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Running Data Mining Experiments
Tim Menzies, Member, IEEE

INTRODUCTION

Compare Figure 1 with Figure 2. The former shows the
pseudo-code for a data mining experiment. The latter shows
how the main driver of such an experiment. Not shown are
the numerous sub-scripts used to (e.g.) divide the data into
training and test sets; extract column subsets, etc, etc.

This paper explains why something as simple as Figure 1
gets as complicated as Figure 2. In summary, when coding data
mining experiments, there are 16 important principles which
are missed by Figure 1. Each one is simple enough to apply but
all together, it took the author far too long to learn them. With
these principles in hand, it is possible to run comprehensive
data mining experiments. Without them, much time can be
wasted in under-sampling a problem, losing results, running
out of disk space, etc etc.

The rest of this article describes those principles.

1. RUN RANDOMIZED CROSS-VALIDATION STUDIES

In a M*N-way cross-validation study the available training
data is divided into N buckets (often N=10 except for very
small data sets where N=3). For each bucket in a 10-way cross-
evaluation, a theory is learned on 90% of the data in the N−1
buckets then tested on 10% of the data from the remaining
bucket.

It is considered good practice to repeat an N-way study
M times, randomizing the order each time. Many algorithms
exhibit order effects where certain orderings dramatically im-
prove or degrade performance (e.g. insertion sort runs slowest
if the inputs are already sorted in reverse order). Randomizing
the order of the inputs defends against order effects.

In essence, such a M*N-way cross-evaluation study orches-
trates multiple experiments where a learned theory is tested
against data not seen during training. In all, a 10*10-way
study generates 100 training sets t1, t2, .., t100 and 100 disjoint
test sets t1, t2, .., T100 (i.e. ti ∪ Ti = ∅). In the data mining
literature, this is the preferred evaluation method when the
goal is to produce theories intended to predicting future as-
yet-unseen events [1].

2. COMPARE APPLES WITH APPLES

(I’m ashamed to say the following issue cost me two weeks
of experimentation. Read this section carefully!)
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M = 10
N = 10
DATAS = (cm1 kc3 kc4 mw1 pc1 pc2 pc3 pc4)
SUBSETS = (loc locs m h hH locs+m locs+h locs+hH most)
FILTERS = (none logNums)
LEARNERS = (oneR J48 Nb)

for data in DATAS
for filter in FILTERS

data’ = filter(data)
for attributes in SUBSETS

some = just the attributes of data’
repeat M times

randomized order from "some"
generate N bins from "some"
for i in 1 to N

tests = bin[i]
trainingData = some - tests
for learner in LEARNERS

METHOD = (filter attributes learner)
theory = learner(trainingData)
RESULT[METHOD] = use theory on tests

Fig. 1. This study.

Outer loops of an experimental rig generate test and train-
ing sets, perhaps after filtering them through various pre-
processors. For the experiments to be valid, the learners have
to be called on the same training and test sets; i.e. the call to
the learner should be buried deep inside the inner-most loop
of the experimental rig (see line 49 of Figure 2).

3. COLLECT MULTIPLE PERFORMANCE STATISTICS

A common method of assessing learners is via classification
accuracy. This is most strange since classification accuracy can
be remarkably uninformative.

A more comprehensive set of statistics can be collected
using ROC curves. Formally, a detector hunts for a signal. Sig-
nal detection theory [2] offers receiver operator characteristic
(ROC) curves as an analysis method for assessing different
detectors. A typical ROC curve is shown in Figure 3. The y-
axis shows probability of detection (pd) and the x-axis shows
probability of false alarms (pf ). By definition, the ROC curve
must pass through the points pf = pd = 0 and pf = pd = 1
(a detector that never triggers never makes false alarms; a
detector that always triggers always generates false alarms).
Between these two points, the curve can take three interesting
trajectories:

1) A straight line from (0,0) to (1,1) is of little interest
since it offers no information: i.e. the probability of a
detector firing is the same as it being silent.

2) Another trajectory is the negative curve that bends away
from the ideal point. Our experience has been that these
are detectors which, if their tests were negated, would
transpose into a preferred curve.
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1 . $HOME/.bashrc
2 . $HOME/etc/myweka
3 Data=${Data=$Arffs/mdp43}
4 Todo=${Todo="cm1 kc3 kc4 mw1 pc1 pc2 pc3 pc4"}
5 Learners=${Learners="J48 oneR Nb"}
6 Repeats=${Repeats=10}
7 Filters=${Filters="none logNums"}
8 Inc=${Inc=0} ; Bins=${Bins=10}
9 Subsets=${Subsets="1 2 3 4 5 6 7 8 9"}

10 Outputs=${Outputs="$HOME/var/pstats.103.out"}
11 Inputs=${Inputs="$HOME/var/pstats.103.in"}
12
13 setup() {
14 rm -rf $Inputs
15 mkdir -p $Inputs $Outputs
16 for what in $Todo; do
17 blah "\n $what"
18 for filter in $Filters; do
19 blah "\n\t $filter"
20 TrainTest=$Inputs/$what.$filter
21 $filter $Data/$what.arff > $TrainTest
22 for subn in $Subsets;do
23 sub=‘mdp43subsets -v Name=$subn‘
24 mdp43subsets -v Want=$subn $TrainTest > $TrainTest.$subn.arff
25 blah " $subn"
26 done
27 done
28 done
29 blah "\n"
30 }
31 nways() {
32 pstats =prefix "data,filter,sub,learner,inc-nway,goal,training,testing,secs" -l > $Outputs/00.stats
33 for what in $Todo; do
34 for filter in $Filters; do
35 for subn in $Subsets; do
36 TrainTest="$Inputs/$what.$filter.$subn.arff"
37 goal=‘nthClass $TrainTest 2‘
38 Nways=‘nway =bins $Bins =repeats $Repeats $TrainTest‘ #:<-- split the data
39 ( cd $Nways/test
40 for arff in *.arff; do
41 for learner in $Learners; do
42 Now="$arff,$filter,$subn,$learner,$Inc,$goal";
43 blah "$Inputs ==> $Now\n"
44 Test=$arff
45 Train="../train/$arff"
46 Size1=‘instances $Train‘
47 Size2=‘instances $Test‘
48 B4=‘date +"%s"‘
49 $learner $Train $Test > $Test.out
50 After=‘date +"%s"‘
51 let Time=After-B4
52 pstats =goal $goal =prefix "$Now,$Size1,$Size2,$Time" $Test.out >> $Outputs/$what.$filter.$subn.stats
53 done
54 done
55 )
56 blah "purging temps...\n";
57 rm -rf $Nways
58 done
59 done
60 done
61 }
62 save() {
63 cd $Outputs
64 zip ../pstats.103.‘date +"%s"‘.zip *
65 cd ..
66 ls -lsa pstats.103*zip
67 }
68 setup
69 nways
70 save

Fig. 2. Code
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Fig. 3. Regions of a typical ROC curve.

module found in defect logs?
no yes

signal no (i.e. v(g) < 10) A = 395 B = 67
detected? yes (i.e. v(g) ≥ 10) C = 19 D = 39

pd = Prop.detected = 37%

pf = Prob.falseAlarm = 5%

notPf = 1− pf = 95%

bal = Balance = 45%

Acc = accuracy = 83%

Fig. 4. A ROC sheet assessing a learned theory v(g) ≥ 10. Each cell
{A,B,C,D} shows the number of modules that fall into each cell of this ROC
sheet.

3) The point (pf = 0,pf = 1) is the ideal position
(a.k.a. “sweet spot”) on a ROC curve. This is where we
recognize all errors and never make mistakes. Preferred
curves bend up towards this ideal point.

In the ideal case, a detector has a high probability of
detecting a genuine signal (pd) and a very low probability of
false alarm (pd). This ideal case is very rare. The only way to
achieve high probabilities of detection is to trigger the detector
more often. This, in turn, incurs the cost of more false alarms.

Pf and pd can be calculated using the ROC sheet of
Figure 4. Consider a detector which, when presented with
some signal, either triggers or is silent. If some oracle knows
whether or not the signal is actually present, then Figure 4
shows four interesting situations. The detector may be silent
when the signal is absent (cell A) or present (cell B). Alterna-
tively, if the detector registers a signal, sometimes the signal
is actually absent (cell C) and sometimes it is present (cell D).

If the detector registers a signal, there are three cases of
interest. In one case, the detector has correctly recognized the
signal. This probability of this detection is the ratio of detected
signals, true positives, to all signals:

probability detection = pd = recall =
D

B + D
(1)

(Note that pd is also called recall.) In another case, the
probability of a false alarm is the ratio of detections when
no signal was present to all non-signals:

probability false alarm = pf =
C

A + C
(2)

For convenience, we define notPf to be the complement of
pf :

notPf = 1− C

A + C
(3)

Figure 4 also lets us define the accuracy, or acc, of a detector
as the percentage of true negatives and true positives:

accuracy = acc =
A + D

A + B + C + D
(4)

All these measures range 0 to 1 and, if reported as percent-
ages, have the range

0 ≤ acc%, pd%, , notPf% ≤ 100

Ideally, we seek detectors that maximize acc%, pd%, notPf%.
Note that maximizing any one of these does not imply high

values for the others. For example Figure 4 shows an example
with a high accuracy (83%) but a low probability of detection
(37%). Accuracy is a good measure of a learner’s performance
when the classes occur with similar frequencies.

In practice, engineers balance between pf and pd. One way
to operationalize this notion of balance, we define bal to be the
Euclidean distance from the sweet spot pf = 0, pd = 1 to a
pair of < pf, pd >. For convenience, we (a) normalize bal by
the maximum possible distance across the ROC square (

√
2);

(b) subtract this from 1; and (c) express it as a percentage; i.e.

balance = bal = 1−

√(√
0− pf

)2 +
(√

1− pd
)2

√
2

(5)

Hence, better and higher balances fall closer to the desired
sweet spot of pf = 0, pd = 1.

The above definitions of the pd, pf measures apply to two-
class systems. For n-class systems, the above statistics have to
be either:

• Repeated for each class in turn.
• Restricted to just binary; e.g. some target class and not

the target class. The code of Figure 2 uses this second
option (see line 37). The second class name of the data
sets used in that study was “yes” denoting that a defective
software cost module had been found.

4. ADD A “STRAW MAN”

In his text Experimental Methods for Artificial Intelligence,
Cohen advises comparing the performance of a supposedly
more sophisticated approach against a seemingly stupider
“straw man” method [3, p81]. After that comparison, the
merits of the more sophisticated methods would be doubted if
its performance was close to that of the “straw man”. Holte’s
OneR algorithm is the standard “straw man” data miner and
has been shown to perform remarkable well compared to
standard data miners on many commonly used data sets [4].

Accordingly, line 5 of Figure 2 includes OneR in the list of
learners used in this study.
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5. USE SCRIPTING

Comprehensive data mining experiments can’t be run via
click-and-point interfaces without risking wrist damage. Ap-
plying the above principles means conducting 10*10-way
experiments on multiple learners, collecting multiple perfor-
mance numbers all the while. Without automatic scripts, the
odds of making minor clerical errors during all that work is
very high.

Another reason to use scripting is that often experiments
have to repeated. There are many reasons for needing such
repeat are numerous. Paper reviewers or supervisors or co-
workers might suggest important minor revisions to your
current experimental regime. More commonly, you realize
some small error in the current rig that means all the current
results are wrong, must be deleted, and recollected.

But the most important reason is that, without scripting,
the researcher is hampered in their range of inquiries. Modern
data mining tools come with impressive interfaces and those
interfaces are both useful and a trap. If the researcher ever
wants to do something different to what is offered by that
interface, they can’t. For example:

• The standard WEKA [1] toolkit has an “Experimenter”
panel that can be used for conducting experiments. Sadly,
the WEKA’s experiments don’t measures on “PRED(N)”-
a value used frequently in the software cost estimation
literature.

• WEKA’s experimental rig can’t do incremental cross-
validation- which is a useful method for determining the
minimum number of instances to reach stable conclusions
in a domain [3].

With knowledge of scripting, however, researchers have no
such limitations. Novel experiments can defined with minimal
coding. For example, over-sampling is a method that can
improve learner accuracy in data sets where the target class is
in the extreme minority. To over-sample:

• First repeatedly print each instance at the inverse of its
class frequency (i.e. rarer classes are printed more often
than more common classes).

• Next, to generate a data set of size M , we print M
randomly selected instances from that over sample.

In the oversample script of Figure 5, balance.awk
handles the repeated printing and some.awk prints the right
number of instances: This code is succinct and handles numer-
ous tedious details such as printing the data dictionary at the
top of the data files; skipping lines of blanks and comments;
and controlling the random number generator.

For a good set of scripting tools, use any LINUX system
and most UNIX systems. For good scripting languages, pick
one of GAWK, PERL, PYTHON, RUBY,.... For the reader’s
information, the author has spent months to years coding
in PERL, PYTHON, and RUBY but keeps coming back to
GAWK.

6. PLAY NICE WITH OTHERS

Running long scripts with many calls to many learners can
be very CPU-intensive. In environments where computers are

#---- oversample --------
# usage: bash oversample File N
Opts="-v Seed=$RANDOM IGNORECASE=1 FS=, "
gawk -f balance.awk $Opts Pass=1 $1 Pass=2 $1 \
| gawk -f some.awk $Opts N=$2

#---- balance.awk --------
/ˆ[ \t]*$/ { next} # skip blank lines
/ˆ[ \t]*%/ { next} # skip comment lines
/@relation/,/@data/ { if (Pass==2) print; next}
Pass==1 { Class[$NF]++;

N++ }
Pass==2 { R= int(N/Class[$NF]+0.5);

while(R-- >0)
print $0}

#---- some.awk --------
BEGIN { Seed ? srand(Seed) : srand() }
/@relation/,/@data/ { print; next}

{ Line[rand()]= $0 } # put at random index
END { while(N) # print till we get enough

for(I in Line) {
if (N<1) exit
print Line[I];
N-- }}

Fig. 5. Oversampling

a shared resource, it is polite to run your script at low priorities
(lest the SS cancel your job).

Running low-priority jobs is very simple, at least in a UNIX
environment. The nice command controls runs a script with
an adjusted scheduling priority. Priorities range goes from -
20 (highest priority) to 19 (lowest- when you are being most
“nice” to other users). All the scripts shown here were run as
follows:
nice -n 19 script

7. USE A SANDBOX (FOR TEMPORARIES)

The case for randomizing the input space was discussed
above. The code of Figure 5 shows a simple randomization
method. With small changes, it can be used to output the bins
required for a 10*10-way. Line 38 of Figure 2 shows where
such a sampler can be called.

A 10*10-way generates 200 temporary data files (100 train-
ing and test files). A sandbox is a temporary directory created
to store such temporaries. If the right naming conventions are
used, programmers can ensure that no other such sandbox
exists on the current systems:

#---- sandbox --------
# usage: sandbox name
Root=/tmp/$USER
Root=’’$Root/$1’’
subdir=’’$Root/$$.$RANDOM’’
mkdir -p $subdir
[ -d ‘‘$Root/last’’ ] && unlink ‘‘$Root/last’’
ln -sf ‘‘$subdir’’ ‘‘$Root/last’’
echo $subdir

A useful convention is to create a test and training directory
with the same file names in each and train/x is the training
set associated with test/x. Lines 38 to 49 illustrate that idiom
which can be summarized as follows:
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Sandbox=‘sandbox myExperiments‘
# send training/test files to $Sandbox/train, $Sandbox/test
( cd $Sandbox/test
for i in *
do

Test=$i
Train=../train/$i
run $Train $Test> $Test.out

done
)
rm -rf $Sandbox

8. CONDUCT INTERIUM PURGES

Note the last line of the above code where the temporaries
are deleted. Such intra-run purges are important: real data
mining experiments can generate 100,000s of files that can
consume all disk space.

9. CACHE INTERIUM RESULTS

The above purge actually adds a bug to this code: all the
results of the learning are lost! Therefore, prior to deletions,
performance statistics should be copied to some safe place.

Cache=$USER/var/myExperiments
mkdir -p $Cache
Sandbox=‘sandbox myExperiments‘
# send training/test files to $Sandbox/train, $Sandbox/test
( cd $Sandbox/test
for i in *
do

Test=$i
Train=../train/$i
run $Train $Test> $Test.out
collectPerformanceStats $Test.out > $Cache/$Test.out

done
)
rm -rf $Sandbox

10. USE A SAFE PLACE (FOR RESULTS)

The Cache directory used above is a place to store results
generated via very long data mining runs. Such caches contain
hard-won data and so should be treated very carefully. Auto-
matic scripts should never delete files in those caches. Indeed,
researchers are advised to never clean their cache lest they
remove important files.

11. ADD SEED CONTROL

Randomization, while important, introduces debugging
problems. In short, it can be hard to reproduce error conditions
if those error conditions occur infrequently.

Hence, it is strongly advised that all random number seed be
controllable via command-line parameters. We saw an example
of such control above in some.awk:

BEGIN { Seed ? srand(Seed) : srand() }

With this convention, it is possible to control and replay
problematic code.

12. DEBUG WITH SMALL EXAMPLES

Building 10*10-way runs with multiple learners and multi-
ple pre-processing steps can be complex. Before scaling up to
large runs, it is advisable to debug on very small runs.

# ---- etc/myweka --------
Weka=’’java -cp $HOME/unbox.org/data/weka.jar’’
Arffs=’’$HOME/unbox.org/data/arff’’

j48() { $Weka weka.classifiers.trees.J48 -C 0.25 -M 2 -t $1 -T $2; }
oneR() { $Weka weka.classifiers.rules.OneR -B 6 -t $1 -T $2; }
bayes() { $Weka weka.classifiers.bayes.NaiveBayes -t $1 -T $2; }
nb() { $Weka weka.classifiers.bayes.NaiveBayes -t $1 -T $2; }
nbk() { $Weka weka.classifiers.bayes.NaiveBayes -K -t $1 -T $2; }
m5P() { $Weka weka.classifiers.trees.M5P -t $1 -T $2; }

# ---- J48 --------
weka j48 $1 $2

# ---- NB -------
weka nb $1 $2

Fig. 6. Definition of WEKA-based learners

13. SEPERATE “SET UP” FROM “RUN”

The setup function pre-computes and caches all the pre-
processed files to be executed via this code. This separates the
fast part of the code (pre-processing) from the slow part of the
code (running the 10*10-ways). This is good practice since
it lets a researcher to browse and debug any pre-processing
errors.

14. LET THE MASTER BE THE SERVANT

Given a CPU farm, it is possible to spread out long runs over
multiple machines. For example, on a UNIX box where the
researcher has accounts on multiple machines, then command

ssh machine.name nice -n 19 Learners=J48 codeOfFigure2

would unleash Figure 2 for just the J48 experiments.
For that to work, scripts like Figure 2 need to be run as

either masters where they control the runs, or slaves where
they run some portion of the experiment as controlled by
others. Given the bash scripting language, this is simple to
do. For example, the command on line 5 of Figure 2 defines
the list of learners to execute unless it is already defined:

Learners=${Learners="J48 oneR Nb"}

Note how, in the above ssh call, Learners was set on
the command line. So Figure 2 would then run, just for this
learner.

Of course, this implies much repeated processing of the
setup command. This is another reason to separate “set up”
from “run”: the “set up” could be moved to another script
and run once em before calling all the nways on different
machines.

15. ADD HOOKS

Note the use on lines 21 and 49 of Figure 2 calls to functions
with variable names:

21 $filter $Data/$what.arff > $TrainTest
49 $learner $Train $Test > $Test.out

This allows for the simple addition of hooks into the current
system. Now, any script that is executable on the current
system can be called in your experimental rig. For example,
Figure 6 shows the definition of several scripts used by
Figure 2. Note that they are defined outside of Figure 2 and
can be used for smaller, one-off learning tasks.
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16. ALLOW LOCAL ENVIRONMENTS

It is useful to separate the script from the environment and
then make the script call environment-specific set-up code.
This is particularly useful when running scripts on multiple
CPUs: every time your scripts log into a new machine, the
first they need to do is access the local environment details.

Lines 1 and 2 of Figure 2 shows that script accessing the
local environment. The user’s own .bashrc file is executed
and the local definition of the weka scripts are defined.
This author’s WEKA environment was shown in Figure 6.
According to the UNIX convention, these environment files
are either stored in the user’s root or in a etc directory (in
this case, USER/etc).

REFERENCES

[1] I. H. Witten and E. Frank, Data mining. 2nd edition. Los Altos, US:
Morgan Kaufmann, 2005.

[2] D. Heeger, “Signal detection theory,” 1998, available from http://white.
stanford.edu/∼heeger/sdt/sdt.html.

[3] P. Cohen, Empirical Methods for Artificial Intelligence. MIT Press,
1995.

[4] R. Holte, “Very simple classification rules perform well on most com-
monly used datasets,” Machine Learning, vol. 11, p. 63, 1993.


