\begin{thebibliography}{10} \bibitem{an07} D.J.~Newman A.~Asuncion. \newblock {UCI} machine learning repository, 2007. \bibitem{kitc01} {B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd}. \newblock What accuracy statistics really measure. \newblock {\em Software,IEE Proceedings}, 148(3):81--85, 2001. \bibitem{cend87} J.~Cendrowska. \newblock Prism: An algorithm for inducing modular rules. \newblock {\em International Journal of Man-Machine Studies}, 27:349--370, 1987. \bibitem{hhw03} {CN. Hsu, HJ. Huang, and TT. Wong}. \newblock {Implications of the Dirichlet Assumption for Discretization of Continuous Variables in Naive Bayesian Classifiers}. \newblock {\em Machine Learning}, 53(3):235--263, 2003. \newblock {Available online at: http://www.iis.sinica.edu.tw/~chunnan/DOWNLOADS/MACH-1735-00.pdf}. \bibitem{cohen95} William~W. Cohen. \newblock Fast effective rule induction. \newblock In {\em Proceedings of the 12th International Conference on Machine Learning}, pages 115--123. Morgan Kaufmann, 1995. \bibitem{mm2} {D. S. Moore and G. P. McCabe}. \newblock {\em {Introduction to the Practice of Statistics}}. \newblock W. H. Freeman and Company, New York, 2nd edition, 1993. \bibitem{jd06} J.~Demsar. \newblock {Statistical Comparisons of Classifiers over Multiple Data Sets}. \newblock {\em Journal of Machine Learning Research}, 7:1--30, 2006. \newblock {available from http://jmlr.csail.mit.edu/papers/v7/demsar06a.html}. \bibitem{dietterich97} T.~Dietterich. \newblock Machine learning research: Four current directions. \newblock {\em AI Magazine}, 18(4):97--136, 1997. \bibitem{dompaz97} P.~Domingos and M.~Pazzani. \newblock {On the Optimality of Simple Bayesian Classifier under Zero-One Loss}. \newblock {\em Machine Learning}, 29:103--130, 1997. \bibitem{fi92} U.~M. Fayyad and K.~B. Irani. \newblock {On the Handling of Continuous-Valued Attributes in Decision Tree Generation}. \newblock {\em Machine Learning}, 8:87--102, 1992. \bibitem{jl95} {G.H. John and P. Langley}. \newblock {Estimating Continuous Distributions in Bayesian Classifiers}. \newblock In {\em {Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence}}. {Morgan Kaufmann}, 1995. \bibitem{det02} {H. Liu, F. Hussain, C. L. Tan, and M. Dash}. \newblock {Discretization: An Enabling Technique}. \newblock {\em {Data Mining and Knowledge Discovery}}, 6(4):393--423, October 2002. \bibitem{holte93} R.~C. Holte. \newblock {Very Simple Classification Rules Perform Well on Most Commonly Used Datasets}. \newblock {\em Machine Learning}, 11(1):63--90, April 1993. \bibitem{dou95} {J. Dougherty, R. Kohavi, and M. Sahami}. \newblock {Supervised and Unsupervised Discretization of Continuous Features}. \newblock In {\em {Machine Learning, Proceedings of the Twelfth International Conference}}, pages 194--202, 1995. \bibitem{mw47} H.B. Mann and D.~R. Whitney. \newblock {On A Test Of Whether One Of Two Random Variables Is Stochastically Larger Than The Other}. \newblock {\em {The Annals of Mathematical Statistics}}, 18(1):50--60, 1947. \bibitem{mr98} C.~Martinez and S.~Roura. \newblock Randomized binary search trees. \newblock {\em Journal of the ACM}, 45(2):288--323, March 1998. \bibitem{ao04} A.~S. Orrego. \newblock Sawtooth: Learning from huge amounts of data. \newblock Master's thesis, West Virginia University, 2004. \bibitem{quinlan93} J.~R. Quinlan. \newblock {\em C4.5: Programs for Machine Learning}. \newblock Morgan Kaufmann, 1993. \bibitem{sedgewick02} Robert Sedgewick. \newblock {\em Algorithms in Java: Parts 1-4}. \newblock Addison-Wesley Professional, 3rd edition, 2002. \bibitem{clrs01} {T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein}. \newblock {\em {Introduction to Algorithms}}. \newblock McGraw-Hill Book Company, New York, 2nd edition, 2001. \bibitem{wc45} F.~Wilcoxon. \newblock Individual comparisons by ranking methods. \newblock {\em Biometrics}, 1:80--83, 1945. \bibitem{fw2} I.~H. Witten and E.~Frank. \newblock {\em {Data Mining: Practical Machine Learning Tools and Techniques}}. \newblock {Morgan Kaufman}, 2 edition, 2005. \bibitem{yw03-2} {Y. Yang and G. I. Webb}. \newblock {Weighted Proportional k-Interval Discretization for Naive-Bayes Classifiers}. \newblock In {\em {Proceedings of PAKDD 2003: The 7th Pacific-Asia Conference on Knowledge Discovery and Data Mining}}, 2003. \newblock Available from http://www.csse.monash.edu/~webb/Files/YangWebb03.pdf. \bibitem{yw02} Y.~Yang and G.I.Webb. \newblock A comparative study of discretization methods for naive-bayes classifiers. \newblock In {\em Proceedings of PKAW 2002, The 2002 Pacific Rim Knowledge Acquisition Workshop}, pages 159--173, Tokyo, 2002. \bibitem{yw01} Y.~Yang and G.~I. Webb. \newblock Proportional k-interval discretization for naive-bayes classifiers. \newblock In {\em Proceedings of the 12th European Conference on Machine Learning}, pages 564--575. Springer Berlin, 2001. \bibitem{yw02-02} Y.~Yang and G.~I. Webb. \newblock Non-disjoint discretization for naive-bayes classifiers. \newblock In {\em Proceedings of the Nineteenth International Conference on Machine Learning}, pages 666--673, 2002. \bibitem{yw03-3} Y.~Yang and G.~I. Webb. \newblock Discretization for naive-bayes learning: managing discretization bias and variance. \newblock Technical report, School of Computer Science and Software Engineering, Monash University, 2003. \bibitem{yw03} {Y.Yang and G.I. Webb}. \newblock {On Why Discretization Works for Naive-Bayes Classifiers}. \newblock In {\em {AI 2003: Advances in Artificial Intelligence}}, pages 440--452. Springer Berlin, 2003. \end{thebibliography}