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Learning Defect Predictors
Tim Menzies, Member, IEEE, Jeremy Greenwald, Art Frank

Abstract— The value of using static code measures to learn
defect detectors has been widely debated. Contrary to prior
pessimism, we show here such defect predictors are demon-
strably useful. Such measures can yield predictors with a mean
probabilities of detection of 71% and mean false alarms rates
of 25%. These predictors have their limitations (non-zero false
alarm rates) but would still be useful for (e.g.) prioritizing a
resource-bound exploration of code that has yet to be inspect.

I. INTRODUCTION

There are many forms of software assessment: manual
inspections, automatic formal methods, etc. These methods
differ in their effectiveness and the effort required to apply
them. Typically, the more effective methods are more expen-
sive. Project managers hence skew the assessment resources,
with the most effort going to methods that seem most useful.

If most of the assessment effort explores project artifacts
A,B,C,D, then that leaves a blind spot in E,F,G,H,I,.... Blind
spots are a serious problem with modern software. Leveson
remarks that in modern complex systems, unsafe operations
often result from an unstudied interaction between compo-
nents [1]. Lutz and Mikulski [2] found one such interaction
in NASA deep-space satellites: mission critical anomalies of
flight software can result from errors in ground software that
fails to correctly collect data from the flight systems.

The ideal blind spot sampling policy is rapid and cheap to
apply. It should be fully automatic and use information that is
easily and quickly collected from a project. Our proposal is to
control blind spot sampling using data miners to learn defect
predictors from static code measures. Such measures include
line counts, or the McCabe [3]/Halstead [4] measures.

The value of these static code measures remains an open
issue. Much has been be written about the merits, or otherwise,
of assessing code quality using static code measures. Many
writers such as Fenton and Ohlsson [5] and Shepperd and
Ince [6] are quite scathing in their critique of these measures,
arguing that they reveal little (perhaps even nothing) about the
quality of their code. Nevertheless, these measures can be au-
tomatically and cheaply collected, and hence are widely used
in industry. For example, verification and validation (V&V)
textbooks advise using static code complexity measures to
decide which modules are worthy of manual inspections [7].
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Many researchers use static measures to guide software quality
predictions; e.g. [3], [4], [8]–[25].

Recently, more public domain data sets have become avail-
able from the NASA Metrics Data Program (or MDP1). Using
the MDP data, a 10*10-way evaluation of three learners
exploring numerous subsets of the attributes in eight data sets,
filtered in one of two ways (all the terms in italics are defined
below). The clear conclusion from this experimentation, is that
static code measures are indeed useful for predicting quality.
Our learned predictors have a mean pd = 71% (probability of
detection) and a mean pf = 25% (probability of false alarm).

An important feature of this work is that it is reproducible.
Many writers have argued for repeatable software engineering
results [26], [27]. However, so far, there have been all too few
examples of such reproducible experiments. Accordingly, all
the data and scripts and learners used in the study are available
on-line so others can repeat, refute, or improve on the results
shown here.

As far as we know, this is the most extensive, reproducible
and (measured in terms of number of data sets), the most
diverse study of learning defect predictors yet reported. Prior
studies based their conclusions on fewer data sets; e.g. one
data set [11], [17]; two data sets [5]). Further, our new results
are much better than all our prior results [9], [18], [20], [21],
[28].

These results both endorse the use of static code defect
detectors for blind-spot sampling and explain prior pessimism
about such detectors [5], [6]. Much of that prior work debated
issues like “McCabes vs Halstead vs lines of code counts”.
We show below that the choice of learning method is far more
important than which subset of the available data is used for
learning. Further, it took much searching for this study to find
a data mining method with a performance better than random
noise. Prior work might have been more pessimistic since that
prior work explored less-informative issues such as “McCabe
vs lines of code” and did not explore a wide enough range of
learning methods.

II. HYPOTHESES

This study comments on eleven hypotheses relating to the
merits of defect predictors learned from static measures.

Numerous researchers have claimed the measures extracted
from source code can be used to predict which new modules
will be defective. Initially, intra-module2 measures were pro-
posed to predict detects. Halstead and McCabe argued that the
complexity of reading a single module [4] or the pathways
through a module [3] were predictors for module defects.
Tacitly, Halstead and McCabe were arguing:

1http://mdp.ivv.nasa.gov
2Here, “module” is a synonym for the smallest compilable unit in a

language; e.g. a “C” function or a PASCAL procedures or a JAVA method.
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Hypothesis 1: Static code measures predict for defects.
Hypothesis 2: There are better intra-module measures than

lines of code for predicting for defects.
Fenton and Pfleeger [26] disagree with Hypothesis 1.

They offer examples where the same module functionality
is achieved via different programming language constructs
resulting in different intra-module measurements. They use this
example to argue the uselessness of static code measures.

This study will explore numerous other hypotheses. For
example, since Halstead published after McCabe, we can
assume that Halstead was arguing:

Hypothesis 3: The Halstead measures are better than the
McCabe measures building defect predictors.

Using his base measures, Halstead defined a set of derived
attributes that, supposedly, describe the complexity of the
reading source code. Halstead assumes that:

Hypothesis 4: There is added value in the derived Halstead
attributes.

A common use of McCabe’s is to use his preferred rule
(v(g) > 10 ∨ iv(g) > 4) as a defect predictor. This assumes:

Hypothesis 5: Disjunctions of single attribute thresholds
suffice for defect prediction.

Other researchers have challenged this assumption, pre-
ferring instead to build predictors using decision tree learn-
ers [22], [23], [25]. Each branch of a decision tree is a
conjunction of tests on attribute thresholds. All the branches
form one large disjunction (i.e. this branch OR that branch
OR that branch OR. . . ). Proponents of decision trees assume:

Hypothesis 6: Defect predictions are best made by disjunc-
tions of conjunctions of attribute thresholds.

Elsewhere, we have used NäiveBayes classifiers as a method
for learning defect detectors [9]. Such classifiers make no
use of disjunctions or conjunctions. Rather, they compare the
product of probabilities that a new example falls into one class
or another. Proponents of NäiveBayes classifiers assume:

Hypothesis 7: Defect predictions are best made by products
of probabilities.

Decision tree learning and NäiveBayes classifiers are two
different kinds of learners. There any many more. Khosh-
goftaar, for example, has explored a very wide range of
learning methods such as to Poisson regression [15], to genetic
programming to k-means clustering [16], as well as many
others [17]. In our own previous work, for a while, we
advocated the use of various learners including a minimal set
contrast learners [19] and a minimalist discretization policy
called ROCKY [18]. Like Khoshgoftaar, our experimentation
with new learners was driven by the assumption that:

Hypothesis 8: Learning defect predictors is a hard problem
requiring intricate solutions.

Elsewhere, we have conducted limited experiments sug-
gesting that a logarithmic filter on all numeric values might
improve predictor performance [19]. Figure 1, on the left-
hand-side, shows some measures collected from the MDP cm1
data set. These values form a exponential distribution with
many small values and a few much larger values. The right-
hand-side of that figure shows the same values, after being
filtered through a logarithmic function. Note how the values
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Fig. 1. A McCabe’s metric from cm1: raw values on left, log-filtered on
right.

sub-system
system language data set # instances % defective
spacecraft instrument C cm1-05 506 9
storage management
for ground data

Java kc3 459 9

kc4 126 49
Db C mw1 404 7
Flight software for
earth orbiting satellite

C pc1-05 1,108 6

pc2 5,590 0.4
pc3 1,564 10
pc4 1,458 12

Fig. 2. Data sets used in this study. The datasets cm1-05 and pc1-05 updates
data sets cm1 and pc1 processed previously by the author; e.g. in [20].

are now more evenly spread across the y-range, making it
easier to reason about them. Figure 1 suggest that:

Hypothesis 9: Log-filtering of all numerics can improve
predictor performance.

All the MDP datasets contain miscellaneous attributes de-
scribing data that was easily available at the time of collection.
Several of these miscellaneous variables have no proponents
in the literature, yet are included under the assumption that:

Hypothesis 10: The more information, the better the
learned predictors.

The MDP data sets only refer to simple intra-module
measures. Much newer research has focused on what else can
be gleamed from source code. For example, the PolySpace
Verifier [10] checks for a variety of common program errors
such as out of bounds array index and uninitialized variables.
Other tools don’t just look at the current version of the source
code, but ask what is the rate of change in that source
code. Microsoft has a static code analysis tool that predicts
defects via churn; i.e. the percent change in the code seen
by a version control system [11]. Similarly, Hall, Nikora, and
Munson [12], [13] use uses churn to characterize problematic
software evolution paths. Beyond mere static code measures
are other automatic tools which, after decades of research, are
becoming practical for industrial applications such as runtime
monitoring [33], and model checking [34], and automatic
theorem proving [36]. Other promising avenues include Fenton
and Neil’s work on Bayesian modeling where data collection
and analysis is guided by an underlying causal model of factors
that influence software production [37]. These tools assume:

Hypothesis 11: There are better ways than intra-module
measures to find module defects.

III. DATA

The above hypotheses were explored using data from the
NASA Metrics Data Program (MDP). Ten such data sets are
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Fig. 3. Log-log plot of module sizes in the Figure 2 data.

available in that repository. Two of those data sets have a
different format to the rest and were not used in this study.
This left the eight, shown in Figure 2. Each instance of each
data sets describes certain aspects of a single module, plus
the number of defects known for that module. This data
comes from eight sub-systems taken from four systems. These
systems were developed in different geographical locations
across North America. Within a system, the sub-systems
shared some a common code base but did not pass personnel
or code between sub-systems. Figure 3 shows the module sizes
of our data; e.g. there are 126 modules in the kc4 data set,
most of them are under 100 lines of code, but a few of them
are over 1000 lines of code long.

Each data set was pre-processed removing the module
i.d. column (which is different for each row). Also, the
error count column was converted into a boolean called
defective? as follows: defective? = (error count ≥ 1).
Finally, the error density column was removed (since it can
be derived from line counts and error count).

The pre-processed data sets had 38 attributes, plus one target
class attribute attribute (defective?)3. These attributes fall into
the subsets shown in Figure 4. Most of the subsets are well
defined, with the exception of the misc group (misc is included
under Hypothesis 10). As to the other attributes, Halstead
argued that modules that are hard to read are more likely to
be fault prone [4]. Halstead estimates reading complexity by
counting the number of operators and operands in a module:
see the h measures of Figure 4. These three raw h Halstead
measures were then to compute the H: the eight derived
Halstead measures using the equations shown in Figure 4. In
between the raw and derived Halstead measures are certain
intermediaries (which don’t appear in the MDP data sets);

• µ = µ1 + µ2;
• minimum operator count: µ∗1 = 2;
• µ∗2 is the minimum operand count and equals the number

of module parameters.
Unlike Halstead, McCabe argued that the complexity of

pathways between module symbols are more insightful than
just a count of the symbols [3]. The first three lines of
Figure 4 shows McCabe three main measures for this pathway
complexity. These are defined as follows. A module is said

3The pre-processing script is available from http://promise.unbox.
org/CategoryMDP43.

most m = Mccabe v(g) cyclomatic complexity
iv(G) design complexity
ev(G) essential complexity

locs loc loc total (one line = one count
loc(other) loc blank

loc code and comment
loc comments
loc executable
number of lines (opening to clos-
ing brackets)

Halstead h N1 num operators
N2 num operands
µ1 num unique operators
µ2 num unique operands

H N length: N = N1 + N2

V volume: V = N ∗ log2µ
L level: L = V ∗/V where

V ∗ = (2 + µ2
∗)log2(2 + µ2

∗)
D difficulty: D = 1/L

I content: I = L̂ ∗ V where
L̂ = 2

µ1
∗ µ2

N2
E effort: E = V/L̂
B error est
T prog time: T = E/18 seconds

misc = Miscellaneous branch count
call pairs
condition count
decision count
decision density
design density
edge count
global data complexity
global data density
maintenance severity
modified condition count
multiple condition count
node count
normalized cyclomatic complexity
parameter count
pathological complexity
percent comments

Fig. 4. Measures used in this study.

to have a flowgraph; i.e. a directed graph where each node
corresponds to a program statement, and each arc indicates the
flow of control from one statement to another. The cyclomatic
complexity of a module is v(G) = e − n + 2 where G is a
program’s flowgraph, e is the number of arcs in the flowgraph,
and n is the number of nodes in the flowgraph [38]. The
essential complexity, (ev(G)) or a module is the extent to
which a flowgraph can be “reduced” by decomposing all
the subflowgraphs of G that are D-structured primes (also
sometimes referred to as “proper one-entry one-exit subflow-
graphs” [38]). ev(G) = v(G)−m where m is the number of
subflowgraphs of G that are D-structured primes [38]. Finally,
the design complexity (iv(G)) of a module is the cyclomatic
complexity of a module’s reduced flowgraph.

Finally, in order to test the value of logarithmic transforms
(Hypothesis 9), all the data was passed through two filters:

1) none; i.e. no change;
2) logNums: i.e. all numerics were replaced with their loga-

rithm. To avoid numerical errors with ln(0), all numbers
under 0.000001 were replaced with ln(0.000001).



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 1901 4

IV. LEARNERS

The data was passed to three learners from the WEKA
data mining toolkit [40]: OneR, J48, and NäiveBayes4. OneR
was chosen to test Hypothesis 6 (defect predictions can be
based on single attribute thresholds). This algorithm can only
generate single attribute rules. OneR builds classification rules
using one or more values from a single attribute attribute.
OneR does not support even simple logical functions such
as conjunction [41]. Hence, if OneR performs as well as the
other learners, then that would support Hypothesis 6.

Another reason for the use of OneR in this study was
to test Hypothesis 8 (that learning defect predictors ins a
hard task). In his text Experimental Methods for Artificial
Intelligence, Cohen advises comparing the performance of a
supposedly more sophisticated approach against a seemingly
stupider “straw man” method [42, p81]. After that comparison,
the merits of the more sophisticated methods would be doubted
if its performance was close to that of the “straw man”. Holte’s
OneR algorithm is the standard “straw man” data miner and
has been shown to perform remarkable well compared to
standard data miners on many commonly used data sets [41].

Hypothesis 6 argued that the combination of disjunctions
and conjunctions in a decision tree is the best way to learn a
defect predictor. To test this hypothesis, this study includes ex-
periments with the J48 learner. J48 is a JAVA implementation
of Quinlan’s C4.5 (version 8) algorithm. C4.5/J48 summarizes
the training data in the form of a decision tree [43]. The
algorithm recursively splits the training data according to tests
on attribute values in order to separate the classes (although
attribute tests are chosen one at a time in a greedy manner,
they are dependent on results of previous tests). C4.5/J48 uses
information theory to assess candidate splits: the best split is
the one that most simplifies the target concept. Concept sim-
plicity is measured using information theory as follows. The
class distribution C0 contains classes c(1), c(2), ... occurring
with frequencies n(1), n(2), .... The number of bits required
to encode C0 is H(C0) defined as follows:

N =
∑

c∈C n(c)
p(c) = n(c)/N

H(C) = −
∑

c∈Cp(c)log2p(c)
(1)

The splits divide C0 (before the split) into C1 and C2 (after
the split) and the best splits lead to the simplest concepts; i.e.
maximize H(C0)−H(C1) + H(C2).

Hypothesis 7 argued that the product of probabilities com-
puted by a NäiveBayes classifier is the best way to learn a
defect predictor. To test this hypothesis, this study includes
experiments with a NäiveBayes classifier. Such classifiers
employs a simplified version of Bayes formula to decide which
class a test instance belongs to. The posterior probability of
each class is calculated, given the feature values present in
the instance; the instance is assigned to the class with the
highest probability. This is a straightforward processing and
involves simply estimating the probability of attribute values
within each class from the training instances. Simple frequency

4Available from http://www.cs.waikato.ac.nz/˜ml/weka/
index_downloading.html.

counts are used to estimate the probability of discrete attribute
values. For numeric attributes it is common practice to use the
probability density function for a normal distribution [40]:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2

where {µ, σ} are the attribute {mean,standard deviation}5.
The above learning technology can be used to generate

theories from data or to assess the value of different portions of
the data. Various feature subset selection (FSS) algorithms [44]
find what attributes can be deleted, without damaging the
performance of the learned theory. The simplest and fastest
FSS method is to rank attributes from the most informative to
least informative. After discretizing numeric data, then if A
is a set of attributes, the number of bits required to encode a
class after observing an attribute is:

H(C|A) = −
∑

a∈A
p(a)

∑
c∈C

p(c|a)log2(p(c|a)

The highest ranked attribute Ai is the one with the largest
information gain; i.e the one that most reduces the encoding
required for the training data after using that attribute; i.e.

InfoGain(Ai) = H(C)−H(C|Ai) (2)

where H(C) comes from Equation 1. In iterative InfoGain
FSS, theories are learned using the i = 1, 2..., N -th top-ranked
attributes. FSS terminates when i + 1 attributes perform no
better than i. In exhaustive InfoGain FSS, the attributes are
first ranked using iterative FSS. Next, theories are built using
all subsets of the top j ranked attributes. For both iterative and
exhaustive FSS, the process is repeated 10 times using 90%
of the training data (randomly selected). Iterative FSS takes
time linear on the number of attributes N while exhaustive
FSS takes time 2j (so it is only practical for small j ≤ N ).

V. EXPERIMENTAL DESIGN

This studies used a (M=10)*(N=10)-way cross-evaluation
iterative feature subset selection study shown in Figure 5. In
such studies the training set is divided into N buckets. For
each bucket in a 10-way cross-evaluation, a theory is learned
on 90% of the data in the N − 1 buckets then tested on 10%
of the data from the remaining bucket.

It is considered good practice to repeat an N-way study
M times, randomizing the order each time. Many algorithms
exhibit order effects where certain orderings dramatically im-
prove or degrade performance (e.g. insertion sort runs slowest
if the inputs are already sorted in reverse order). Randomizing
the order of the inputs defends against order effects.

Such M*N-way studies orchestrate multiple experiments
where a learned theory is tested against data not seen during
training. In all, a 10*10-way study generates 100 training
sets t1, t2, .., t100 and 100 disjoint test sets t1, t2, .., T100 (i.e.
ti ∪ Ti = ∅). In the data mining literature, this is the pre-
ferred evaluation method when the goal is to produce theories
intended to predicting future as-yet-unseen events [40].

5To be precise, the probability of a continuous attribute being a particular
continuous value x is zero, but the probability that it lies within a small
region, say x± ε/2, is ε× f(x). Since ε is a constant that weighs across all
possibilities, it cancels out and needs not be computed.
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M = 10
N = 10
All = 38 # all the attributes
DATAS = (cm1 kc3 kc4 mw1 pc1 pc2 pc3 pc4)
FILTERS = (none logNums)
LEARNERS = (oneR j48 nb)

for data in DATAS
for filter in FILTERS

data’ = filter(data)
rank data’ attributes via InfoGain # Equation 2
for i = 1,2,3,.. ,All

some = data’s i-th highest ranked attributes
repeat M times

randomized order from "some"
generate N bins from "some"
for i in 1 to N

tests = bin[i]
trainingData = some - tests
for learner in LEARNERS

METHOD = (filter attributes learner)
theory = learner(trainingData)
RESULT[METHOD] = use theory on tests

Fig. 5. This study.
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The 10*10-way study was wrapped inside scripts that ex-
plored different subsets of the attributes in the order suggested
by InfoGain (Equation 2). In the inner most-loop of the study,
some method was applied to some data set. As shown in
the third last line of Figure 5, these methods were some
combination of filter, attributes, learner.

VI. PERFORMANCE MEASURES

The performance of the learners on the MDP data was
assessed using ROC curves. Formally, a defect detector hunts
for a signal that a software module is defect prone. Signal
detection theory [45] offers receiver operator characteristic
(ROC) curves as an analysis method for assessing different
detectors. A typical ROC curve is shown in Figure 6. The y-
axis shows probability of detection (pd) and the x-axis shows
probability of false alarms (pf ). By definition, the ROC curve
must pass through the points pf = pd = 0 and pf = pd = 1
(a detector that never triggers never makes false alarms; a
detector that always triggers always generates false alarms).
Three interesting trajectories connect these points:

1) A straight line from (0,0) to (1,1) is of little interest
since it offers no information: i.e. the probability of a

module found in defect logs?
no yes

signal no (i.e. v(g) < 10) A = 395 B = 67
detected? yes (i.e. v(g) ≥ 10) C = 19 D = 39

pd = Prop.detected = 37%

pf = Prob.falseAlarm = 5%

notPf = 1− pf = 95%

bal = Balance = 45%

Acc = accuracy = 83%

Fig. 7. A ROC sheet assessing the detector v(g) ≥ 10. Each cell {A,B,C,D}
shows the number of modules that fall into each cell of this ROC sheet.

detector firing is the same as it being silent.
2) Another trajectory is the negative curve that bends away

from the ideal point. Our experience has been that these
are detectors which, if their tests were negated, would
transpose into a preferred curve.

3) The point (pf = 0,pf = 1) is the ideal position
(a.k.a. “sweet spot”) on a ROC curve. This is where we
recognize all errors and never make mistakes. Preferred
curves bend up towards this ideal point.

In the ideal case, a detector has a high probability of
detecting a genuine fault (pd) and a very low probability of
false alarm (pd). This ideal case is very rare. The only way to
achieve high probabilities of detection is to trigger the detector
more often. This, in turn, incurs the cost of more false alarms.

Pf and pd can be calculated using the ROC sheet of
Figure 7. Consider a detector which, when presented with
some signal, either triggers or is silent. If some oracle knows
whether or not the signal is actually present, then Figure 7
shows four interesting situations. The detector may be silent
when the signal is absent (cell A) or present (cell B). Alterna-
tively, if the detector registers a signal, sometimes the signal
is actually absent (cell C) and sometimes it is present (cell D).

If the detector registers a signal, there are three cases of
interest. In one case, the detector has correctly recognized the
signal. This probability of this detection is the ratio of detected
signals, true positives, to all signals:

probability detection = pd = recall = D/(B + D) (3)

(Note that pd is also called recall.) In another case, the
probability of a false alarm is the ratio of detections when
no signal was present to all non-signals:

probability false alarm = pf = C/(A + C) (4)

For convenience, we say that notPf is the complement of pf :

notPf = 1− C/(A + C) (5)

Figure 7 also lets us define the accuracy, or acc, of a detector
as the percentage of true negatives and true positives:

accuracy = acc = (A + D)/(A + B + C + D) (6)

If reported as percentages, these measures have the range:

0 ≤ acc%, pd%, , notPf% ≤ 100

Ideally, we seek detectors that maximize acc%, pd%, notPf%.
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Note that maximizing any one of these does not imply
high values for the others. For example Figure 7 shows an
example with a high accuracy (83%) but a low probability of
detection (37%). Accuracy is a good measure of a learner’s
performance when the classes occur with similar frequencies.
The data sets used in this study, however, have very uneven
class distributions (see Figure 2). Therefore this paper will
assess its learned theories using bal, pd, notPf and not acc.

In practice, engineers balance between pf and pd. To
operationalize this notion of balance, we define bal to be the
Euclidean distance from the sweet spot pf = 0, pd = 1 to a
pair of < pf, pd >. For convenience, we (a) normalize bal by
the maximum possible distance across the ROC square (

√
2);

(b) subtract this from 1; and (c) express it as a percentage; i.e.

balance = bal = 1−

√(√
0− pf

)2 +
(√

1− pd
)2

√
2

(7)

Hence, better and higher balances fall closer to the desired
sweet spot of pf = 0, pd = 1.

VII. QUARTILE CHARTS OF PERFORMANCE DELTAS

Recall from Figure 5 that a method is some combination of
filter, attributes, learner. This experiment generated nearly
800,000 performance deltas comparing pd, notPf, bal values
from different methods applied to the same test data.

The performance deltas were computed using simple sub-
traction, defined as follows. A positive performance delta for
method X means that method X has out-performed some other
method in one comparison. Using performance deltas, we say
that the best method is the one that generates the largest
performance deltas over all comparisons.

The performance deltas for each method were sorted and
displayed as quartile charts. To generate these charts, the
performance deltas for some method were sorted to find the
lowest and highest quartile as well as the median value; e.g.

lowest quartilez }| {
−59|{z}
min

,−19,−19,−16,−14,−10, −10|{z}
median

, 5, 14, 39,

highest quartilez }| {
42, 62, 69|{z}

max

In a quartile chart, the upper and lower quartiles are marked
with black lines; the median is marked with a black dot; and
vertical bars are added to mark (i) the zero point and (ii) the
minimum possible value and (iii) the maximum possible value
(in our case, -100% and 100%). The above numbers would
therefore be drawn as follows:

−100% u 100%

We prefer quartile charts of performance deltas to other
summarization methods for M*N studies. Firstly, they offer
a very succinct summary of a large number of experiments.
For example, Figure 8 display 200,000 performance deltas in
1
4 of a page. Secondly, they are a non-parametric display; i.e.
they make no assumptions about the underling distribution.
Standard practice in data mining is to compare the mean
performance of different methods using t-test [40]. T-tests are
a parametric method that assume that the underling population

Pd:
method median

logNums.nb 52.4 -100% u 100%

none.nb 0.0 -100% u 100%

none.j48 0.0 -100% u 100%

logNums.j48 0.0 -100% u 100%

none.oneR -16.7 -100% u 100%

logNums.oneR -16.7 -100% u 100%

NotPf=100− pf
method median

logNums.j48 0.0 -100% u 100%

none.j48 0.0 -100% u 100%

logNums.oneR 0.3 -100% u 100%

none.oneR 0.3 -100% u 100%

none.nb -2.3 -100% u 100%

logNums.nb -26.0 -100% u 100%

Balance
method median

logNums.nb 22.1 -100% u 100%

none.nb 3.7 -100% u 100%

none.j48 0.0 -100% u 100%

logNums.j48 0.0 -100% u 100%

logNums.oneR -11.8 -100% u 100%

none.oneR -11.8 -100% u 100%

Fig. 8. Performance deltas for pd, notPf, bal using all 38 attributes.
.

distribution is a Gaussian. Recent results suggest that there are
many statistical issues left to explore regarding how to best to
apply those t-tests for summarizing M*N-way studies [46].
Such t-tests assume Gaussian distributions and some of our
results are clearly non-Gaussian:

• The NäiveBayes performance delta pd results (using
logNums) of Figure 8 exhibits an extreme skewness (a
median point at 52.4 with a quarter of the performance
deltas pushed up towards the maximum figure of 100%).

• All the OneR performance delta pd results of Figure 8 are
highly skewed. OneR’s pd performance delta was never
higher than 16.7 and over half the performance deltas
for that method had that value (hence, the missing upper
arms in the OneR results of Figure 8).

For the sake of completeness, we applied t-tests when
sorting quartile charts: one quartile chart appears above its
neighbor if it was statistically different (at the 95% confidence
level) and has a larger mean. However, given the skews we
are seeing in the data, we base our conclusions on stand-
out effects seen in the non-parametric quartile diagrams. A
stand-out effect is a large and positive median with a highest
quartile bunched up towards the maximum figure. The pd
results for NäiveBayes (with logNums) are an example of
such a stand-out effect.. On the other hand, OneR’s notPf
results are a negative stand-out: those performance deltas tend
to bunch down towards -100%; i.e. on the notPf measure,
OneR usually performs much worse than anything else.
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Balance:
#attributes median

3 10.0 -100% u 100%

38 8.0 -100% u 100%

2 0.0 -100% u 100%

1 -30.7 -100% u 100%

Fig. 9. On balance performance deltas of NaiveBayes (with logNums) using
just the best 1,2,3 attributes, or all 38 attributes.

VIII. RESULTS

NäiveBayes with a log-transform has both a positive stand-
out result for pd and a negative stand-out result for notPf .
This result, of winning on pd but losing on pf , is to be
expected. Figure 6 showed that the cost of high pds are higher
pfs. The other learning methods cannot emulate the high
pds of NäiveBayes (with log-transforms) since they take less
chances (hence, have lower false alarm rates).

The balance results of Figure 8 combines the pd and pf
results, using Equation 7. On balance, with 38 attributes:

• OneR loses more often than it wins: observe that OneR
has a negative median balance.

• The best method, on balance, is clearly NäiveBayes
with log-transforms since it has a minority of negative
balance performance deltas (only 25%); and it beats other
methods by 22.1% (or more) half the time.

A review of the J48 and OneR quartile charts in the Figure 8
shows that J48 out-performs OneR in terms of pd and notPf
and bal. That is, for these data sets, theories comprising
elaborate sets of conjunctions and disjunctions (i.e. J48’s
decision trees) perform better than than theories comprising
disjunctions of single attributes (i.e. OneR’s simple rules).

Since, on balance bayes.log performs best, the rest of this
article only presents the FSS results for that method. Initial
experiments with iterative InfoGain FSS showed that all but
one of the data sets (PC2) could be reduced from 38 to
three attributes without degrading the on-balance performance.
However, iterative FSS selected seven attributes for PC2.
Therefore, for that data set only, exhaustive FSS was per-
formed on 27 subsets. This procedure yielded two attributes
that worked as well as all 38.

These InfoGain results were then compared to various other
FSS methods: CFS [47]; Relief [48], [49]; and CBS [50].
Measured in terms of pd or nofPf or balance, or number of
selected attributes, there was no apparent advantage is using
these other FSS methods instead of InfoGain

Figure 9 shows the InfoGain results for NäiveBayes with
logNums. On balance, using two or three attributes worked as
well as using 38 attributes. However, using only one attribute
resulted in inferior performance.

In retrospect, this large reduction in the attribute space (from
38 attributes to just to two or three) should have been expected.
Figure 4 shows that many of the static code attributes are
correlated; e.g. the derived Halstead measures are computed
from the raw Halstead measures. It is hardly surprising that
such a highly correlated set of attributes can be reduced to a
smaller set without lose of overall performance.

Figure 10 shows more details of the performance of

% selected attributes selection
data N pd pf acc (seeFigure 11) method
cm1 100 71 27 73 5, 35, 36 iterative FSS
kc3 100 69 28 72 16, 24, 26 iterative FSS
kc4 100 79 32 73 3, 13, 31 iterative FSS

mw1 100 52 15 82 23, 31, 35 iterative FSS
pc1 100 48 17 81 3, 35, 37 iterative FSS
pc2 100 72 14 86 5, 39 exhaustive FSS
pc3 100 80 35 67 1, 20, 37 iterative FSS
pc4 100 98 29 74 1, 4, 39 iterative FSS
all 800 71 25 76

Fig. 10. Best defect predictors learned in this study. Mean results from a
NäiveBayes classifier after a 90%:10% split into training:test. Prior to learning,
all numerics where replaced with logarithms. InfoGain was then used to select
the best two or three attributes shown in the right-hand column (and if “three”
performed as well as “two”, then this table shows the results using “two”).

frequency
ID in Figure 10 what type
1 2 loc blanks locs
3 2 call pairs misc
4 1 loc code and command locs
5 2 loc comments locs
13 1 edge count misc
16 1 loc executable locs
20 1 I H (derived Halstead)
23 1 B H (derived Halstead)
24 1 L H (derived Halstead)
26 1 T H (derived Halstead)
31 2 node count misc
35 3 µ2 h (raw Halstead)
36 1 µ1 h (raw Halstead)
37 2 number of lines locs
39 2 percent comments misc

Fig. 11. Attributes used in Figure 10, sorted into the groups of Figure 4.

NäiveBayes (with logNums) on the different data sets using
the reduced attribute sets. On average, the methods proposed
here achieve mean accuracy = 76%, mean pd = 71%, and
mean pf = 25%. The Figure 10 results are actually better
than they first appear:

• Recall from Figure 2 that the number of defective mod-
ules may be very small: the most extreme example of this
is PC2 with only 0.4% defective modules. It is somewhat
of an achievement that, for PC2, our methods yielded
{pd = 72%, pf = 14%} for such a tiny target.

• The best we have achieved in the past with
cross-validation was a mean pd ≈ 50% and mean
pf ≈ 30..40% [18], [21]. The results of Figure 9 results
have higher pds and lower pfs.

One interesting aspect of Figure 10 is that different data
sets selected very different “best” attributes (see the selected
attribute column). This aspect can be explained by Figure 12
which shows the InfoGain of all the attributes in an MDP data
set. As might be expected in datasets with many correlated
attributes, the highest ranked attributes (those on the left-hand-
side) offer very similar information. That is, there are no clear
winners so minor changes in the training sample (e.g. the
90% sub-sampling used in FSS or a cross-validation study)
can result in the selection of very different “best” attributes.

The pattern of InfoGain values of Figure 12 (where there are
many alternative“best” attributes) repeats in all the MDP data
sets. This pattern explains an early observation of Shepperd
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Fig. 12. InfoGain for KC3 attributes. Calculated from Equation 2. Lines
show means and t-bars show standard deviations after 10 trials on 90% of the
training data (randomly selected).

and Ince who found 18 publications where an equal number of
studies report that the McCabe cyclomatic complexity is the
same; is better; or is worse than lines of code in predicting
defects [6]. Such conclusion instabilities is to expected in
data sets with numerous alternative “best” attributes. Figure 12
motivates the following conclusion: don’t seek “best” subsets
of static code measures. Rather, seek instead for learning
methods that can combine multiple partial defect indicators
(e.g. the statistical methods of NäiveBayes).

IX. REVIEW OF HYPOTHESES

Within the context of the above results, we can now com-
ment on our hypotheses. In the following, 3 and 7 denote
supported and unsupported hypotheses (respectively).

Hypothesis 1 (3): static code measures predict for defects.
This study used static code measures to generate predictors
with average results of accuracy = 76%, pd = 71% and
pf = 25% (see Figure 10). Such detectors are useful, at least
for blind-spot sampling.

Hypothesis 2 (3): There are better measures than lines of
code. Clearly, lines of codes by themselves are often inade-
quate. Most of the best attribute subsets shown in Figure 10
augmented the locs measures with non-loc measures.

Hypothesis 3 (3): Halstead measures are better than Mc-
Cabe measures. In this sample here, none of the best attributes
found in the best feature subsets of Figure 12 contained
the classic McCabe measures: v(g), iv(g), ev(g). However,
this conclusion should be treated with some caution (see the
remarks below relating to Hypothesis 10).

Hypothesis 4 (3): There is value added in the derived Hal-
stead measures. This hypothesis is supported since Figure 11
includes both raw and derived Halstead measures.

Hypothesis 5 (7): Single attribute disjunctions are enough.
If single attribute disjunctions such as v(g) > 10 ∨ iv(g) > 4
where the best defect detectors, then two results would be
predicted. Firstly, the single attribute tests of OneR would
perform as well as the multiple tests of J48. Secondly, the
FSS methods would select attribute sets of size one. Neither
of these results were seen in Figure 8 and Figure 9.

Hypothesis 6 (7): Disjunctions+conjunctions are enough.
Hypothesis 7 (3): Products of probabilities are enough.

NäiveBayes with logNums’ superior performance over J48 in
Figure 8 endorses Hypothesis 7, but not Hypothesis 6. We

offer two explanations why NäiveBayes with logNums out-
performs our prior work:

• Recalling Figure 1, it is possible that code defects are
actually associated in some log-normal way to static
code measures. Of all the methods studied here, only
NäiveBayes with logNums was able to directly exploit
this association.

• Recalling Figure 12, many of the static code measures
have similar information content. Perhaps defect detec-
tion is best implemented as some kind of thresholding
systems; i.e. by summing the signal from several partial
indicators. Of all the learners used in this study, only the
statistical approach of NäiveBayes can sum information
from multiple attributes.

Hypothesis 8 (7): Learning defect predictors requires in-
tricate solutions. Most of our results come from very simple
data mining technology: iterative InfoGain FSS over a basic
NäiveBayes classifier that assumed a single normal distribution
for its internal numerics. The NäiveBayes classifier used in
this study was capable of more elaborate kernel estimation,
but we disabled that feature. In the space of possible data
mining algorithms, iterative FSS over NäiveBayes is a very
simple method indeed. Hence, for the most part, we can’t
support Hypothesis 8. The one exception to this conclusion
comes from the PC2 results. Recall that PC2 had the lowest
defect rate (0.4%) and exhaustive FSS was required to find the
select the best attributes for this data set. It may be that for
the special case of very small target concepts, more intricate
solutions are required.

Hypothesis 9 (3): Log-filtering of all numerics improves
predictor performance. In Figure 8, log-filtering is clearly
associated with the stand-out results. With regard to pre-
processing the numerics, we might be able to do even better
than our current results. Dougherty et.al. [51] report spectacu-
lar improvements in the performance of NäiveBayes classifiers
via the use of better numeric pre-processing that just simple
log-filtering. In the near future, we will try their methods on
this domain.

Hypothesis 10 (3): The more information, the better the
learned predictors. Figure 10 shows the best attribute subsets
for different data sets can be different indeed. In the eight data
sets explored here, no particular attribute appeared in the best
attribute subsets more than three times. These best attributes
came from all measurement types and not just from (e.g.) the
Halstead set.

Clearly, the best attributes to use for defect detection vary
from data set to data set. Hence, rather than advocating a par-
ticular subset of possible measures as being the best measures,
these experiments suggest that defect detectors should be built
using all available attributes, followed by FSS to find the best
subset for a particular domain.

Hypothesis 11 (3): There are better ways than intra-module
measures to find module defects. The case was made above
that our current results are surprisingly good, particularly
since some of our datasets a very small number of defective
modules. Nevertheless, there is much room for improvements.
For example, higher pds and lower pfs would be preferred.
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X. FUTURE WORK

There is much current work on building better static code
measures (e.g. [10]–[13], [33], [34], [36], [37]) that could yield
better pd/pf results. To date, the results with these alternate
methods are promising, but hardly conclusive. For example,
Nagappan and Ball [11] report accuracies of 88.8% using
measures based on churn (rate of change in code base) but
that result is not directly comparable with the Figure 10 results.
Unlike our 10*10-way study, their study did not separate a test
set from a train set. That is, our results come from estimates of
errors on novel test cases while their results were self-tests; i.e.
came from testing their theory on their training data. Self-tests
over-estimate performance on data not used in training [40].
That is, our Figure 10 results might indeed be as good as
churn-based results.

In order to truly compare methods, comparative studies on
the same data must be performed. Such comparative studies
discussing are only just appearing (e.g. [52]) and it is too soon
to generalize their conclusions. Perhaps, in the future, there
will exist data sets with attributes created from intra-module
measurements as well as measures from a growing number of
new tools At that time, the experimental procedures defined
in this paper would be useful for assessing the relative merits
of these different tools.

XI. DISCUSSION

Our proposal is to use static code measures to control blind
spot sampling. An alternative to this proposal is to remove
the blind spots all together by better assessing the entire
system. This is impractical. Blind spots are unavoidable and
result from fundamental properties of software assessment and
the economics of software development. Software assessment
budgets are finite while assessment effectiveness increases
exponentially with assessment effort. For example:

• Black box probing: A linear increase in the confidence
C that we have found all defects can take exponentially
more effort. For example, for one-in-a-thousand detects,
moving C from 90% to 94% to 98% takes 2301, 2812,
and 3910 black box probes (respectively)6.

• Automatic formal methods: The state space explosion
problem imposes strict limits on how much a system can
be explored via automatic formal methods [30].

• Other methods: Lowry et.al. [31] and Menzies and Cu-
kic [32] offer numerous other examples where assessment
effectiveness is exponential on effort. For example, the
more complicated the tool, the better the user needs to
be. This is particularly true for tools that require temporal
logic constraints such as runtime monitoring [33] and
model checking [34]. However, it is also true for the more
complex static analysis tools such as Polyspace [35].

Exponential costs quickly exhaust finite resources. Hence,
the blind spots can’t be removed, and must be managed.

6A randomly selected input to a program will find a fault with probability
x. After N random black-box tests, the chances of the inputs not revealing
any fault is (1 − x)N . Hence, the chances C of seeing the fault is 1 −
(1 − x)N which can be rearranged to N(C, x) =

log(1−C)
log(1−x)

. For example,
N(0.90, 10−3) = 2301 [29].

Our proposal is to mix assessment methods. Standard prac-
tice is to apply the best available assessment methods on
the sections of the program that the best available domain
knowledge declares is most critical. We endorse this approach.
Clearly, the most critical sections require the best known
assessment methods. However, this focus on certain sections
can blind us to defects in other areas.

Therefore, standard practice should be augmented with a
lightweight sampling policy to prioritize the exploration the
rest of the system. Here, we have argued for a sampling policy
based static code measures assessed via InfoGain FSS and
summarized via NäiveBayes with logNums. This sampling
policy will always be incomplete. Nevertheless, it is the only
option when resources do not permit a complete assessment of
the whole system. Further, such a policy results in detectors
which can trigger on possibly error-prone modules. For the
sample explored here, those triggers had non-trivial levels of
performance (mean pd = 71%,mean pf = 25%).

Since we are optimistic about using static code measures,
we need to explain prior pessimism about such measures
(e.g. [5], [6]):

• Prior work would not have found good detectors if that
work had focused on attribute subsets, rather than the
learning methods. Figure 10 showed that the best attribute
subsets for defects detectors can change dramatically
from data set to data set. Hence, conclusions regarding
the best dataset are very brittle; i.e. may not still apply
when we change data sets.

• Prior work would not have found good detectors if that
work had not explored a large space of learning methods.
It took much searching for this study to find a data
mining method with a performance better than random
noise. Figure 8 shows that, of the six methods explored
here, only one (NäiveBayes with logNums) had a median
performance that was both large and positive.

In summary we endorse the use of static code measures from
predicting detects with the following caveat. Those predictors
should be treated as probabilistic, not categorical, indicators.
While our best methods have a non-zero false alarm, they
also have a usefully high probability of detection (over 2

3 rds).
Just as long as users treat these predictors as indicators
and not definite oracles, then the predictors learned here
would be pragmatically useful for (e.g.) focusing limited V&V
budgets on portions of the code base that are predicted to be
problematic.

XII. EXTERNAL VALIDITY

Like any empirical data mining paper, our conclusions are
biased according to what data was used to generate them.
Issues of sampling bias threaten any data mining experiment;
i.e. what matter there may not be true here. For example, the
sample used here comes from NASA and NASA works in a
particularly unique market niche.

Nevertheless, we argue that results from NASA are relevant
to the general software engineering industry. NASA makes
extensive use of contractors who are contractually obliged
(ISO-9O01) to demonstrate their understanding and usage
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of current industrial best practices. These contractors service
many other industries; e.g. Rockwell-Collins builds systems
for many government and commercial organizations. For these
reasons, other noted researchers such as Basili, Zelbowitz,
et.al. [39] have argued that conclusions from NASA data are
relevant to the general software engineering industry.

All inductive generalization suffers from a sampling bias.
The best we can do is define our methods and publicize
our data such that other researchers can try to repeat our
results and, perhaps, point out a previously unrealized bias
in our analysis. Hopefully, other researchers will emulate
our methods in order to repeat or refute or improve our
results. We would encourage such researchers to offer not
just their conclusions, but the data used to generate those
conclusions. The MDP is a repository for NASA data sets
and the PROMISE repository7 is a place to store and discuss
software engineering data sets from other organizations.
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