyclomatic complexity
parameter count
pathological complexity
percent comments

Fig. 5. Attributes used in this study.

h Halstead attributes were then used to compute the H: the
eight derived Halstead attributes using the equations shown in
Figure 5. In between the raw and derived Halstead attributes
are certain intermediaries (which don’t appear in the MDP
data sets);

• µ = µ1 + µ2;
• minimum operator count: µ∗1 = 2;
• µ∗2 is the minimum operand count and equals the number

of module parameters.

An alternative to the Halstead attributes are the complexity
attributes proposed by Thomas McCabe in 1976. Unlike
Halstead, McCabe argued that the complexity of pathways
between module symbols are more insightful than just a count
of the symbols [?]. The first three lines of Figure 5 shows
McCabe three main attributes for this pathway complexity.
These are defined as follows. A module is said to have a flow
graph; i.e. a directed graph where each node corresponds to a
program statement, and each arc indicates the flow of control
from one statement to another. The cyclomatic complexity of a
module is v(G) = e−n+2 where G is a program’s flow graph,
e is the number of arcs in the flow graph, and n is the number
of nodes in the flow graph [?]. The essential complexity,
(ev(G)) or a module is the extent to which a flow graph can
be “reduced” by decomposing all the subflowgraphs of G that
are D-structured primes (also sometimes referred to as “proper
one-entry one-exit subflowgraphs” [?]). ev(G) = v(G) − m
where m is the number of subflowgraphs of G that are D-
structured primes [?]. Finally, the design complexity (iv(G)) of
a module is the cyclomatic complexity of a module’s reduced
flow graph.

At the end of Figure 5 are a set of misc attributes that are
less well-defined than lines of code attributes or the Halstead
and McCabe attributes. The meaning of these attributes is
poorly documented in the MDP database. Indeed, they seem
to be values generated from some unknown tool set that was
available at the time of uploading the data into the MDP.
Since there are difficulties in reproducing these attributes at
other sites, an argument could be made for removing them
from this study. A counter-argument is that if static code
attributes are as weak as suggested by Shepherd, Ince, Fenton
and Pfleeger then we should use all possible attributes in order
to make maximum use of the available information. This study
took a middle ground: all these attributes were be passed
to the learners and they determined which ones had most
information.

An interesting repeated pattern in our data sets are expo-
nential distributions in the numeric attributes. For example,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 5

 0

 20

 40

 60

 80

 100
Y

=
v(

g)

all values, sorted by v(g)

 4

 3

 2

 1

 0

Y
=

lo
g(

v(
g)

)

all values, sorted by v(g)

Fig. 6. A McCabe’s metric from cm1: raw values on left, log-filtered on
right.

Figure 6, on the left-hand-side, shows the sorted McCabe
v(g) attributes from cm1. These values form an exponential
distribution with many small values and a few much larger
values. Elsewhere, we have conducted limited experiments
suggesting that a logarithmic filter on all numeric values might
improve predictor performance [?]. Such a filter replaces all
numerics n were their logarithm. ln(n). The effects of such
a filter are shown on the right-hand-side of Figure 6: the log-
filtered values are now more evenly spread across the y-range,
making it easier to reason about them. To test the value of log-
filtering, all the data was passed through one of two filters:

1) none; i.e. no change;
2) logNums; i.e. logarithmic filtering. To avoid numerical

errors with ln(0), all numbers under 0.000001 are re-
placed with ln(0.000001).

V. LEARNERS

The above data was passed to three learners from the WEKA
data mining toolkit [?]: OneR, J48, and Näive Bayes6. This
section describes those learners.

Holte’s OneR algorithm [?]. builds prediction rules using
one or more values from a single attribute attribute. For
example, OneR executing on the kc4 data set can return:

EDGE_COUNT:
< 2.99 -> defect-free
>= 2.99 -> defective

which may be read as follows: “a module is defect-free if its
edge count is less than 2.99”.

OneR was chosen to test the value of predictors based on
simple thresholds on single attributes. For an example of such
a simple threshold, recall that McCabe recommends inspected
modules that satisfy: v(g) > 10 or iv(g) > 4. Several other
example thresholds exist in defect prediction literature:

• Chapman and Solomon advocate predicting defects using
v(g) > 20 or ev(g) > 8 [?];

• In early work we advocated ev(g) > 7 or lines of code >
118 [?] (based on this study, we now reject that old
advice).

OneR can only return simple thresholds on single attributes.
If predictors built by OneR were as good as any other, then
that would support the use of simple thresholds such as those
advocated by McCabe, Chapman, et al..

One way to view OneR’s defect predictions rules is a deci-
sion tree of maximum depth one whose leaves are either the

6Available from http://www.cs.waikato.ac.nz/∼ml/weka/
index downloading.html.

label defective or defect-free. The J48 learner builds decision
trees of any depth. For example, J48 executing on the kc4 data
set can return:

CALL_PAIRS <= 0: defect-free
CALL_PAIRS > 0
| NUMBER_OF_LINES <= 3.12: defect-free
| NUMBER_OF_LINES > 3.12
| | NORMALIZED_CYLOMATIC_COMPLEXITY <= 0.02
| | | NODE_COUNT <= 3.47: defective
| | | NODE_COUNT > 3.47: defect-free
| | NORMALIZED_CYLOMATIC_COMPLEXITY>0.02: defective

which may be read as follows: “a module is defective if it has
non-zero call-pairs and has more than 3.12 lines and hasn’t a
low normalized cyclomatic complexity (0.02) or it has a low
normalized cyclomatic complexity and a low node-count (up
to 3.47)”.

Note that J48 predictors can be more complex and explore
more special cases than OneR. J48’s predictors would out-
perform OneR if defect prediction required such elaboration.

J48 is a JAVA implementation of Quinlan’s C4.5 (version
8) algorithm [?]. The algorithm recursively splits a data set
according to tests on attribute values in order to separate
the possible predictions (although attribute tests are chosen
one at a time in a greedy manner, they are dependent on
results of previous tests). C4.5/J48 uses information theory
to assess candidate splits: the best split is the one that most
simplifies the target concept. Concept simplicity is measured
using information theory. Suppose a data set has 80% defect-
free modules and 20% defective modules. Then that data set
has a class distribution C0 with classes c(1) = defect− free
and c(2) = defective with frequencies n(1) = 0.8 and
n(2) = 0.2. The number of bits required to encode an arbitrary
class distribution C0 is H(C0) defined as follows:

N =
∑

c∈C n(c)
p(c) = n(c)/N

H(C) = −
∑

c∈Cp(c)log2p(c)

 (1)

A split divides C0 (before the split) into C1 and C2 (after
the split). The best split leads to the simplest concepts; i.e.
maximize H(C0)− (H(C1) + H(C2)).

Another way to build defect predictors is to use a Näive
Bayes data miner. Such data miners employ a simplified
version of Bayes theorem to predict if a module is defective
or not. The posterior probability of each class (“defective”
or “defect-free”) is calculated, given the attributes extracted
from a module; e.g. lines of code, the McCabe attributes,
the Halstead attributes, etc. The module is assigned to the
possibility with the highest probability. This is straightforward
processing and involves simply estimating the probability of
attribute measurements within the historical modules. Simple
frequency counts are used to estimate the probability of dis-
crete attribute attributes. For numeric attributes it is common
practice to use the probability density function for a normal
distribution [?]:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2

where {µ, σ} are the attribute {mean,standard deviation}. To
be precise, the probability of a continuous attribute being a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 6

particular continuous value x is zero, but the probability that
it lies within a small region, say x ± ε/2, is ε × f(x). Since
ε is a constant that weighs across all possibilities, it cancels
out and needs not to be computed.

The above learning technology can be used to generate
defect predictors from data or to assess the value of differ-
ent portions of the data. Various attribute subset selection
algorithms [?] (hereafter, subsetting) find what attributes can
be deleted, without damaging the performance of the learned
predictor. Subsetting can be used independently of the learning
technique of choice, as a general method for data reduction.

The simplest and fastest subsetting method is to rank
attributes from the most informative to least informative. After
discretizing numeric data7 then if A is a set of attributes, the
number of bits required to encode a class after observing an
attribute is:

H(C|A) = −
∑

a∈A
p(a)

∑
c∈C

p(c|a)log2(p(c|a)

The highest ranked attribute Ai is the one with the largest
information gain; i.e the one that most reduces the encoding
required for the data after using that attribute; i.e.

InfoGain(Ai) = H(C)−H(C|Ai) (2)

where H(C) comes from Equation 1. In iterative InfoGain
subsetting, predictors are learned using the i = 1, 2..., N -
th top-ranked attributes. Subsetting terminates when i + 1
attributes perform no better than i. In exhaustive InfoGain sub-
setting, the attributes are first ranked using iterative subsetting.
Next, predictors are built using all subsets of the top j ranked
attributes. For both iterative and exhaustive subsetting, the
process is repeated 10 times using 90% of the data (randomly
selected). Iterative subsetting takes time linear on the number
of attributes N while exhaustive subsetting takes time 2j (so
it is only practical for small j ≤ N).

VI. EXPERIMENTAL DESIGN

This study used the (M=10)*(N=10)-way cross-evaluation
iterative attribute subset selection shown in Figure 7. The
study is nearly the same as the procedure defined in Hall and
Holmes’ subsetting experiments [?] (but we have added a data
filtering step). The data set is divided into N buckets. For each
bucket in a 10-way cross-evaluation, a predictor is learned on
the nine of the buckets, then tested on the remaining bucket.

Hall and Holmes advise repeating an N-way study M times,
randomizing the order each time. Many algorithms exhibit
order effects where certain orderings dramatically improve or
degrade performance [?] (e.g. insertion sort runs slowest if the
inputs are already sorted in reverse order). Randomizing the
order of the inputs defends against order effects.

These M*N studies implements a hold out study which,
as argued above, is necessary to properly assess the value of
learned predictor. Hold out studies are the referred evaluation
method when the goal is to produce predictors intended to
predict future events [?].

7E.g. given an attribute’s minimum and maximum values, replace a particu-
lar value n with (n−min)/((max−min)/10). For more on discretization,
see [?].

M = 10
N = 10
All = 38 # all the attributes
DATAS=(cm1 kc3 kc4 mw1 pc1 pc2 pc3 pc4) # data set list
FILTERS= (none logNums) # filter list
LEARNERS= (oneR j48 nb) # learner list

for data in DATAS
for filter in FILTERS

data’ = filter(data)
rank data’ attributes via InfoGain # Equation 2
for i = 1,2,3, All

attribute’ = the i-th highest ranked attributes
data’’ = select attributes’ from data’
repeat M times

randomized order from data’’
generate N bins from data’’
for i in 1 to N

tests = bin[i]
trainingData = data’’ - tests
for learner in LEARNERS

METHOD = (filter attributes’ learner)
predictor = learner(trainingData)
RESULT[METHOD] = apply predictor to tests

Fig. 7. This study. Data is filtered and the attributes are ranked using
InfoGain. The data is then shuffled into a random order and divided into
10 bins. A learner is then applied to a training set built from nine of the bins.
The learned predictor is test on the remaining bin.

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
D

=
pr

ob
ab

ili
ty

 o
f d

et
ec

tio
n

PF= probability of false alarm

risk-adverse region

cost-
adverse
region

PF=PD=no
information

negative
curve

preferred curve

Fig. 8. Regions of a typical ROC curve.

The 10*10-way study was wrapped inside scripts that ex-
plored different subsets of the attributes in the order suggested
by InfoGain (Equation 2). In the inner-most loop of the study,
some method was applied to some data set. As shown in
the third last line of Figure 7, these methods were some
combination of filter, attributes’, learner.

VII. ASSESSING PERFORMANCE

The performance of the learners on the MDP data was
assessed using receiver-operator (ROC) curves. Formally, a
defect predictor hunts for a signal that a software module is
defect prone. Signal detection theory [?] offers ROC curves
as an analysis method for assessing different predictors. A
typical ROC curve is shown in Figure 8. The y-axis shows
probability of detection (pd) and the x-axis shows probability
of false alarms (pf). By definition, the ROC curve must
pass through the points pf = pd = 0 and pf = pd = 1
(a predictor that never triggers never makes false alarms; a
predictor that always triggers always generates false alarms).
Three interesting trajectories connect these points:

1) A straight line from (0,0) to (1,1) is of little interest

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 7

module found in defect logs?
no yes

signal no (i.e. v(g) < 10) A = 395 B = 67
detected? yes (i.e. v(g) ≥ 10) C = 19 D = 39

pd = Prop.detected = 37%

pf = Prob.falseAlarm = 5%

notPf = 1− pf = 95%

bal = Balance = 45%

Acc = accuracy = 83%

Fig. 9. A ROC sheet assessing the predictor v(g) ≥ 10. Each cell {A,B,C,D}
shows the number of modules that fall into each cell of this ROC sheet. The
bal (or balance) variable is defined below.

since it offers no information: i.e. the probability of a
predictor firing is the same as it being silent.

2) Another trajectory is the negative curve that bends away
from the ideal point. Elsewhere [?], we have found that
if predictors negate their tests, the negative curve will
transpose into a preferred curve.

3) The point (pf = 0, pd = 1) is the ideal position
(a.k.a. “sweet spot”) on a ROC curve. This is where we
recognize all errors and never make mistakes. Preferred
curves bend up towards this ideal point.

In the ideal case, a predictor has a high probability of
detecting a genuine fault (pd) and a very low probability
of false alarm (pf). This ideal case is very rare. The only
way to achieve high probabilities of detection is to trigger the
predictor more often. This, in turn, incurs the cost of more
false alarms.

Pf and pd can be calculated using the ROC sheet of
Figure 9. Consider a predictor which, when presented with
some signal, either triggers or is silent. If some oracle knows
whether or not the signal is actually present, then Figure 9
shows four interesting situations. The predictor may be silent
when the signal is absent (cell A) or present (cell B). Alterna-
tively, if the predictor registers a signal, sometimes the signal
is actually absent (cell C) and sometimes it is present (cell D).

If the predictor registers a signal, there are three cases of
interest. In one case, the predictor has correctly recognized the
signal. This probability of this detection is the ratio of detected
signals, true positives, to all signals:

probability detection = pd = recall = D/(B + D) (3)

(Note that pd is also called recall.) In another case, the
probability of a false alarm is the ratio of detections when
no signal was present to all non-signals:

probability false alarm = pf = C/(A + C) (4)

For convenience, we say that notPf is the complement of pf :

notPf = 1− C/(A + C) (5)

Figure 9 also lets us define the accuracy, or acc, of a predictor
as the percentage of true negatives and true positives:

accuracy = acc = (A + D)/(A + B + C + D) (6)

If reported as percentages, these attributes have the range:

0 ≤ acc%, pd%, , notPf% ≤ 100

Ideally, we seek predictors that maximize acc%, pd%, notPf%.
Note that maximizing any one of these does not imply high

values for the others. For example Figure 9 shows an example
with a high accuracy (83%) but a low probability of detection
(37%). Accuracy is a good measure of a learner’s performance
when the possible outcomes occur with similar frequencies.
The data sets used in this study, however, have very uneven
class distributions (see Figure 3). Therefore this paper will
assess its learned predictors using bal, pd, notPf and not acc.

In practice, engineers balance between pf and pd. To
operationalize this notion of balance, we define bal to be the
Euclidean distance from the sweet spot pf = 0, pd = 1 to a
pair of < pf, pd >. For convenience, we (a) normalize bal by
the maximum possible distance across the ROC square (

√
2);

(b) subtract this from 1; and (c) express it as a percentage; i.e.

balance = bal = 1−

√
(0− pf)2 + (1− pd)2

√
2

(7)

Hence, better and higher balances fall closer to the desired
sweet spot of pf = 0, pd = 1.

VIII. QUARTILE CHARTS OF PERFORMANCE DELTAS

Recall from Figure 7 that a method is some combination
of filter, attributes′, learner. This experiment generated
nearly 800,000 performance deltas (defined below) comparing
pd, notPf, bal values from different methods applied to the
same test data.

The performance deltas were computed using simple sub-
traction, defined as follows. A positive performance delta for
method X means that method X has out-performed some other
method in one comparison. Using performance deltas, we say
that the best method is the one that generates the largest
performance deltas over all comparisons.

The performance deltas for each method were sorted and
displayed as quartile charts. To generate these charts, the
performance deltas for some method were sorted to find the
lowest and highest quartile as well as the median value; e.g.

lowest quartilez }| {
−59|{z}
min

,−19,−19,−16,−14,−10, −10|{z}
median

, 5, 14, 39,

highest quartilez }| {
42, 62, 69|{z}

max

In a quartile chart, the upper and lower quartiles are marked
with black lines; the median is marked with a black dot; and
vertical bars are added to mark (i) the zero point and (ii) the
minimum possible value and (iii) the maximum possible value
(in our case, -100% and 100%). The above numbers would
therefore be drawn as follows:

−100% u 100%

We prefer quartile charts of performance deltas to other
summarization methods for M*N studies. Firstly, they offer
a very succinct summary of a large number of experiments.
For example, Figure 10 display 200,000 performance deltas in
1
4 of a page. Secondly, they are a non-parametric display; i.e.
they make no assumptions about the underling distribution.
Standard practice in data mining is to compare the mean

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 8

Pd:
method median

logNums.nb 52.4 -100% u 100%

none.nb 0.0 -100% u 100%

none.j48 0.0 -100% u 100%

logNums.j48 0.0 -100% u 100%

none.oneR -16.7 -100% u 100%

logNums.oneR -16.7 -100% u 100%
NotPf=100− pf

method median

logNums.j48 0.0 -100% u 100%

none.j48 0.0 -100% u 100%

logNums.oneR 0.3 -100% u 100%

none.oneR 0.3 -100% u 100%

none.nb -2.3 -100% u 100%

logNums.nb -26.0 -100% u 100%
Balance

method median

logNums.nb 22.1 -100% u 100%

none.nb 3.7 -100% u 100%

none.j48 0.0 -100% u 100%

logNums.j48 0.0 -100% u 100%

logNums.oneR -11.8 -100% u 100%

none.oneR -11.8 -100% u 100%

Fig. 10. Performance deltas for pd, notPf, bal using all 38 attributes.
.

performance of different methods using t-test [?]. T-tests are a
parametric method that assume that the underling population
distribution is a Gaussian. Recent results suggest that there are
many statistical issues left to explore regarding how to best
to apply those t-tests for summarizing M*N-way studies [?].
Such t-tests assume Gaussian distributions and some of our
results are clearly non-Gaussian:

• The Näive Bayes performance delta pd results (using
logNums) of Figure 10 exhibits an extreme skewness (a
median point at 52.4 with a quarter of the performance
deltas pushed up towards the maximum figure of 100%).

• All the OneR performance delta pd results of Figure 10
are highly skewed. OneR’s pd performance delta was
never higher than 16.7 and over half the performance
deltas for that method had that value (hence, the missing
upper arms in the OneR results of Figure 10).

For the sake of completeness, we applied t-tests when
sorting quartile charts: one quartile chart appears above its
neighbor if it was statistically different (at the 95% confidence
level) and has a larger mean. However, given the skews we
are seeing in the data, we base our conclusions on stand-
out effects seen in the non-parametric quartile diagrams. A
stand-out effect is a large and positive median with a highest
quartile bunched up towards the maximum figure. The pd
results for Näive Bayes (with logNums) are an example of
such a stand-out effect. On the other hand, OneR’s pd results
are a negative stand-out: those performance deltas tend to
bunch down towards -100%; i.e. in terms of pd, OneR usually
performs much worse than anything else.

Balance:
#attributes median

3 10.0 -100% u 100%

38 8.0 -100% u 100%

2 0.0 -100% u 100%

1 -30.7 -100% u 100%

Fig. 11. On balance performance deltas of Näive Bayes (with logNums)
using just the best 1,2, or 3 attributes, or all 38 attributes.

IX. RESULTS

Näive Bayes with a log-transform has both a positive stand-
out result for pd and a negative stand-out result for notPf .
This result, of winning on pd, but losing on pf , is to be
expected. Figure 8 showed that the cost of high pds are higher
pfs. The other learning methods cannot emulate the high pds
of Näive Bayes (with log-transforms) since they take less
chances (hence, have lower false alarm rates).

The balance results of Figure 10 combines the pd and pf
results, using Equation 7. On balance, with 38 attributes:

• OneR loses more often than it wins: observe that OneR
has a negative median balance.

• The best method, on balance, is clearly Näive Bayes
with log-transforms since it has a minority of negative
balance performance deltas (only 25%); and it beats other
methods by 22.1% (or more) half the time.

A review of the J48 and OneR quartile charts in the
Figure 10 shows that J48 out-performs OneR in terms of pd
and notPf and bal. That is, for these data sets, predictors that
use simple threshold comparisons (e.g. OneR) perform worse
that predictors built from more elaborate decision trees (e.g.
J48).

Since, on balance logNums.nb performs best, the rest of this
article only presents the subsetting results for that method.
Initial experiments with iterative InfoGain subsetting showed
that all but one of the data sets (pc1) could be reduced
from 38 to three attributes without degrading the on-balance
performance. However, iterative subsetting selected seven at-
tributes for PC1. Therefore, for that data set only, exhaustive
subsetting was performed on 27 subsets to find the three best
attributes.

These InfoGain results were then compared to various other
subsetting methods: CFS [?]; Relief [?], [?]; and CBS [?].
Measured in terms of pd or nofPf or balance, or number of
selected attributes, there was no apparent advantage in using
these other subsetting methods instead of InfoGain

Figure 11 shows the InfoGain results for Näive Bayes
with logNums. On balance, large reductions in the number of
attributes are possible, without compromising the performance
of the learned predictor. Using two or three attributes worked
as well as using 38 attributes. However, using only one
attribute resulted in inferior performance.

All the results up to this point have been comparisons be-
tween different methods. Having determined that Näive Bayes
(with logNums) is our preferred method, the next question
is how well does that method perform in absolute terms. To
test that, in Figure 12, a standard 10*10-way experiment with
attribute subset-selection was performed (hence, each line in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 9

% selected attributes selection
data N pd pf (seeFigure 13) method
pc1 100 48 17 3, 35, 37 exhaustive subsetting

mw1 100 52 15 23, 31, 35 iterative subsetting
kc3 100 69 28 16, 24, 26 iterative subsetting

cm1 100 71 27 5, 35, 36 iterative subsetting
pc2 100 72 14 5, 39 iterative subsetting
kc4 100 79 32 3, 13, 31 iterative subsetting
pc3 100 80 35 1, 20, 37 iterative subsetting
pc4 100 98 29 1, 4, 39 iterative subsetting
all 800 71 25

Fig. 12. Best defect predictors learned in this study. Mean results from Näive
Bayes after a 10 repeats of (i) randomize the order of the data; (ii) divide that
data into ten 90%:10% splits for training:test. Prior to learning, all numerics
where replaced with logarithms. InfoGain was then used to select the best two
or three attributes shown in the right-hand column (and if “three” performed
as well as “two”, then this table shows the results using “two”).

frequency
ID in Figure 12 what type
1 2 loc blanks locs
3 2 call pairs misc
4 1 loc code and command locs
5 2 loc comments locs
13 1 edge count misc
16 1 loc executable locs
20 1 I H (derived Halstead)
23 1 B H (derived Halstead)
24 1 L H (derived Halstead)
26 1 T H (derived Halstead)
31 2 node count misc
35 3 µ2 h (raw Halstead)
36 1 µ1 h (raw Halstead)
37 2 number of lines locs
39 2 percent comments misc

Fig. 13. Attributes used in Figure 12, sorted into the groups of Figure 5.

Figure 12 shows the results of 10*10=100 experiments on
the smallest useful attribute subset). On average, Näive Bayes
(with logNums) built predictors with mean pd = 71%, and
mean pf = 25%.

The Figure 12 results are better than they first appear:
• Recall from Figure 3 that the number of defective mod-

ules may be very small: the most extreme example of this
is PC2 with only 0.4% defective modules. It is somewhat
of an achievement that, for PC2, our methods yielded
{pd = 72%, pf = 14%} for such a tiny target.

• The best we have achieved in the past with cross-
validation was a mean pd was under 50% [?] (recall
Figure 2). In those experiments, the only way to achieve
a pd > 70% was to accept aore50% false alarm rate [?],
[?] The results of Figure 11 results have much higher pds
and lower pfs.

One interesting aspect of Figure 12 is that different data
sets selected very different “best” attributes (see the selected
attribute column). This aspect can be explained by Figure 14
which shows the InfoGain of all the attributes in an MDP data
set (KC3). Note how the highest ranked attributes (those on
the left-hand-side) offer very similar information. That is, there
are no clear winners so minor changes in the training sample
(e.g. the 90% sub-sampling used in subsetting or a cross-
validation study) can result in the selection of very different
“best” attributes.

The pattern of InfoGain values of Figure 14 (where there

0.100

 0.075

0.050

 0.025

 0

 38 32 24 16 8 1

In
fo

G
ai

n(
A

i)

Attributes Ai, sorted by InfoGain

Fig. 14. InfoGain for KC3 attributes. Calculated from Equation 2. Lines
show means and t-bars show standard deviations after 10 trials on 90% of the
training data (randomly selected).

are many alternative “best” attributes) repeats in all the MDP
data sets. This pattern explains a prior observation of Shepperd
& Ince who found 18 publications where an equal number of
studies reporting that the McCabe cyclomatic complexity is the
same; is better; or is worse than lines of code in predicting
defects [?]. Figure 14 motivates the following principles:

• Don’t seek “best” subsets of static code attributes.
• Rather, seek instead for learning methods that can com-

bine multiple partial defect indicators (e.g. the statistical
methods of Näive Bayes).

X. CONCLUSION

These results strongly endorse building defect predictors
using Näive Bayes (with logNums). The combination of
learner+filter generated predictors with average results of pd =
71% and pf = 25% (see Figure 12). This is an interesting
result since, as mentioned above, if static code attributes
capture so little about source code (as argued by Shepherd,
Ince, Fenton and Pfleeger), then we would expect much lower
probabilities of defection and much higher false alarm rates.

Our results also comment on the relative merits of certain
learners. Based on these experiments, we would reject the use
of simple thresholds for defect prediction. If simple thresholds
such as v(g) > 10 ∨ iv(g) > 4 were the best defect predictors,
then two results would be predicted. Firstly, the single attribute
tests of OneR would perform as well as the multiple tests of
J48. Secondly, the subsetting methods would select attribute
sets of size one. Neither of these results were seen in Figure 10
and Figure 11.

This experiment was also negative regarding the merits of
building intricate decision trees to predict defects. Recalling
Figure 10, Näive Bayes (with logNums) out-performed J48.
We offer two explanations why Näive Bayes with logNums
out-performs our prior work:

• Recalling Figure 6, it is possible that code defects are
actually associated in some log-normal way to static code
attributes. Of all the methods studied here, only Näive
Bayes (with logNums) was able to directly exploit this
association.

• Recalling Figure 14, many of the static code attributes
have similar information content. Perhaps defect detec-
tion is best implemented as some kind of thresholding
systems; i.e. by summing the signal from several partial

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. W, NO. X, YYY 200Z 10

indicators. Of all the learners used in this study, only the
statistical approach of Näive Bayes can sum information
from multiple attributes.

The best attributes to use for defect prediction vary from
data set to data set. Hence, rather than advocating a particular
subset of possible attributes as being the best attributes, these
experiments suggest that defect predictors should be built
using all available attributes, followed by subsetting to find
the most appropriate particular subset for a particular domain.

In summary we endorse the use of static code attributes from
predicting detects with the following caveat. Those predictors
should be treated as probabilistic, not categorical, indicators.
While our best methods have a non-zero false alarm, they
also have a usefully high probability of detection (over 2

3 rds).
Just as long as users treat these predictors as indicators and
not definite oracles, then the predictors learned here would
be pragmatically useful for (e.g.) focusing limited verification
and validation budgets on portions of the code base that are
predicted to be problematic.

Since we are optimistic about using static code attributes, we
need to explain prior pessimism about such attributes (e.g. [?],
[?]):

• Prior work would not have found good predictors if that
work had focused on attribute subsets, rather than the
learning methods. Figure 12 shows that the best attribute
subsets for defects predictors can change dramatically
from data set to data set. Hence, conclusions regarding the
best attribute(s) are very brittle; i.e. may not still apply
when we change data sets.

• Also, prior work would not have found good predictors
if that work had not explored a large space of learning
methods. It took much searching for this study to find
a data mining method with a performance better than
random noise. Figure 10 shows that, of the six methods
explored here, only one (Näive Bayes with logNums) had
a median performance that was both large and positive.

More generally, our high-level conclusion is that it is no
longer adequate to assess defect learning methods using only
one data set and only one learner. Further research should
assess the merits of their proposed techniques via extensive
experimentation.

XI. FUTURE WORK

The role of any baseline experiment, such as the one offered
here, is to be superseded by subsequent results. Paradoxically,
this paper will be a success if it is quickly superseded. Our
hope is that numerous researchers repeat our experiments
and discover learning methods that are superior to the one
proposed here.

There are many ways to design learning methods that could
out-perform the results of this paper. Here, we list just two:

• With regard to pre-processing the numerics, we might be
able to do even better than our current results. Dougherty
et.al. [?] report spectacular improvements in the perfor-
mance of Näive Bayes via the use of better numeric pre-
processing than just simple log-filtering.

• The Halstead and McCabe attributes were defined in the
1970s and complier technology has evolved considerably
since then. Halstead and McCabe are intra-module met-
rics and with modern intra-procedural data flow analysis,
it should be possible to define a new set of 21st century
inter-module metrics that yield better defect predictors.

REFERENCES

Dan Baker is a student.

Jeremy Greenwald is a graduate student in the
Computer Science Department at Portland State Uni-
versity. He received his BS in Physics and Astron-
omy from the University of Pittsburgh in 2001. He
has over six years of research experience in numeric
methods and data mining. His master thesis focuses
on comparative study of data mining techniques and
equivalences with numeric optimization techniques.
He also has interned at a software development firm
in Beaverton, Oregon. His expected graduation date
from PSU is late 2006.

Art Frank Art Frank is an undergraduate student
pursuing a BS in Computer Science at Portland
State University. He is currently working as an IT
Manager and Database Administrator at a large non-
profit organization in Portland, Oregon.

