

AI Based Models for Estimating

Software Projects' Efforts

Abstract

Decision making under uncertainty is a critical problem in the field of software engineering. Predicting the software quality or the
cost/ effort requires high level expertise. AI based predictor models, on the other hand, are useful decision making tools that learn
from past projects' data. In this study, we have built an effort estimation model for a multinational bank to predict the effort prior to
projects' development lifecycle. We have collected process, product and resource metrics from past projects together with the effort
values distributed among software life cycle phases, i.e. analysis & test, design & development. We have used Clustering approach to
form consistent project groups and Support Vector Regression (SVR) to predict the effort. Results validate the benefits of using AI in
real life applications: 78% accuracy in predicting project efforts.

Keywords: Software effort estimation, regression, machine learning, model construction.

Introduction

One of the key challenges in software industry is the
accurate estimation of the development effort, which is
particularly important for risk evaluation, resource
scheduling as well as progress monitoring (Boehm, Abts,
Chulani 2000). Inaccuracies in estimations lead to
problematic results; for instance, overestimation causes
waste of resources, whereas underestimation results in
approval of projects that will exceed their planned budgets
(Boehm, Abts, Chulani 2000).
 Various effort estimation models have been proposed to
make reliable predictions to finish projects on time and
within the budget. These models can be examined based on
methodologies used: Expert-based, analogy-based and
regression-based. Expert based models totally depend on
the expert knowledge to use past experience on software
projects. Based on a comprehensive review (Jorgenson
2004), expert based estimation is one of the most
frequently applied estimation strategy. They provide a
broad definition of estimation, such a “gut feelings” or
“structured estimations” supported by historical data and
processes of the companies. Selecting one of these
“heuristics” while making expert-based estimations may
sometimes perform better than formal methods. However,
when the prior knowledge of experts is strongly biased,
then their estimation accuracy significantly degrades.
 Alternatively, regression-based methods use statistical
techniques such as least square regression, such that a set
of independent variables, project features, are converted to
the dependent variable, effort, with minimum error
(Menzies et al. 2006). Mathematical models like Barry
Boehm’s COCOMO (Boehm 1981) and COCOMO II
(Boehm et al. 2000), are widely investigated as regression-
based methods. Parameters of these models are calibrated
according to the projects in a company. Thus, they have the
drawback of requiring local calibration. Local calibration,
on the other hand, is a very labor-intensive task as it
requires regular fine-tunings of parameters with new data.
Once the calibration is stopped, the model would easily
depreciate. Therefore, the fast changes in software
development make it very difficult to build a parametric
model that fits for all software domains (Boehm, Abts and
Chulani 2000).
 To address these issues in regression-based models, AI
techniques have been proposed such as step-wise
regression, decision tree, artificial neural networks
(Shepperd and Kadoda 2001, Wittig and Finnie 1997) and
other rule-based methods (Menzies et al. 2006). AI-based
(algorithmic) models learn from previous projects and
based on the knowledge gathered from past projects, new
project’s effort is estimated. When dealing with effort

Copyright © 2009, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

estimation, these methods also suffer from large deviations
and low accuracies. Selecting a single algorithm would
often be far from fulfilling the expectations of practitioners
from the industry. Therefore, AI techniques should be
selected carefully to build an effort estimation model that
would best fit into the company needs.
 In this study, we have proposed an effort estimation
model for the software development division of the
Turkish subsidiary of a multinational bank, IBTech.
IBTech has been developing their in-house banking
application since 2000. They work with tight schedules due
to severe competition in the banking industry and changing
and tighter banking regulations. Software managers look
for effective strategies to plan their schedule and
effectively allocate their resources to meet budget
constraints. To address this problem we have built a
learning-based effort estimation model and validated the
performance of our model using IBTech data from
completed projects in terms of project features and actual
efforts as well as public datasets gathered from various
organizations. We have used various AI techniques for
feature selection, clustering and estimation. The results of
our empirical study reveal that we successfully predicted
78% of projects’ effort with less than 30% error.
 In this paper, we explain the phases of our project and
we emphasize the benefits of AI in real life projects. The
outline of this paper is as follows: First, we briefly explain
the phases of this case study. We then provide details on
construction of the model, its parameters, AI techniques
and performance measures. Finally we present our
empirical results to examine the importance of AI in
software effort estimation domain.

Description of the Model

There are five fundamental issues to decide while building
an effort estimation model: Data, Performance Measures,
Feature Selection, Algorithm Selection and Model
Construction.

Software Data

According to Fenton and Neil (2000), traditional software

metrics collection has not addressed the actual purpose of

providing information to support quantitative decision

making. It often provides little support for managers that

aim to use measurement for risk and what-if analysis.

Therefore, before building intelligent oracles for

estimation, we must define the actual metrics that would

measure what is intended to measure. Basically, each

metric in effort estimation should correspond to process,

product or resource to measure internal attributes of these

categories. We have followed the same principle when

collecting software metrics of IBTech effort estimation

data.

 Based on Boehm’s COCOMO survey (1981), we have

defined 22 questions most of which captures process (8)

and resource (14) aspects of a software project. We have

further used configuration management systems in IBTech

to derive 18 product metrics. All metrics set is summarized

in Appendix A. Initially, a filtering approach based on

expert judgment and statistical analysis has been applied to

reduce the number of metrics that have significant relation

with software effort.

 Furthermore, we have used 6 public effort estimation

datasets whose metrics and actual effort values are

collected from various organizations in United States,

Canada and Turkey. They contain a variety of project

features, some of which are collected via COCOMO

questionnaire (Boehm 1981). Table 1 represents dataset

features.

Table 1. Datasets used in model construction

Dataset # Features # Projects Content

IBTech 40 29 Banking applications

Albrecht 7 24 Projects from IBM

Deshernais 12 81 Canadian software

projects

SDR 22 24 Turkish software

projects

ISBSG 14 29 Banking projects

only

Cocomo81 17 63 Nasa projects

Nasa93 17 93 Nasa projects

Expert Judgment. As an initial analysis, we have
eliminated software metrics collected from IBTech that are
predictable prior to the project startup. There are certain
features (such as “bug count”) that can be easily collected
from past projects, whereas it is very unlikely to estimate
at the beginning of a new project. With this kind of a
filtering, 15 project features are defined as unpredictable
and removed from the project set.

Statistical Analysis. Selecting only predictable metrics
based on expert judgment, we have fitted a regression line
and observed the R-Squared coefficient to analyze how
well each feature approximates effort values with 95%
significance. Figure 1 shows R-Squared coefficients for
predictable project features. As it is seen, most of the
features have values less than 0.3, which indicates that they
are not explanatory to predict the project effort on their
own. Therefore, we have adopted an algorithmic approach
to find the best subset of features that would have a
significant effect on the project effort.

Performance Measures

 To assess the performance of our proposed model, we
have used two popular performance measures: Mean
Magnitude of Relative Error (MMRE) and Pred(k) in the
field of effort estimation (Port and Korte 2008). MMRE
computes the average magnitude of relative error between
the predicted and actual effort values of all projects.
Despite criticism, it gives an overall view of the

performance of a model using the formula (Port and Korte
2008):

Pred(25) defines the average fraction of the magnitude of
relative error off by no more than 25%. In order to report
the performance of the model for a particular success
criteria, Pred(k) is used. The formula for calculating
Pred(k) is as follows (Port and Korte 2008):

Inverse to MMRE, high Pred values are desirable.
Although both measures provide meaningful and precise
interpretation of “accuracy measure” (Port and Korte
2008), we would often observe Pred values to count the
number of estimates that are below a pre-defined error
value during our experiments

Feature Selection

In the literature, software metrics are used in the estimation
model either as unweighted (Shepperd and Schofield 1997,
Li et al. 2007) or with some weights assigned based on
different heuristics. Some of these techniques that we have
also used in this study can be summarized as Wrapper for
feature selection (Menzies et al. 2006), PCA-based weight
assignment (Tosun, Turhan, Bener 2009) and correlation
based weight assignment (Mendes et al. 2003).
 First, Wrapper algorithm considers all possible
combinations of features, which is 2

n
-1 where n is the

number of features, and selects a set of features which
would result in the minimum error rate (Menzies et al.
2006). It is better to use only a subset of features if they are
able to represent the effort value better than using the
whole set. The reasons for this are that all possible features
would a) introduce noise into the model and b) increase the
dimension of the space such that the estimation accuracy of
the algorithm may degrade. Thus, we have applied
Wrapper to our initial dataset by selecting a popular
machine learning (ML) algorithm, Support Vector
Regression (SVR) in effort estimation studies. Our
objective here is to evaluate project features rather than
selecting the best algorithm for effort estimation.
Therefore, we have selected SVR to observe the impact of
three feature selection techniques on model performance.
 Second, PCA-based weighting heuristic is inspired from
the popular statistical technique, Principal Components
Analysis (PCA), which is used for dimensionality
reduction. This heuristic, however, is proposed to assign
weights to features by taking major principal components
from PCA (Tosun, Turhan, Bener 2009). Weights close to
zero indicates that those features have particular
importance on the project effort. We have also utilized this
heuristic before applying SVR.







N

i Actual

ActualEstimated

iEffort

iEffortiEffort

N
MMRE

1)(

)()(1

 


 


N

i

k

N
ked

1

i

otherwise 0

MRE if 11
)(Pr

 Third, correlation-based weighting heuristic investigates
Pearson’s correlation coefficients to identify significant
relations between project features and the effort. Initially
all features have weights 1 (Mendes et al. 2003). Based on
this heuristic, weights of any feature whose correlation is
significant with 95% confidence are doubled. Then same
ML algorithm is applied to the modified dataset.
Table 2 presents Pred(K) with k=25 for three feature
selection approaches on all. Results show that feature
selection techniques applied on predictable features would
improve the prediction accuracy. To ensure the statistical
validity of these results, Wilcoxon rank sum tests are
conducted on all data types. This non-parametric test
reveals that three feature selection algorithms are not
significant from each other in terms of Pred(25) values
(Wilcoxon 1945). Although they are proved to improve the
prediction accuracy, selecting one out of the others would
not change the prediction performance significantly. Due
to this fact, we have selected Wrapper feature selection
algorithm, since it exhaustively looks at all feature
combinations and selects the best feature set.

Table 1. Results of feature selection techniques on IBTech dataset

Data Type Pred(25)

All features 27.78%

Predictable features only 29.41%

Wrapper Selected Features 47.06%

PCA Weighted Features 52.94%

Correlation-Based Weighted Features 52.94%

Algorithm Selection

For deciding the best algorithm in terms of performance
measures, we have tried out various AI techniques. They
are single learners such as Linear Regression (LR), Support
Vector Regression (SVR), Decision Tree (DT), k-Nearest
Neighbor (k-NN) and Multilayer Perceptrons (MLP) and a
Mixture of Experts (MOE) with all algorithms. These
algorithms are selected based on two criteria: a) they are
widely used techniques whose performances are validated
on various datasets in effort estimation (Shepperd and
Kadoda 2001, Menzies et al. 2006, Corazza et al. 2009),
and b) from the machine learning perspective, each

algorithm can achieve strengths on different datasets based
on their regression methodologies (Alpaydin 2004).
 We have executed these algorithms on all datasets to see
their overall performance. Our methodology for initial
model construction can be summarized as follows:

 Select an algorithm from the following set:

{LR, SVR, DT, k-NN, MLP, MOE}

 Select a dataset from Table 2.

o Apply Wrapper with Exhaustive Search using
k-NN algorithm (k=3)

o Using Leave-One-Out strategy:

 Apply the algorithm on dataset

 Report MMRE, Pred(25) values

 Apply non-parametric Friedman test to find statistical
differences between algorithms (Alpaydin 2004). This
statistical test checks the null hypothesis:

“H0: Performance differences among algorithms
are random”

 against the alternative hypothesis:

“H1: Performance differences among algorithms
are not random.”

 If H0 is rejected, apply Nemenyi’s multiple comparisons
based on mean ranks (Demsar 2006). These comparisons
would select the algorithm from which mean rank
onward, most of the other algorithms are significantly
outperformed.

 In our methodology, we have used leave-one-out
validation to select one project for test set and the rest is
left as training set, since the sizes of datasets are relatively
small (Alpaydin 2004). We have performed Friedman’s
test for classifier comparisons, since it is non-parametric
alternative to ANOVA and relies on less restrictive
assumptions (Demsar 2006). To accomplish Friedman’s
significance test, we have built our model using multiple
algorithms on multiple datasets. Our aim is to assess
whether the differences in terms of Pred(25) and MMRE
values among algorithms are statistically different. Based
on our analysis, this test rejects the null hypothesis with
95% confidence level. That is; one or more algorithms are
statistically different, i.e. superior, from others, although
we could not identify which of them. To select which

Figure 1. R-Squared coefficients of a regression line for 25 project features

Figure 2. Experimental design for model

construction

algorithm(s) significantly dominates others in terms of
performance measures on seven datasets, we have done
Nemenyi’s multiple comparisons (Demsar 2006) whose
results are presented with a graphical interpretation in
Figure 2. In Figure 2, when plotting the significance
regions, each algorithm is represented with a line having a
circle showing the mean rank. Right end of a line is an
indicator for an algorithm A to count the number of
algorithms, from the algorithm A onwards, that are
significantly dominated by A. For instance, the prediction
performance of the second line, which corresponds to SVR,
is significantly different than other four algorithms, LR, k-
NN, DT, MOE. Since it has the highest number of wins in
terms of significant differences, we have decided to use
SVR as the algorithm of our effort estimation model. The
performance of SVR on all datasets can be seen in Table 3
for simplicity. Table 3 shows that we have still very high
values for MMRE and values lower than 70% for Pred(25).

Table 3. Effort estimation accuracy with SVR

Dataset MMRE Pred(25)

IBTech* 41% 47%

Albrecht 126% 25%

Deshernais 320% 18%

SDR 275% 0%

ISBSG 36% 42%

Cocomo81 479% 9.5%

Nasa93 154% 19%

Model Construction

Although we have put high effort on data quality and
collection, some projects in IBTech dataset are outliers, i.e.
their actual effort values could not be accurately collected,
so they do not look like the others in the dataset. Such
projects in all datasets degrade the performance of SVR
during training phase. To overcome this issue, we have
decided to form project groups that provide consistency in
terms of metrics and effort values within groups. We have
applied Clustering before estimation via SVR.

 The main steps for building the effort estimation model
are described in Figure 3. We have used Expectation
Maximization algorithm to find clusters with similar
project features and effort values. In IBTech data, after
selecting 7 project features as the best subset from
Wrapper algorithm, we have applied SVR on each cluster.
Each cluster has been trained only with the projects inside
the cluster and tested on these projects using leave-one-out
validation.
 We have built our final model on IBTech dataset as well
as two NASA projects to assess the performance in
multiple organizations. Results are summarized in Table 4.
The proposed model on all datasets is able to obtain
Pred(30) values higher than 70% on the clusters with the
best accuracy. Although there are still inconsistencies
about the correctness of IBTech data, we have managed to
form a cluster, in which we can estimate 7 out of 9 projects
with relative error less than 30%. Similarly, for NASA
datasets, MMRE values are below 30% on the best cluster
with 16 and 15 projects on Cocomo81 and Nasa93.
Therefore, we can conclude that AI approaches would
significantly improve the estimation accuracy when
accurate and consistent data is given. Our results would
also be improved when actual efforts of the other projects
in IBTech dataset are re-calculated to avoid large
deviations in the model.

Table 4. Effort estimation results with the final model

 Best Cluster

Dataset Clusters Projects MMRE Pred(25) Pred(30)

IBTech 3 9 41% 67% 78%

Cocomo81 3 16 20% 72% 83%

Nasa93 6 15 25% 66% 73%

Conclusion

In this study, we have built an effort estimation model to
predict the project effort at the beginning by using AI

Figure 3. Mean ranks of multiple comparisons among

algorithms. In y-axis, each number corresponds to an

algorithm such that 1:LR, 2: SVR, 3: MLP,4: k-NN, 5: DT, 6:

MOE. Circles show the mean ranks of algorithms. Right end

of each line shows from which mean rank onward, another

algorithm is outperformed significantly.

techniques. We have collected software metrics and actual
effort values from 29 projects in IBTech and used public
datasets to satisfy external validity of such models.
Combinations of AI techniques provide significant
improvements on estimation accuracy on datasets.
Furthermore, we have done statistical tests to check the
significance of these estimation results. Statistical tests
show that SVR is the best among six algorithms. When
used with clustering, the model performance increases
significantly, from, on the average, 25% to 68% in terms of
Pred(25) in three datasets.
 As a future direction, we aim to divide project effort into
phases and build a model that would predict phase-based
efforts. We plan to select features for each phase separately
and built an effort estimator that would help decision
making in every phase of software development lifecycle.

Appendix A

Table A1. Software metrics collected in this study

Metric Category: Product

Component count Query Number

Module Difficulty Screen Number

Data Exchange Popup Number

Deploy count Region Number

Service Number Report Number

Batch Number Table Number

Requirement Count Method Count

Business Request Count Lines of Code

Class Count Lines of Comment

Metric Category: Process

TIME: Time constraint on project RUPR: Re-use percentage

RECH: Percentage of extra time

due to requirements change.
NEWP: New code percentage

CWLK: Percentage of code

walkthrough.
Test Case Count

SECU: Percentage of extra time

due to security constraints.
Bug Count

Metric Category: Resource

ACAP: Analyst capability SCED: Schedule constraints

PCAP: Programmer capability RCAP: Architect capability

RELY: How reliable the

developed project shall be

DOCU: The percentage

overhead due to

documentation needs.

RDOM: Requirement team’s

domain knowledge

TOOL: Tool usage percentage

within this project.

TMNO: Number of team’s

worked in this project

SITE: How distributed the

teams worked in this project

were

THPT: Percentage of project

developed by third parties

DEOT: Development team’s

workload other than the

project.

THIM: Whether there is third

party involvement

TEAM: The cohesion of the

teams worked in this project

References

Alpaydın, E. 2004. Introduction to machine learning.
Cambridge: MIT Press.
Boehm, B., Abts, C., Chulani, S. 2000. Software
development cost estimation approaches: A survey. Annals
of Software Engineering (10): 177–205.
Jorgensen M. 2004. A review of studies on expert
estimation of software development effort. Journal of
Systems and Software (70): 37-60.
Menzies, T., Chen, Z., Hihn, J., & Lum, K. 2006. Selecting
best practices for effort estimation. IEEE Transactions on
Software Engineering (32): 883–895.
Li, J., Ruhe, G. 2007. Decision support analysis for
software effort estimation by analogy. In Proceedings of
the Third International Workshop on Predictor Models in
Software Engineering (PROMISE 2007). Minnesota, USA.
Boehm, B.W. 1981. Software Engineering Economics.
Upper Saddle River, NJ, USA: Prentice Hall PTR.
Boehm, B. W., Abts, C. Brown, A.W., Chulani, S., Clark,
B. K., Horowitz, E., Madachy, R., Reifer, J.D., and Steece,
B. 2000. Software Cost Estimation with Cocomo II. Upper
Saddle River, NJ, USA: Prentice Hall PTR.
Shepperd M., Kadoda, G. 2001. Comparing software
prediction models using simulation. IEEE Transactions on
Software Engineering, 1014–1022.
Wittig, G., Finnie, G. 1997. Estimating Software
Development Effort with Connectionists Models.
Information & Software Technology (39): 469-476.
Fenton, N., Neil, M. 2000. Software Metrics: Roadmap, In
Proceedings of 22nd International Conference on Software
Engineering, ACM Press ISBN 1-58113-253-0, 357-370.
Demsar, J. 2006. Statistical Comparisons of Classifiers
over Multiple Data Sets. J. Machine Learning Research,
(7): 1-30.
Port, D., Korte, M. 2008. Comparative Studies of the
Model Evaluation Criterions MMRE and PRED in
Software Cost Estimation Research. In ESEM 2008, 51-61.
Shepperd, M, Schofield, C. 1997. Estimating software
project effort using analogies. IEEE Transactions on
Software Engineering (23): 736–743.
Tosun, A., Turhan, B., Bener, A. 2009. Feature weighting
heuristics for analogy-based effort estimation models.
Expert Systems with Applications (79), 1:
Mendes, E., Watson, I., Triggs, C., Mosley, N., Counsell,
S. 2003. A comparative study of cost estimation models on
web hypermedia applications. Empirical Software
Engineering, (8): 193–196.
Wilcoxon, F. 1945. Individual comparisons by ranking
methods. Biometrics Bulletin, (1): 80–83.
Corazza, A., Di Martino, S., Ferruci, F., Gravino, C.,
Mendes, E. 2009. Applying Support Vector Regression for
Web Effort Estimation using a Cross-Company Dataset. In
Proc. Third International Symposium on Empirical
Software Engineering and Measurement, 191-203.

