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INTRODUCTION

Sound Bites

Classification is a Useful Field in Data Mining.

Discretization Helps to Minimize Classifier Confusion
from Numeric Data and Increase Accuracy.
DiscTree is a New Discretization Algorithm Based on a

Randomized Binary Search Tree.

This Thesis Implements DiscTree and Compares it to

Other Frequently Used Discretization Methods.

Results Lead to the Conclusion that There is No Single
Best Method In All Cases.
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What is Classification?

e Start With a Set of Pre-Classified Example Instances

e Create a Theory/Concept for How Attributes Relate to

Classes

e Use/Test Theory on Future, Unforseen Instances
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Useful Classification

Student Data Used to Make Automated Financial

Aid/Scholarship/Admissions Decisions

Part Measurements Used to Make Accept/Reject Decision

in Automated Manufacturing

Medical Test Data Used to Diagnose Specific

Diseases/Conditions



INTRODUCTION CLASSIFICATION NBCs DISCRETIZATION DISCTREE EXPERIMENT RESULTS CONCLUSIONS QUESTIONS

Classification Methods

e Many Forms of Classification Methods Exist*, Including;:

e Decision Tree Learners (J48, C4.5)
o Rule-Generating Learners (PRISM, RIPPER)

e Instance-Based Learners (Nearest Neighbor, K-Means)

*For Further Explanation of Other Methods, see Thesis Document
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Classification Methods

e Many Forms of Classification Methods Exist*, Including;:

e Decision Tree Learners (J48, C4.5)
o Rule-Generating Learners (PRISM, RIPPER)

e Instance-Based Learners (Nearest Neighbor, K-Means)

e However, for Controlled Experimental Purposes, Only One

Classifer Used: Naive Bayes Classifier

*For Further Explanation of Other Methods, see Thesis Document
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The Basics

Highly Studied Statistical Method of Classification
Originally a Straw Man Method

Assumes Independence of Attributes

Fasily Handles Missing Attribute Values

Small Memory Footprint (only Keeps Value and Class

Frequency Counts)

Makes Decisions Using Bayes’ Theorem
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Bayes’ Theorem

e Simple View: next = old x new

e More Formally:

P(H|E) = Z HP(E!H

Where H is the class/hypothesis being considered and

E is the evidence of Current Conditions
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Bayes’ Theorem FExplained

P(H|E) = P(E) [ 1 P(EilH)

Where P(H) represents the prior probability of the class H;

E; represents the current evidence (attribute value);

P(E;|H) represents the probability of attribute value E;

occuring with class H; and

P(H|E) represents the probability of class H given all the

current evidence E, and is called the posterior probability.
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Used for Classification

For Each Instance, use its attribute values in the equation

Each Class is Used in the Equation to Calculate its

Posterior Probability

The Class with the Largest Posterior Probability is

Selected as the Classification of the Instance
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Why Choose Naive Bayes

e Dougherty et. al Found that Each Form of Discretization

Tried on Naive Bayes classifiers Increased Performances

e Domingos and Pazzani Found Naive Bayes classifiers with
Discretization Out-Performed Other Methods and that the
Attribute Independence Assumption did not Greatly
Degrade Perfromance when used with Strongly Related
Data
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Why Choose Naive Bayes

Many of the Most Recent Proposals for new Discretization have
Been Proposed for Naive Bayes classifiers ; Specifically, Webb
puts Forth Many Methods Specifically for the Naive Bayes
classifiers . We Test Against one Called PKID.
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What is Discretization

Data comes in several forms
e Nominal or qualitative data
e Ordinal or nonquantitative ranked data

e Continuous, numeric, or quantitative data

Quantitative Data can Cause Problems for Classifiers

Discretization Converts Numeric Data into Nominal Form

More Specifically, Discretization Replaces Numeric Values
with Possibly Infite Values with a Fixed Set of Nominal

Values.



INTRODU

How It Works

e Numeric Values are read, sorted, and placed in ”buckets”

e Buckets or Bins Store to a fixed Range of Continuous

Values.

e Data Values are Replaced by the Name of the Bucket They

are Placed In

CTION CLASSIFICATION NBCS DISCRETIZATION DISCTREE EXPERIMENT RESULTS CONCLUSIONS QUESTIONS
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Methods

While Several Methods of Discretization are Reviewed*, We
Experiment With Four:

e Equal Interval Width Discretization (EWD)

e Entropy-Minimization Discretization

¢ Propotional K-Interval Discretization (PKID)

e DiscTree

We Also Test Provide Results from Undiscretized data using

the cat command

*For More Details on Discretization and Specific Methods, see Thesis Document
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DISCTREE

Randomized Binary Search Trees

e Like Binary Search Trees, But INSERT is Randomized

e At Root of Each Subtree, New Value Has % Chance of
Becoming Root, Where T is the Number of Instances at or

Below Tested Node
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DiscTree Premise

Discretization Using Randomized Binary Search Trees as

Base Data Structure

Tree Nodes Store a Value and Frequency Counts for

Classes at and below Node

Nodes with at Least \/N, where N is the Number of
Training Instances, at or below them can be substituted for

continuous values.
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INTRODUCTION

CLASSIFICATION NBCS DISCRETIZATION DISCTREE EXPERIMENT RES s CONCLUSIONS QUES

Cross-Validation

Cross-validation is a Statistical Method to Divide Data
into a Fixed Number of Partitions, with Part for Training
and Part for Testing

Used to Generate Many Results of Classifier Runs, Rather
than Relying on just One Run Each

Performance is Averaged Across Several Runs, Preventing
one Standout Result from Causing a Conclusion
Experiment Utilized 10 by 10-fold Cross-validation,
Generating 100 Results per Class per Discretization

Method
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Cross-Validation Explanation

Because We Used 24 Data Sets, We Generated Quite a Bit of
Data. For a Data Set with Three Classes, For Example,

5 Discretization Methods x 100 Results x 3 Classes
= 300 Results per Discretization Method
= 1500 Total Results

This Means that for the Letter Data Set, with 26 Classes, We
Generated 2600 Results per Discretization Method, for a Total
of 13000 Results.
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Performance Measures

e Accuracy, or acc, Describes the Percentage of Cases
Where The Learner/Method Pair makes the Correct

Identification of a Instance’s Class.

e Probability of Detection, or pd, Describes the
Percentage of the Target Class that is Correctly Identified.

e Probability of not False Alarm, or npf, Describes The
Percentage of the identified cases where an Identification of

the Target Class is Correct



INTRODUCTION ~ CLASSIFICATION NBCs DISCRETIZATION DISCTREE EXPERIMENT RESULTS CONCLUSIONS QUESTIONS

Performance Measures

e Precision, or prec, Describes the Proportion of Cases
where Instances Identified as Being of a Particular Class

actually Belong to that Class



INTRODUCTION ~ CLASSIFICATIO NBCs DISCRETIZATION DISCTR EXPERIMENT Ris s CONCL

Performance Measures

e Precision, or prec, Describes the Proportion of Cases
where Instances Identified as Being of a Particular Class
actually Belong to that Class

e Balance, or bal, Describes the balance of Probability of
Detection and Probability of False Alarm. A Higher
Balance means the Learner is Identifying Most Instances

Correctly Without Risking False Alarms to be Correct.
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Mann-Whitney U-test

Non-parametric Measure to Compare Learner/Method Pair
Makes No Assumptions about Shape of Data

Allows Comparison of Results With Differing Number of

Values

Requires no Post-Processing to Explain Results

o
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DiscTree Comparison Results

e Two Features of DiscTree were Questioned During

Implementation
e Nominal Value Discretization
e Garbage Collection
e To Determine Best Method, Coded Each and Compared

Using Described Experimental Design

QUESTIONS

o



INTRODUCTION ~ CLASSIFICATION NBCs DISCRETIZATION DISCTREE EXPERIMENT RESULTS CONCLUSIONS QUESTIONS

DiscTree Comparison Results

e Methods Performed Vary Similarly; However,



INTRODUCTION CLASSIFICATION NBCs DISCRETIZATION DISCTREE EXPERIMENT RESULTS CONCLUSIONS QUESTIONS

DiscTree Comparison Results

e Methods Performed Vary Similarly; However,

e disctree3, the method using just Garbage Collection,

performed most accurately



INTRODUCTION CLASSIFICATION NBCS DISCRETIZATION DISCTREE EXPERIMENT RESULTS CONCLUSIONS

DiscTree Comparison Results

e Methods Performed Vary Similarly; However,

e disctree3, the method using just Garbage Collection,
performed most accurately

e disctree3d and disctree4 (which implemented neither
Garbage Collection nor Nominal Discretization) beat

disctree2 which implemented both.
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DiscTree Comparison Results

e Methods Performed Vary Similarly; However,
e disctree3, the method using just Garbage Collection,
performed most accurately
e disctree3d and disctree4 (which implemented neither
Garbage Collection nor Nominal Discretization) beat

disctree2 which implemented both.

e Because it Acquired the Most U-test Wins, disctree3 was

Selected for use in the General Comparsion.
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e Convert DiscTree Algorithm to an Incremental

Discretization Method

e Implementing DiscTree Algorithm on Other Tree Data

Structures

e Addition of Additional Data Preprocessing
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Possible Future Work Areas

Convert DiscTree Algorithm to an Incremental

Discretization Method

Implementing DiscTree Algorithm on Other Tree Data

Structures
Addition of Additional Data Preprocessing

Reexamination of DiscTree Algorithm for ”Best Values”
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Conclusions From This Thesis

Across All Performance Measures, Entropy-Minimization

out performs the competition according to U-test Results.

However, in Most Cases, Other Methods Perform Very

Nearly as well as the Entropy-Minimization Method.

DiscTree Performs Second-Best in Each Performance

Measure
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Conclusions from This Thesis

Results Lead Us to Believe:

e There is No Single Best Method of Discretization in All
Cases;

e However, Discretization Almost Always Increases Accuracy
and Other Performance Measures in Naive Bayes classifiers,
with simple methods performing nearly as well; and,

e Perhaps the Energy Spent Continuing to Study Batch
Discretization Might Be Better Spent Elsewhere.
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