
 

AI Based Models for Estimating  

Software Projects' Efforts  

 
Abstract 

Decision making under uncertainty is a critical problem in the field of software engineering. Predicting the software quality or the 
cost/ effort requires high level expertise. AI based predictor models, on the other hand, are useful decision making tools that learn 
from past projects' data. In this study, we have built an effort estimation model for a multinational bank to predict the effort prior to 
projects' development lifecycle. We have collected process, product and resource metrics from past projects together with the effort 
values distributed among software life cycle phases, i.e. analysis & test, design & development. We have used Clustering approach to 
form consistent project groups and Support Vector Regression (SVR) to predict the effort. Results validate the benefits of using AI in 
real life applications: 78% accuracy in predicting project efforts. 
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Introduction   

One of the key challenges in software industry is the 
accurate estimation of the development effort, which is 
particularly important for risk evaluation, resource 
scheduling as well as progress monitoring (Boehm, Abts, 
Chulani 2000). Inaccuracies in estimations lead to 
problematic results; for instance, overestimation causes 
waste of resources, whereas underestimation results in 
approval of projects that will exceed their planned budgets 
(Boehm, Abts, Chulani 2000).  
 Various effort estimation models have been proposed to 
make reliable predictions to finish projects on time and 
within the budget. These models can be examined based on 
methodologies used: Expert-based, analogy-based and 
regression-based. Expert based models totally depend on 
the expert knowledge to use past experience on software 
projects. Based on a comprehensive review (Jorgenson 
2004), expert based estimation is one of the most 
frequently applied estimation strategy. They provide a 
broad definition of estimation, such a “gut feelings” or 
“structured estimations” supported by historical data and 
processes of the companies. Selecting one of these 
“heuristics” while making expert-based estimations may 
sometimes perform better than formal methods. However, 
when the prior knowledge of experts is strongly biased, 
then their estimation accuracy significantly degrades. 
 Alternatively, regression-based methods use statistical 
techniques such as least square regression, such that a set 
of independent variables, project features, are converted to 
the dependent variable, effort, with minimum error 
(Menzies et al. 2006). Mathematical models like Barry 
Boehm’s COCOMO (Boehm 1981) and COCOMO II 
(Boehm et al. 2000), are widely investigated as regression-
based methods. Parameters of these models are calibrated 
according to the projects in a company. Thus, they have the 
drawback of requiring local calibration. Local calibration, 
on the other hand, is a very labor-intensive task as it 
requires regular fine-tunings of parameters with new data. 
Once the calibration is stopped, the model would easily 
depreciate. Therefore, the fast changes in software 
development make it very difficult to build a parametric 
model that fits for all software domains (Boehm, Abts and 
Chulani 2000).  
 To address these issues in regression-based models, AI 
techniques have been proposed such as step-wise 
regression, decision tree, artificial neural networks 
(Shepperd and Kadoda 2001, Wittig and Finnie 1997) and 
other rule-based methods (Menzies et al. 2006). AI-based 
(algorithmic) models learn from previous projects and 
based on the knowledge gathered from past projects, new 
project’s effort is estimated. When dealing with effort 
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estimation, these methods also suffer from large deviations 
and low accuracies. Selecting a single algorithm would 
often be far from fulfilling the expectations of practitioners 
from the industry. Therefore, AI techniques should be 
selected carefully to build an effort estimation model that 
would best fit into the company needs.  
 In this study, we have proposed an effort estimation 
model for the software development division of the 
Turkish subsidiary of a multinational bank, IBTech. 
IBTech has been developing their in-house banking 
application since 2000. They work with tight schedules due 
to severe competition in the banking industry and changing 
and tighter banking regulations. Software managers look 
for effective strategies to plan their schedule and 
effectively allocate their resources to meet budget 
constraints. To address this problem we have built a 
learning-based effort estimation model and validated the 
performance of our model using IBTech data from 
completed projects in terms of project features and actual 
efforts as well as public datasets gathered from various 
organizations. We have used various AI techniques for 
feature selection, clustering and estimation. The results of 
our empirical study reveal that we successfully predicted 
78% of projects’ effort with less than 30% error.    
 In this paper, we explain the phases of our project and 
we emphasize the benefits of AI in real life projects.  The 
outline of this paper is as follows: First, we briefly explain 
the phases of this case study. We then provide details on 
construction of the model, its parameters, AI techniques 
and performance measures. Finally we present our 
empirical results to examine the importance of AI in 
software effort estimation domain.  

Description of the Model 

There are five fundamental issues to decide while building 
an effort estimation model:  Data, Performance Measures, 
Feature Selection, Algorithm Selection and Model 
Construction. 

Software Data 

According to Fenton and Neil (2000), traditional software 

metrics collection has not addressed the actual purpose of 

providing information to support quantitative decision 

making. It often provides little support for managers that 

aim to use measurement for risk and what-if analysis. 

Therefore, before building intelligent oracles for 

estimation, we must define the actual metrics that would 

measure what is intended to measure.  Basically, each 

metric in effort estimation should correspond to process, 

product or resource to measure internal attributes of these 

categories. We have followed the same principle when 

collecting software metrics of IBTech effort estimation 

data.  

 Based on Boehm’s COCOMO survey (1981), we have 

defined 22 questions most of which captures process (8) 



and resource (14) aspects of a software project. We have 

further used configuration management systems in IBTech 

to derive 18 product metrics. All metrics set is summarized 

in Appendix A. Initially, a filtering approach based on 

expert judgment and statistical analysis has been applied to 

reduce the number of metrics that have significant relation 

with software effort. 

  Furthermore, we have used 6 public effort estimation 

datasets whose metrics and actual effort values are 

collected from various organizations in United States, 

Canada and Turkey. They contain a variety of project 

features, some of which are collected via COCOMO 

questionnaire (Boehm 1981). Table 1 represents dataset 

features. 

 
Table 1. Datasets used in model construction 

Dataset # Features # Projects Content 

IBTech 40 29 Banking applications 

Albrecht 7 24 Projects from IBM 

Deshernais 12 81 Canadian software 

projects 

SDR 22 24 Turkish software 

projects 

ISBSG 14 29 Banking projects 

only 

Cocomo81 17 63 Nasa projects 

Nasa93 17 93 Nasa projects 

 

Expert Judgment. As an initial analysis, we have 
eliminated software metrics collected from IBTech that are 
predictable prior to the project startup. There are certain 
features (such as “bug count”) that can be easily collected 
from past projects, whereas it is very unlikely to estimate 
at the beginning of a new project. With this kind of a 
filtering, 15 project features are defined as unpredictable 
and removed from the project set.  

Statistical Analysis. Selecting only predictable metrics 
based on expert judgment, we have fitted a regression line 
and observed the R-Squared coefficient to analyze how 
well each feature approximates effort values with 95% 
significance. Figure 1 shows R-Squared coefficients for 
predictable project features. As it is seen, most of the 
features have values less than 0.3, which indicates that they 
are not explanatory to predict the project effort on their 
own. Therefore, we have adopted an algorithmic approach 
to find the best subset of features that would have a 
significant effect on the project effort.  

Performance Measures 

 To assess the performance of our proposed model, we 
have used two popular performance measures: Mean 
Magnitude of Relative Error (MMRE) and Pred(k) in the 
field of effort estimation (Port and Korte 2008). MMRE 
computes the average magnitude of relative error between 
the predicted and actual effort values of all projects. 
Despite criticism, it gives an overall view of the 

performance of a model using the formula (Port and Korte 
2008): 

 
  
 
Pred(25) defines the average fraction of the magnitude of 
relative error off by no more than 25%. In order to report 
the performance of the model for a particular success 
criteria, Pred(k) is used. The formula for calculating 
Pred(k) is as follows (Port and Korte 2008): 
 
 
 
 

Inverse to MMRE, high Pred values are desirable. 
Although both measures provide meaningful and precise 
interpretation of “accuracy measure” (Port and Korte 
2008), we would often observe Pred values to count the 
number of estimates that are below a pre-defined error 
value during our experiments 

Feature Selection 

In the literature, software metrics are used in the estimation 
model either as unweighted (Shepperd and Schofield 1997, 
Li et al. 2007) or with some weights assigned based on 
different heuristics. Some of these techniques that we have 
also used in this study can be summarized as Wrapper for 
feature selection (Menzies et al. 2006), PCA-based weight 
assignment (Tosun, Turhan, Bener 2009) and correlation 
based weight assignment (Mendes et al. 2003).  
 First, Wrapper algorithm considers all possible 
combinations of features, which is 2

n
-1 where n is the 

number of features, and selects a set of features which 
would result in the minimum error rate (Menzies et al. 
2006). It is better to use only a subset of features if they are 
able to represent the effort value better than using the 
whole set. The reasons for this are that all possible features 
would a) introduce noise into the model and b) increase the 
dimension of the space such that the estimation accuracy of 
the algorithm may degrade. Thus, we have applied 
Wrapper to our initial dataset by selecting a popular 
machine learning (ML) algorithm, Support Vector 
Regression (SVR) in effort estimation studies. Our 
objective here is to evaluate project features rather than 
selecting the best algorithm for effort estimation. 
Therefore, we have selected SVR to observe the impact of 
three feature selection techniques on model performance.  
 Second, PCA-based weighting heuristic is inspired from 
the popular statistical technique, Principal Components 
Analysis (PCA), which is used for dimensionality 
reduction. This heuristic, however, is proposed to assign 
weights to features by taking major principal components 
from PCA (Tosun, Turhan, Bener 2009). Weights close to 
zero indicates that those features have particular 
importance on the project effort. We have also utilized this 
heuristic before applying SVR.  
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 Third, correlation-based weighting heuristic investigates 
Pearson’s correlation coefficients to identify significant 
relations between project features and the effort. Initially 
all features have weights 1 (Mendes et al. 2003). Based on 
this heuristic, weights of any feature whose correlation is 
significant with 95% confidence are doubled. Then same 
ML algorithm is applied to the modified dataset.  
Table 2 presents Pred(K) with k=25 for three feature 
selection approaches on all. Results show that feature 
selection techniques applied on predictable features would 
improve the prediction accuracy. To ensure the statistical 
validity of these results, Wilcoxon rank sum tests are 
conducted on all data types. This non-parametric test 
reveals that three feature selection algorithms are not 
significant from each other in terms of Pred(25) values 
(Wilcoxon 1945). Although they are proved to improve the 
prediction accuracy, selecting one out of the others would 
not change the prediction performance significantly. Due 
to this fact, we have selected Wrapper feature selection 
algorithm, since it exhaustively looks at all feature 
combinations and selects the best feature set. 
 
Table 1. Results of feature selection techniques on IBTech dataset 

Data Type Pred(25) 

All features 27.78% 

Predictable features only 29.41% 

Wrapper Selected Features 47.06% 

PCA Weighted Features 52.94% 

Correlation-Based Weighted Features 52.94% 

Algorithm Selection 

For deciding the best algorithm in terms of performance 
measures, we have tried out various AI techniques. They 
are single learners such as Linear Regression (LR), Support 
Vector Regression (SVR), Decision Tree (DT), k-Nearest 
Neighbor (k-NN) and Multilayer Perceptrons (MLP) and a 
Mixture of Experts (MOE) with all algorithms. These 
algorithms are selected based on two criteria: a) they are 
widely used techniques whose performances are validated 
on various datasets in effort estimation (Shepperd and 
Kadoda 2001, Menzies et al. 2006, Corazza et al. 2009), 
and b) from the machine learning perspective, each 

algorithm can achieve strengths on different datasets based 
on their regression methodologies (Alpaydin 2004). 
 We have executed these algorithms on all datasets to see 
their overall performance. Our methodology for initial 
model construction can be summarized as follows: 

 Select an algorithm from the following set: 

{LR, SVR, DT, k-NN, MLP, MOE} 

 Select a dataset from Table 2. 

o Apply Wrapper with Exhaustive Search using 
k-NN algorithm (k=3) 

o Using Leave-One-Out strategy: 

 Apply the algorithm on dataset 

 Report MMRE, Pred(25) values 

 Apply non-parametric Friedman test to find statistical 
differences between algorithms (Alpaydin 2004). This 
statistical test checks the null hypothesis:  

“H0: Performance differences among algorithms 
are random” 

 against the alternative hypothesis: 

“H1: Performance differences among algorithms 
are not random.” 

 If H0 is rejected, apply Nemenyi’s multiple comparisons 
based on mean ranks (Demsar 2006). These comparisons 
would select the algorithm from which mean rank 
onward, most of the other algorithms are significantly 
outperformed. 

 
 In our methodology, we have used leave-one-out 
validation to select one project for test set and the rest is 
left as training set, since the sizes of datasets are relatively 
small (Alpaydin 2004). We have performed Friedman’s 
test for classifier comparisons, since it is non-parametric 
alternative to ANOVA and relies on less restrictive 
assumptions (Demsar 2006). To accomplish Friedman’s 
significance test, we have built our model using multiple 
algorithms on multiple datasets. Our aim is to assess 
whether the differences in terms of Pred(25) and MMRE 
values among algorithms are statistically different. Based 
on our analysis, this test rejects the null hypothesis with 
95% confidence level. That is; one or more algorithms are 
statistically different, i.e. superior, from others, although 
we could not identify which of them. To select which 

Figure  1. R-Squared coefficients of a regression line for 25 project features 

 



Figure  2. Experimental design for model 

construction 

 

algorithm(s) significantly dominates others in terms of 
performance measures on seven datasets, we have done 
Nemenyi’s multiple comparisons (Demsar 2006) whose 
results are presented with a graphical interpretation in 
Figure 2. In Figure 2, when plotting the significance 
regions, each algorithm is represented with a line having a 
circle showing the mean rank. Right end of a line is an 
indicator for an algorithm A to count the number of 
algorithms, from the algorithm A onwards, that are 
significantly dominated by A. For instance, the prediction 
performance of the second line, which corresponds to SVR, 
is significantly different than other four algorithms, LR, k-
NN, DT, MOE. Since it has the highest number of wins in 
terms of significant differences, we have decided to use 
SVR as the algorithm of our effort estimation model. The 
performance of SVR on all datasets can be seen in Table 3 
for simplicity. Table 3 shows that we have still very high 
values for MMRE and values lower than 70% for Pred(25).  
 

Table 3. Effort estimation accuracy with SVR 

Dataset MMRE Pred(25) 

IBTech* 41% 47% 

Albrecht 126% 25% 

Deshernais 320% 18% 

SDR 275% 0% 

ISBSG 36% 42% 

Cocomo81 479% 9.5% 

Nasa93 154% 19% 

Model Construction 

Although we have put high effort on data quality and 
collection, some projects in IBTech dataset are outliers, i.e. 
their actual effort values could not be accurately collected, 
so they do not look like the others in the dataset. Such 
projects in all datasets degrade the performance of SVR 
during training phase. To overcome this issue, we have 
decided to form project groups that provide consistency in 
terms of metrics and effort values within groups. We have 
applied Clustering before estimation via SVR. 

 The main steps for building the effort estimation model 
are described in Figure 3. We have used Expectation 
Maximization algorithm to find clusters with similar 
project features and effort values. In IBTech data, after 
selecting 7 project features as the best subset from 
Wrapper algorithm, we have applied SVR on each cluster. 
Each cluster has been trained only with the projects inside 
the cluster and tested on these projects using leave-one-out 
validation.  
 We have built our final model on IBTech dataset as well 
as two NASA projects to assess the performance in 
multiple organizations. Results are summarized in Table 4. 
The proposed model on all datasets is able to obtain 
Pred(30) values higher than 70% on the clusters with the 
best accuracy. Although there are still inconsistencies 
about the correctness of IBTech data, we have managed to 
form a cluster, in which we can estimate 7 out of 9 projects 
with relative error less than 30%. Similarly, for NASA 
datasets, MMRE values are below 30% on the best cluster 
with 16 and 15 projects on Cocomo81 and Nasa93. 
Therefore, we can conclude that AI approaches would 
significantly improve the estimation accuracy when 
accurate and consistent data is given. Our results would 
also be improved when actual efforts of the other projects 
in IBTech dataset are re-calculated to avoid large 
deviations in the model.  
 

Table 4. Effort estimation results with the final model 

 Best Cluster 

Dataset Clusters Projects MMRE Pred(25) Pred(30) 

IBTech 3 9 41% 67% 78% 

Cocomo81 3 16 20% 72% 83% 

Nasa93 6 15 25% 66% 73% 

Conclusion 

In this study, we have built an effort estimation model to 
predict the project effort at the beginning by using AI 

Figure 3. Mean ranks of multiple comparisons among 

algorithms. In y-axis, each number corresponds to an 

algorithm such that 1:LR, 2: SVR, 3: MLP,4: k-NN, 5: DT, 6: 

MOE. Circles show the mean ranks of algorithms. Right end  

of each line shows from which mean rank onward, another 

algorithm is outperformed significantly. 

 



techniques. We have collected software metrics and actual 
effort values from 29 projects in IBTech and used public 
datasets to satisfy external validity of such models. 
Combinations of AI techniques provide significant 
improvements on estimation accuracy on datasets. 
Furthermore, we have done statistical tests to check the 
significance of these estimation results. Statistical tests 
show that SVR is the best among six algorithms. When 
used with clustering, the model performance increases 
significantly, from, on the average, 25% to 68% in terms of 
Pred(25) in three datasets.  
 As a future direction, we aim to divide project effort into 
phases and build a model that would predict phase-based 
efforts. We plan to select features for each phase separately 
and built an effort estimator that would help decision 
making in every phase of software development lifecycle.  

Appendix A 

Table A1. Software metrics collected in this study 

Metric Category: Product 

Component count Query Number 

Module Difficulty Screen Number 

Data Exchange Popup Number 

Deploy count Region Number 

Service Number Report Number 

Batch Number Table Number 

Requirement Count Method Count 

Business Request Count Lines of Code 

Class Count Lines of Comment 

Metric Category: Process 

TIME: Time constraint on project RUPR: Re-use percentage 

RECH: Percentage of extra time 

due to requirements change. 
NEWP: New code percentage 

CWLK: Percentage of code 

walkthrough. 
Test Case Count 

SECU: Percentage of extra time 

due to security constraints. 
Bug Count 

Metric Category: Resource 

ACAP: Analyst capability SCED: Schedule constraints 

PCAP: Programmer capability RCAP: Architect capability 

RELY: How reliable the 

developed project shall be  

DOCU: The percentage 

overhead due to 

documentation needs. 

RDOM: Requirement team’s 

domain knowledge 

TOOL: Tool usage percentage 

within this project. 

TMNO: Number of team’s 

worked in this project 

SITE: How distributed the 

teams worked in this project 

were 

THPT: Percentage of project 

developed by third parties 

DEOT: Development team’s 

workload other than the 

project. 

THIM: Whether there is third 

party involvement 

TEAM: The cohesion of the 

teams worked in this project 
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