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ABSTRACT

Background: Generating a database of past projects within an or-
ganization requires considerable investment of 1) time, 2) money
and 3) educated personnel. Hence, it is tempting to cross the bound-
aries of development type, location, language, application and hard-
ware to use existing datasets of other organizations.
Aim: The literature is skeptical on the merits of cross-company
data. Our hypothesis is that systematical investigation of project
properties that are likely to define borders of crossness, could reveal
1) how effective they can define these borders and 2) how much
within and cross data would be favored by test instances.
Method: We filtered out 8 cross-within divisions (21 pairs of within-
cross subsets) out of 19 datasets and evaluated these divisions under
different analogy-based estimation (ABE) methods.
Results: We have seen that cross and within data is comparable
in terms of: 1) performance subject to 4 evaluation criteria and 2)
percentage instances selected by ABE methods in final estimation.

Categories and Subject Descriptors
H.4 [Software Cost Estimation]: k-NN; D.2.8 [Software Engi-
neering]: Cost—within company, cross company

1. INTRODUCTION
Accurate effort estimates of future projects are important for soft-
ware organizations. With precise estimates, the organizations can
better allocate their resources; thereby, increasing their competi-
tiveness on the market. On the other hand, it is not easy to at-
tain estimates with high accuracy values. Even in corporations that
have well established measurement and estimation practices, the
matter of accuracy is questionable. A well known example to that
case is NASA’s Check-out Launch Control System, that resulted in
cancellation after doubling its initial estimate of $200M [29]. The
examples in less experienced corporations are even worse [1].

The accuracy of estimates depend on two fundamental factors: 1)
the model used for estimations and 2) the historical database on
which the model is built. The second factor is somewhat a pre-

condition of the first one, i.e. for a successful model, a well-maintained
and precise dataset is a must. Although both factors are equally im-
portant, here our focus will be more on the dataset.

A company willing to undergo a project of a historical effort data
collection within the organization should be able to dedicate a con-
siderable amount of time, money and personnel to this project.
Even if such an investment is ventured, the initial results may have
to wait for a long time. In the case of NASA-wide software cost
metrics repository, only 7 projects could have been added in a time-
frame of two years. It is no surprise that a number of organizations
cannot face the challenges associated with formation and mainte-
nance of a within-company (from now on WC) dataset.

An alternative approach to WC dataset formation is to adapt projects
from cross organizations. With the help of publicly available data
repositories, such cross-company (from now on CC) datasets are
quite easy to find. For example practitioners can find dozens of
these datasets in PROMISE data repository [3].

The merits of using CC data is contradictory. A recent survey by
Kitchenham et al. on the value of using CC data, shows that we
are unable to make a conclusion [15]. Another study by Zimmer-
mann et al. ends up with a similar result [33]. Turhan et al. [32]
and Kocaguneli et al. [17] show that through relevancy filtering CC
data can perform as well as WC data. Our work revisits the merits
of cross data by experimenting with various ABE methods (with
and without relevancy filtering) on a larger scale. We identified
21 WC-CC dataset pairs, which is orders of magnitude bigger than
the amount of pairs used in previous studies [15]. Our conclusions
from these experiments is that except for a very small minority of
cases, CC data performance is comparable to WC.

Prior work has not deeply investigated the selection tendencies of
within company test instances. We question how much data a test
instance would select from within and cross data, when given ac-
cess to both of them. The results of this investigation are: 1) test
instances tend to select analogies from both within as well as cross
data and 2) percentage selections from WC and CC subsets tend to
be very close to one another.

1.1 Research Questions
So as to guide this research the following research questions are
defined:

RQ1: What can be said about within and cross data performances?
RQ2: What is the selection tendency of within instances?
RQ3: What is the reason for a particular tendency of within in-

stances?



RQ4: What would be a good mixture of wihin and cross data?
RQ5: Under which conditions would cross data be favorable?
RQ6: Which features are likely to define cross and within bound-

aries?

2. MOTIVATION
There is enough empirical evidence that cross-company estimation
is a serious problem to tackle [15,17,32,33]. There are a still open
questions to be further investigated and there is need for new ques-
tions to be raised. For example, the merits of using within data is
known [15, 33], i.e. we know that the model of Figure 1(a) works
successfully. On the other hand, merits of cross data in effort es-
timation is an open question. The research done on cross data so
far is reported to be inconclusive [15], so we have both positive
as well as negative results for the model of Figure 1(b). There is
still need for a comprehensive study on this issue. In this study we
investigate 21 WC-CC pairs and compare their performances.

It has been shown that performance of cross data can be improved
via a relevancy filtering [17, 32]. So it is known that model of Fig-
ure 1(c) is a good candidate for making use of cross data in software
effort estimation. In this work we use a variance-based relevancy
filter in various scenarios.

The tendency of a test instance to select within or cross data in-
stances has not been yet addressed. The outcomes of the model
in Figure 1(d) are not known. The information about the selection
tendency of a test instance can tell, if it is a good idea for an orga-
nization to combine limited within data with cross data. It can also
specify in which proportions such a mixture should be. We define
settings for that problem in this paper and look for answers to these
problems.

(a) Within (b) Cross (c) Filter (d) Within+Cross

Figure 1: The problem types in within vs. cross data compar-
ison and our conclusions so far. “+” and “-” signs on top of
models mean positive and negative results respectively. A “?”
sign means the model has not yet been investigated.

2.1 Contributions
The contributions of this research can be listed as follows:

• Analysis of effort datasets and proposition of subsets for pos-
sible WC-CC experiments.
• Investigating effort dataset features to see which features are

likely to define cross and within boundaries.
• An extensive analysis on the merits of cross data and uniform

conclusions.
• Proposing a mixture model of within and cross data.

• Investigating tendency of test instances towards cross and
within data to find preferable percentage of a mixture.

3. RELATED WORK
We divide our related work into two sub-sections. §3.1 describes
effort estimation in general and §3.2 provides in depth discussion
of cross and within data usage in SE.

3.1 Effort Estimation
A high level taxonomy of the software effort estimation based on
the adopted methodology reveals two fundamental groups: Algo-
rithmic and non-algorithmic methods.

Effort estimates generated by algorithmic methods are the product
of a model that is built on historical data. Such methods may entail
the adaptation of an expert proposed model to historical data. A
very well known example to that scenario is Boehm’s COCOMO
method [2]. However, this option requires a long time interval for
within data collection and model adaptation to local data. An al-
ternative is the processing of historical data by generic methods.
Regression methods [25], neural nets [20], model trees [31] and
instance-based models [11, 17, 25] are examples to this category.

Another proposed effort estimation strategy is the non-algorithmic
methods, a.k.a. expert-based estimation. The models under this
category can be defined as a human-intensive process of estimate
negotiation between domain experts [8]. These negotiations con-
tinue until a concensus is reached among the experts. Possible pit-
falls related with this family of methods are threefold:

1. obvious need for high-quality experts,
2. poor cabability of humans to improve their expert judgment

skills [9] and
3. possible conflict of interest among domain experts [17].

3.2 Within-Company vs. Cross-Company
A baseline for successful algorithmic models is the historical effort
datasets of past projects. An organization willing to employ an
algorithmic model-based effort estimation in their processes may
choose to benefit from one of the following:

• within data that is required to be collected within the organi-
zation
• cross data that was collected elsewhere and that needs to be

adapted
• combination of within and cross data

The merits of within data has been shown in the literature; for accu-
rate estimates previous work suggest within data that bears locality-
speicific features. However, there are multiple issues associated
with collecting and maintaining within data [15, 17, 22, 23]:

1. Long time requirement for accumulation of enough local data
2. Possibility of technology change by the time within data is

ready
3. Sensitivity to possible human errors in data collection
4. Loss of managerial interest due to long time constraint

Unlike within data, the reported results regarding cross data are
inconclusive. An extensive systematic review by Kitchenham et al.
on the value cross data reports that only 7 out of 10 studies in the
review are able to show independent evidence in their comparisons



of within and cross data [15]. Out of this 7, 4 studies favor within
data, whereas the remaining 3 report that cross data performance is
not significantly worse than within.

Another field of SE that questions the merits of cross data is defect
prediction and the inconclusive scenario endures. Zimmermann et
al. [33] study cross data in an as is manner and out of 622 cross
predictions only 3.4% is reported to work. Turhan et al. reports
successful applications of cross data: Filtering cross data through a
nearest-neighbor (NN) based filter increases defect prediction prob-
ability [32]. This filtering approach has also inspired effort estima-
tion domain. A variance based filtering on cross data has attained
comparable performance to that of within data [17]. The problem
of cross data has been paid little attention [33] and new questions
like the mixture of within and cross data) are yet to be raised. Vari-
ous aspects of this mixture approach are investigated in this paper.

4. METHODOLOGY
The details of dataset filtering and division of them into cross-
within divisions are presented here. We also explain the selected
performance measures and our experimental set-up.

4.1 Datasets
There are 2 fundamental factors that were considered for selection
of the datasets used in this research:

• Public availability: For reproducibility purposes
• Cross-within divisibility: For enabling cross vs. within ex-

perimentation

A critical issue in software engineering is the ability of the pro-
posed results to be reproducible [10,15] and use of proprietary data
is a major obstacle towards this goal. Therefore, all our datasets are
publicly available through PROMISE data repository [3]. Although
there are more than twenty effort datasets available in PROMISE,
they are not all available for cross-within experimentation. The
available datasets should be able to provide cross-within division.
We define cross-within division as the subset(s) of effort data that
are formed through division of a nominal attribute: Instances hav-
ing the same value for that nominal attribute form a subset. The
nominal attribute should be a plausible candidate for a cross com-
pany setting, i.e. the attribute should be likely to change from one
company to other.

After manually inspecting more than 20 datasets and 6 are selected
for cross-within experimentation. 6 datasets defined 8 cross-within
divisions according to their available nominal attributes. 8 divisions
include 21 subsets, i.e. 21 different WC-CC pairs. The datasets,
cross-within divisions (subsets) and the division criteria are given
in Figure 10. The selected division criteria include:

• project type: embedded, organic and semidetached (cocomo81),
• center: geographical development center (nasa93),
• language type: programming language used for development

(desharnais),
• application type: on-line service program, production control

program etc. (finnish and maxwell),
• hardware: PC, mainframe, networked etc. (kemerer and maxwell),
• source: whether in-house or outsourced (maxwell).

Note that each subset in Figure 10 is named with a self-explanatory
abbreviation. The numbers at the end of abbreviations correspond

Dataset Criterion Subsets Subsets Size

cocomo81 project type cocomo81e 28
cocomo81o 24
cocomo81s 11

nasa93 development center nasa93_center_1 12
nasa93_center_2 37
nasa93_center_5 39

desharnais language type desharnaisL1 46
desharnaisL2 25
desharnaisL3 10

finnish application type finnishAppType1 17
finnishAppType2345 18

kemerer hardware kemererHardware1 7
kemererHardware23456 8

maxwell application type maxwellAppType1 10
maxwellAppType2 29
maxwellAppType3 18

maxwell hardware maxwellHardware2 37
maxwellHardware3 16
maxwellHardware5 7

maxwell source maxwellSource1 8
maxwellSource2 54

Figure 2: 6 datasets are selected from 20+ candidates. Then
selected datasets are divided into subsets according to a crite-
rion that can define a cross-within division. The datasets, subset
sizes as well as the selection criteria are provided here.

to values of the nominal attribute used to form the subsets. If a
name has multiple numbers at the end (e.g. finnishAppType2345)
this means that all instances with these nominal attribute values are
combined in a single subset. Also note that the terms within/cross
and WC/CC will be used interchangeably for the rest of the text.

We acknowledge that cross-within division is a validity concern (a
detailed discussion is given in §6). However, we hasten to say that
it is an acceptable experimentation method, because: a) Despite all
our efforts, public effort datasets are still limited; b) For a compre-
hensive analysis (as this study does on 21 subsets), alternative use
of available datasets should be considered.

4.2 Methods
We used 2 different ABE methodologies in this paper: a relevancy
filtering-based ABE method called “Test Essential Assumption Knowl-
edge” (TEAK) [19] and ABE0 [17, 19].

4.2.1 ABE0: A Baseline Analogy-based Estimation
ABE methods generate an estimate for a test project by retriev-
ing similar past projects (a.k.a. analogies) from a database of past
projects and adapting their effort values into an estimate. There are
various design options associated with ABE methods such as the
distance measure for nearness [24], adaptation of analogy effort
values [24], row processing [4,13], column processing [13,21] and
so on. Elsewhere [12] we show that these options can easily lead to
more than 6000 ABE variants. When ABE methods proposed by
Kadoda & Shepperd [11], Mendes et al. [24], and Li et al. [21] are
followed, a baseline variant emerges:

• Form a database of past projects, whose rows are projects
instances and whose columns are independent variables (that
define projects) and a dependent variable (effort value).
• Decide how many similar projects (analogies) are to be used

from the training set, i.e k-value.
• For each test instance, retrieve k analogies from the database.

– For selection of k analogies use a similarity measure
like Euclidean distance measure.



Figure 3: A sample GAC tree with regions of high variance
(red) and low variance (green). GAC trees may not always
be binary. For example here, leaves are odd numbered, hence
node “c” is left behind. Such instances are pushed forward into
the closest node in the higher level. For example, “c” is pushed
forward into the “b+f” node to make “b+f+c” node.

– Before calculating similarity, scale independent features
to equalize their influence on the similarity measure.

– Use a feature weighting scheme to reduce the effect of
less informative features.

• Adapt the effort values of the k nearest analogies to come up
with the effort estimate.

Following the steps of this baseline technique, we define a frame-
work called ABE0. ABE0 uses the Euclidean distance as a similar-
ity measure, whose formula is given in Equation 1, wherewi corre-
sponds to feature weights applied on independent features. ABE0
framework does not favor any features over the others, therefore
each feature has equal importance in ABE0, i.e. wi = 1. For
adaptation ABE0 takes the median of selected k projects.

Distance =

√√√√ n∑
i=1

wi(xi − yi)2 (1)

4.2.2 TEAK: Test Essential Assumption Knowledge
TEAK is a relevancy filtering-based ABE method that makes use
of greedy-agglomerative clustering (GAC) trees. Detailed descrip-
tion of TEAK can be found in [19]. In summary, it is a two-pass
system:

• Pass 1 removes the training instances implicated in poor de-
cisions;
• Pass 2 selects the instances that are closest to the test in-

stance.

In the first pass, training instances are combined into a GAC tree
(called GAC1). A trivial example to GAC tree formation is pro-
vided in Figure 3. Level zero of GAC1 is formed by leaves, which
are the individual project instances. These instances are greedily
combined into tuples to form the nodes of upper levels. GAC1 is
then traversed upwards from the root to level one (one level higher
than the leaves). The variance of the effort values associated with
each sub-tree (the performance variance) is then recorded and nor-
malized to a 0-1 interval. The high variance sub-trees are then
chopped-off, as these are the sub-trees that would cause an ABE

Figure 4: Execution of TEAK on 2 GAC trees, where tree on the
left is GAC1 and the one on the left is GAC2 (i.e. lower variance
sub-tree of GAC1). The instances in the low variance region
of GAC1 (green region) are selected to form GAC2. Then test
instance traverses GAC2 until no decrease in effort variance
is possible. Wherever the test instance stops is selected as the
subtree to be used for adaptation (white region of GAC2).

method to make an estimate from a highly variable instance space.
Hence, pass one prunes sub-trees with a variance greater than α%
of the maximum variance seen in any tree. After some experimen-
tation, we found that α = 10 lead to estimates with lowest errors.

The leaves of the remaining sub-trees are the survivors of pass one.
They are filtered to pass 2 where they are used to build a second
GAC tree (GAC2). GAC2 is generated and traversed in a simi-
lar fashion to GAC1, then test instances are moved from root to
leaves. Unlike GAC1, this time variance is a decision criterion for
the movement of test instances: If the variance of the current tree
is larger than its sub-trees, then continue to move down; otherwise,
stop and select the instances in the current tree as the analogies.
TEAK is a form of ABE0, so its adaptation method is the same, i.e.
take the median of the analogy effort values. A simple visualization
of this approach is given in in Figure 4.

4.2.3 Why ABE methods: ABE0 and TEAK?
The comparison of ABE methods vs. non-ABE methods (e.g. k-
NN vs. neural nets) is not within the scope of this paper. A detailed
comparison of different methods on effort estimation can be found
in [25]. The reasons behind selection of ABE methods (ABE0 and
TEAK) in this research are threefold: 1) they are widely investi-
gated in software effort estimation [4,11,13,17,19,21,24], 2) they
are particularly helpful for cross company examinations as they
are based on distances between individual project instances and
3) analogy methods are comparable -if not better- to non-analogy
methods in terms of performance.

In [19] we have compared performance of TEAK and ABE0 to non-
analogy estimators (neural networks (NNet) and linear regression
(LR)). An excerpt from that comparison is given in Figure 5 (for
a complete analysis and for definitions of datasets please refer to
Figure 7 of [19]). Note in Figure 5 that TEAK is usually the high
performer in comparison to non-ABE methods.

4.3 Performance Measures
A performance measure comments on the success of an estimate,
hence the predictor. Performance measures listed here have the
property that there is at least one publication in effort estimation
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Desharnais N
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Count 6 3 0 0 0 0 0 0 0

Figure 5: This figure displays the top performing estimation
methods, measured via (win − loss) and repeated for the per-
formance measures of MdMRE, Pred(25) and MAR. The last
row of each table shows the sum of times a method appeared as
the top performing variant. Note that TEAK is comparable to
or better than non-analogy methods.

research proposing their use. An example performance measure
is the absolute residual (AR), which is the absolute difference be-
tween predicted and the actual effort values. AR formula is given
in Equation 2, where xi, x̂i are the actual and predicted values re-
spectively for test instance i. Summary of individual AR values is
found by taking their mean (MAR).

ARi = |xi − x̂i| (2)

Another performance measures is the Magnitude of Relative Error
(MRE), which is a widely used method to select the best estimator
from a number of competing models [6, 28]. MRE is the measure
of the error ratio between the actual and the predicted effort:

MREi =
| xi − x̂i |

xi
=
| ARi |

xi
(3)

MRE can be summarized through mean or median. The former
summary defines mean MRE (MMRE) and the latter defines me-
dian MRE (MdMRE). Formulas of MMRE and MdMRE are:

MMRE = mean(MRE1,MRE2, ...,MREn) (4)
MdMRE = median(MRE1,MRE2, ...,MREn) (5)

An alternative to prior performance measures is Pred(x), i.e. the

wini = 0, tiei = 0, lossi = 0
winj = 0, tiej = 0, lossj = 0
if WILCOXON(Pi, Pj) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if mean or median(Pi) < median(Pj) then
wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Figure 6: Pseudocode for win-tie-loss calculation between
methods i and j w.r.t. performance measures Pi and Pj .
Note here that only for Pred(30) the comparison is based on
actual values (Pred(30)i, Pred(30)j) rather than mean or
median values of performance measure arrays (median(Pi),
median(Pj)).

percentage of estimates that fall within x% of the actual values:

Pred(x) =
100

N

N∑
i=1

{
1 if MREi ≤ x

100
0 otherwise (6)

A common value for x inPred(x) is 30 [5]. For example, Pred(30) =
50% implies that half of the estimates are within 30% of the actual
values [28].

It is reported as a considerable threat to the validity of effort esti-
mation studies, if derived performance measures are not evaluated
with an appropriate statistical test [14]. In this study we use a Mann
Whitney test (95%). To compare the values of MAR, MMRE,
MdMRE and Pred(30), we use the following win-tie-loss proce-
dure that incorporates Mann Whitney statistical test. We first check
if two distributions i, j are statistically different according to the
Mann Whitney test. In our experimental setting, i, j are arrays of
performance measure results coming from two different methods.
If they are not statistically different, then they are said to tie and
we increment tiei and tiej . On the contrary, if they are different,
we updated wini, winj and lossi, lossj after a numerical compar-
ison of performance measures. The related pseudocode is given in
Figure 6. To get rid of any bias that would come from a particular
experimental setting, for every experiment 20 runs are made.

4.4 Experimentation
The experimentation of this research has two different scenarios:
Performance comparison and selection tendency. Performance com-
parison scenario compares different ABE methods (TEAK and ABE0
with k=4,best) when subject to within and cross company data. The
selection tendency experiments question the tendency of a within
test instance towards within or cross data. In other words, given the
chance that a test instance had access to within and cross data at
the same time, what percentage of every subset would be selected
into k analogies used for estimation. The details of each scenario is
presented in the following subsections.

4.4.1 Performance Comparison
For performance comparison scenario we have two settings: Within
and cross. In within data setting, only within data is used as the
dataset and a testing strategy of leave-one-out cross-validation (LOOCV)
is employed. LOOCV works as follows: Given a within dataset of



T projects, 1 project at a time is selected as the test and the remain-
ing T − 1 projects are used for training, so eventually we have T
predictions. The resulting T predictions are then used to compute
4 different performance measures of §4.3.

Cross data setting uses within data as the test set and the cross data
as the training set. This setting is basically a simulation of an orga-
nization that has projects to estimate (within data as the test set) and
uses data of past projects with recorded effort values from cross or-
ganization(s). In this setting LOOCV is used: Each within project
is selected as the test instance and ABE methods derive an estimate
for that instance by adapting cross analogies. Ultimately we end up
with T predictions adapted from a cross dataset. Finally the perfor-
mances of TEAK and ABE0 methods under within and cross data
settings are compared. For that purpose we use both mere perfor-
mance values as well as win-tie-loss statistics.

4.4.2 Selection Tendency
For the selection tendency scenario we select test instances accord-
ing to LOOCV. For each test instance, we are left with training sets
of T − 1 within data and the subsets of cross data. After marking
every within and cross instance, we combine the two datasets into
a single training set and let the test instance choose analogies from
the unified training set. In this setting our aim is to see what per-
centage of within and cross subsets would appear among selected
k analogies. The percentage for a subset Si is calculated in accor-
dance with Equation 7:

Percentage =
#ofInstancesFromSiInAnalogies

Size(Si)
(7)

5. RESULTS
5.1 Performance Comparison
The first experimental scenario we are interested in is the perfor-
mance of within and cross data. For performance comparison 4 dif-
ferent performance measures are employed: MAR, MMRE, MdMRE
and Pred(30). The actual performance values are also evaluated
subject to Mann Whitney statistical test at 95% confidence and this
evaluation is summarized by win-tie-loss statistics. Performance
comparison subject to estimates of TEAK, ABE0 and log+ABE0
is reported in Figure 7, Figure 8 and Figure 9 respectively.

Figure 7 shows within and cross data performance when TEAK is
used as the estimation method. For each performance measure win-
tie-loss statistics (abbreviated with W, T, L respectively) of WC
performance when compared to CC over 20 runs as well as actual
performance measure values are reported. For convenience, the
cases where WC is “dominantly” superior to CC are highlighted.
A “dominant” superior condition means winning more than half
the runs, i.e. a W value of more than 10. Note that there are only
2 such cases, where WC is dominantly better than CC: cocomo81s
and desharnaisL1. For the remaining 19 cases within data does not
provide an advantage over cross data. In one particular case (ke-
mererHardware1) the within data is far worse than cross with an
L value of 20. These results are confirmation of previous conclu-
sions [17, 32] in a much larger scale with 4 error measures and 21
different cases: Relevancy filtering on cross data improves its per-
formance to an extent where it is no worse than within data. One
likely question to be raised is why particular cases favor within or
cross data. This question is out of our scope and is left as a future
direction to this research.

D
at

as
et

M
A

R
M

M
R

E
M

dM
R

E
Pr

ed
(3

0)
W

T
L

W
C

C
C

W
T

L
W

C
C

C
W

T
L

W
C

C
C

W
T

L
W

C
C

C
co

co
m

o8
1e

0
20

0
1.

0E
+3

1.
1E

+3
0

16
4

2.
4

0.
9

4
16

0
0.

7
0.

9
4

16
0

0.
1

0.
1

co
co

m
o8

1o
0

20
0

8.
2E

+2
8.

1E
+2

2
18

0
0.

8
2.

7
2

18
0

0.
8

0.
9

2
18

0
0.

1
0.

2
co

co
m

o8
1s

18
2

0
3.

6E
+1

1.
8E

+2
15

5
0

1.
0

8.
6

15
5

0
0.

5
1.

7
13

5
2

0.
2

0.
1

na
sa

93
_c

en
te

r_
1

0
20

0
1.

4E
+2

1.
3E

+2
0

20
0

1.
2

2.
0

0
20

0
0.

8
0.

8
0

20
0

0.
6

0.
5

na
sa

93
_c

en
te

r_
2

4
16

0
1.

8E
+2

2.
1E

+2
2

18
0

1.
3

2.
8

2
18

0
0.

7
0.

8
2

18
0

0.
2

0.
2

na
sa

93
_c

en
te

r_
5

0
20

0
6.

9E
+2

8.
9E

+2
0

12
8

0.
9

0.
7

8
12

0
0.

6
0.

8
8

11
1

0.
2

0.
2

de
sh

ar
na

is
L

1
11

9
0

9.
9E

+2
2.

0E
+3

9
11

0
0.

6
2.

4
9

11
0

0.
4

1.
7

9
11

0
0.

4
0.

3
de

sh
ar

na
is

L
2

0
20

0
2.

8E
+3

2.
8E

+3
0

20
0

0.
5

0.
6

0
20

0
0.

5
0.

5
0

20
0

0.
2

0.
3

de
sh

ar
na

is
L

3
0

20
0

2.
8E

+3
3.

2E
+3

2
18

0
0.

5
0.

5
2

18
0

0.
4

0.
5

2
18

0
0.

2
0.

2
fin

ni
sh

A
pp

Ty
pe

1
0

20
0

3.
2E

+3
3.

8E
+3

0
20

0
1.

1
1.

0
0

20
0

0.
5

0.
6

0
20

0
0.

3
0.

2
fin

ni
sh

A
pp

Ty
pe

23
45

0
20

0
7.

1E
+3

5.
4E

+3
0

17
3

2.
2

0.
9

0
17

3
0.

8
0.

7
0

17
3

0.
1

0.
2

ke
m

er
er

H
ar

dw
ar

e1
0

0
20

1.
4E

+2
5.

5E
+1

0
0

20
1.

3
0.

3
0

0
20

1.
1

0.
3

0
0

20
0.

4
0.

5
ke

m
er

er
H

ar
dw

ar
e2

34
56

0
20

0
2.

0E
+2

2.
0E

+2
0

20
0

0.
7

0.
7

0
20

0
0.

6
0.

5
0

20
0

0.
1

0.
1

m
ax

w
el

lA
pp

Ty
pe

1
6

14
0

1.
4E

+3
3.

2E
+3

1
19

0
0.

8
1.

9
1

19
0

0.
4

0.
7

0
19

1
0.

3
0.

3
m

ax
w

el
lA

pp
Ty

pe
2

0
18

2
6.

6E
+3

5.
4E

+3
0

19
1

1.
2

0.
9

0
19

1
0.

5
0.

4
0

19
1

0.
3

0.
3

m
ax

w
el

lA
pp

Ty
pe

3
0

20
0

5.
6E

+3
6.

6E
+3

1
19

0
1.

0
1.

0
1

19
0

0.
5

0.
6

1
19

0
0.

2
0.

2
m

ax
w

el
lH

ar
dw

ar
e2

0
20

0
5.

6E
+3

5.
3E

+3
0

20
0

0.
8

1.
0

0
20

0
0.

5
0.

5
0

20
0

0.
2

0.
2

m
ax

w
el

lH
ar

dw
ar

e3
0

20
0

5.
3E

+3
5.

9E
+3

0
20

0
0.

9
0.

7
0

20
0

0.
4

0.
5

0
20

0
0.

3
0.

4
m

ax
w

el
lH

ar
dw

ar
e5

0
20

0
3.

6E
+3

3.
6E

+3
0

20
0

3.
7

2.
8

0
20

0
0.

7
0.

8
0

20
0

0.
1

0.
1

m
ax

w
el

lS
ou

rc
e1

6
14

0
1.

5E
+3

3.
3E

+3
1

19
0

0.
3

0.
4

1
19

0
0.

1
0.

4
1

19
0

0.
8

0.
8

m
ax

w
el

lS
ou

rc
e2

0
20

0
6.

0E
+3

6.
0E

+3
0

20
0

1.
2

1.
9

0
20

0
0.

6
0.

7
0

20
0

0.
2

0.
2

Figure 7: Results of TEAK: Comparison of performance be-
tween within and cross data w.r.t. 4 different performance mea-
sures (MAR, MMRE, MdMRE, Pred(30)) as well as W, T, L
statistics. Highlighted rows are the cases, where within data
is “dominantly” better than cross, i.e. wins more than half the
time. Under the columns of WC and CC the actual performance
values associated with within and cross company datasets are
provided respectively.

Another intriguing question is what happens in this large-scale com-
parison, when we remove the relevancy filtering. The performance
comparison of within and cross data subject to estimates of ABE0
with k={4, best} is given in Figure 8. The cells of Figure 8 can
have 3 values: “+”, “-” and “o”.. The “+” sign tells that within
data performance is “dominantly” better than that of cross data,
i.e. within won more than 10 out of 20 runs, whereas a “-” sign



tells that within lost more than 10 runs. If none of these conditions
occur, i.e. within and cross performances tie, then a “o” sign is
assigned to the cell. The cases where within data is “dominantly”
better than cross are highlighted.

Dataset MAR MMRE MdMRE Pred(30)

k=
4

k=
be

st
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4

k=
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st
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4

k=
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st

k=
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st

cocomo81e o o o o o o o o
cocomo81o o o + o - o - o
cocomo81s o o o o o o o o
nasa93_center_1 o - o - o - o -
nasa93_center_2 o o o o o o o o
nasa93_center_5 o o + o - o - o
desharnaisL1 - - o o o o o o
desharnaisL2 - o + o - o - o
desharnaisL3 o o o o o o o o
finnishAppType1 o o o o o o o o
finnishAppType2345 o o o o o o o o
kemererHardware1 o o o o o o o o
kemererHardware23456 o o o o o o o o
maxwellAppType1 o o o o o o o o
maxwellAppType2 o o o o o o o o
maxwellAppType3 o o o o o o o o
maxwellHardware2 o o o o o o o o
maxwellHardware3 o o o o o o o o
maxwellHardware5 o o o o o o o o
maxwellSource1 o o o o o o o o
maxwellSource2 o o o o o o o o

Figure 8: ABE0 performance comparison between within and
cross data w.r.t. 4 different performance measures (MAR,
MMRE, MdMRE, Pred(30)) with different k values. Each cell
in this table can have three values: “+”, “-” and “o”.. A “+” sign
indicates that within performance is “dominantly” better than
cross, i.e. it won more 10 of the 20 runs, whereas a “-” sign tells
that cross lost more than 10 runs. If none of these conditions
occur, i.e. within and cross performances tie, then a “o” sign is
assigned to the cell. For convenience “+” signs are highlighted.

Notice in Figure 8 that out of 21 Subsets × 4 error measures × 2
ABE0 methods = 168 cases, there are only 3 cases where within per-
formance is dominantly better. For the majority of the remaining
cases, within and cross performance is comparable. Surprisingly
for a minority of the remaining cases (see “-” signs), cross data
performance is dominantly better than that of within. These results
are important in the sense that unlike previous work that report in-
conclusive results on the merits of cross data [16,33]; we are able to
see enough uniformity in a large scale experiment with 168 cases.
The uniformity concludes that cross data is as high performing as
within data. However, we should remember that such uniformity
may come from cross-within divisions, which assume cross subsets
of a division are all collected through the same methodology.

The pre-processors applied on the data before an estimation model
can have a significant effect on the performance [25]. In [12] we
investigate the stability of rankings among 90 different methods
that include both analogy and non-analogy methods. We have seen
that applying a log transformation on the data as a pre-processing
step to ABE0 (log+ABE0), can improve the ranking of ABE0 by
orders of magnitude. The results of log+ABE0 is summarized in
Figure 9. The notation of Figure 9 is the same as that of Figure 8.
See that the general picture of Figure 8 repeats in Figure 9: There
are only a few cases that favor within data and in the majority of
the cases within and cross data have comparable performances.

5.2 Selection Tendency
The second experimental scenario of this research is the selection
tendency. In this setting LOOCV is used to select out single test
instances one by one from a within dataset of size T . Remaining
T − 1 within instances are combined with the cross subsets.

Dataset MAR MMRE MdMRE Pred(30)
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nasa93_center_1 - - + - - - - -
nasa93_center_2 o o o o o o o o
nasa93_center_5 o o o - o - o -
desharnaisL1 - - o o o o o o
desharnaisL2 o o + o - o - o
desharnaisL3 o o o o o o o o
finnishAppType1 o o o o o o o o
finnishAppType2345 o o o o o o o o
kemererHardware1 o o o o o o o o
kemererHardware23456 o o o o o o o o
maxwellAppType1 o o o o o o o o
maxwellAppType2 o o o o o o o o
maxwellAppType3 o o o o o o o o
maxwellHardware2 o o o o o o o o
maxwellHardware3 o o o o o o o o
maxwellHardware5 o o o o o o o o
maxwellSource1 o o o o o o o o
maxwellSource2 o o o o o o o o

Figure 9: log+ABE0 performance comparison between within
and cross data w.r.t. 4 different performance measures (MAR,
MMRE, MdMRE, Pred(30)) with different k values. The no-
tation used here is the same as Figure 8. The highlighted cells
are the cases, where within data is dominantly better than cross
data.

Test Set Zone From S1 From S2 From S3

cocomo81e (28) 3.7 1.0 (3.6%) 1.1 (4.8%) 1.6 (14.4%)
cocomo81o (24) 4.3 1.8 (6.6%) 1.3 (5.6%) 1.1 (10.4%)
cocomo81s (11) 4.1 1.4 (5.1%) 1.7 (7.0%) 1.0 (9.4%)
nasa93_center_1 (12) 5.6 1.0 (8.1%) 2.9 (7.9%) 1.7 (4.3%)
nasa93_center_2 (37) 10.0 1.6 (13.0%) 4.6 (12.4%) 3.8 (9.8%)
nasa93_center_5 (39) 5.1 0.8 (6.7%) 2.2 (6.0%) 2.1 (5.4%)
desharnaisL1 (46) 5.0 2.5 (5.5%) 1.7 (7.0%) 0.8 (7.9%)
desharnaisL2 (25) 4.8 2.6 (5.6%) 1.5 (6.1%) 0.7 (6.7%)
desharnaisL3 (10) 3.5 1.9 (4.1%) 1.3 (5.0%) 0.4 (4.0%)
finnishAppType1 (17) 3.1 1.6 (9.1%) 1.6 (8.8%)
finnishAppType2345 (18) 3.0 1.4 (8.2%) 1.6 (8.8%)
kemererHardware1 (7) 1.5 0.6 (8.8%) 0.9 (10.7%)
kemererHardware23456 (8) 1.4 0.5 (7.3%) 0.8 (10.6%)
maxwellAppType1 (10) 3.5 0.7 (7.1%) 1.7 (5.9%) 1.0 (5.8%)
maxwellAppType2 (29) 3.2 0.4 (3.7%) 1.8 (6.2%) 1.0 (5.5%)
maxwellAppType3 (18) 2.5 0.6 (6.3%) 0.9 (3.2%) 1.0 (5.6%)
maxwellHardware2 (37) 2.9 1.7 (4.6%) 0.8 (4.9%) 0.4 (6.0%)
maxwellHardware3 (16) 3.9 2.5 (6.8%) 1.1 (6.8%) 0.3 (4.3%)
maxwellHardware5 (7) 3.4 2.3 (6.2%) 0.8 (5.0%) 0.3 (4.5%)
maxwellSource1 (8) 3.0 0.1 (1.6%) 2.8 (5.2%)
maxwellSource2 (54) 3.2 0.4 (4.6%) 2.8 (5.3%)

Figure 10: The amount of instances selected from within and
cross company datasets. In parenthesis the percentage of se-
lected instances out of the actual within company dataset is
given. The diagonal entries that are highlighted with gray are
the within company selection amounts and percentages.

Prior to combination, every training instance is marked with the
source that it belongs to. Then the test instance is allowed to choose
k analogies from a training set of within and cross data. After pro-
cessing test instances via TEAK, ABE0 and log+ABE0; we can see
the percentage selection of analogies from each one of the within
and cross subsets. Figure 10 shows the size of prediction “Zone”
used by TEAK for estimation as well as the percentage selection of
instances from within and cross subsets into this prediction zone.
Each cross-within division is represented with a row of 2 or 3 sub-
sets; columns named “From Si” where i ∈ {1, 2, 3} represent the
subsets of the rows. The highlighted diagonal entries of each cell
show the amount of instances (in percentage and in number) se-
lected from within subset. The off-diagonal values are the amount
of instances selected from cross datasets. See in Figure 10 that
within test instances do not necessarily select all the analogies from
within subsets. On the contrary, the percentage of instances se-
lected from within and cross datasets are very close to one another.
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Figure 11: Percentages and percentiles of instances selected by TEAK from WC and CC datasets. The CC percentages are very
similar to shifted version of WC percentages, the shift-effect is due to different number of subsets. The percentile graph removes the
shift-effect and we see that within test instances select very close percentages of within and cross company instances.

To better see the percentages of within and cross subsets, we sorted
and plotted these percentage values in Figure 11. Figure 11(a)
shows the sorted percentage values, where the WC data percentages
are shown with circles, whereas the CC data percentages are rep-
resented by rectangles. See in Figure 11(a) how cross percentage
values are shifted versions of within percentages. The shift-effect
comes from the fact that there are more cross subsets than within
subsets. The percentiles from 10th to 90th with increments of 20
are given in Figure 11(b). When we plot the percentiles, the shift-
effect due to subset number disappears and we are able to observe
the surprising fact that WC and CC percentages at indicated per-
centile values are very close. In other words, subject to a variance
based relevancy filtering ABE model, a within test instance selects
equal percentages from within and cross datasets.

The percentage ordering plots of ABE0 and log+ABE0 are very
similar to Figure 11(a). Therefore, we did not include these figures
here due to space constraints. Instead, we give the percentile plots
in Figure 12. See in Figure 12 that percentage values of WC and CC
are very close to one another for all percentile values. This means
that subject to ABE methods with or without relevancy filtering,
test instances select close amounts of WC and CC data.

We can now ask what percentage should be used when an organi-
zation has certain amount of within data but also needs the use of
a cross dataset. The median values of the percentiles (i.e. 50th

percentile) in Figure 12 lie somewhere between 5% to 12%. This
number can be an indicator for a mixture amount. However, we
do not have enough evidence to claim such a value yet. Obviously
further research is required to propose such a mixture amount and
on the relative performances of different mixtures.

6. THREATS TO VALIDITY
External validity questions whether the results can be generalized
outside the specifications of a study [26]. For the purpose of exter-
nal validity, we use of 21 WC-CC dataset pairs. Among 10 studies
investigated by Kitchenham et al. in [15], 9 of them used single
WC-CC dataset pairs, and 1 study used 6 pairs. In terms of exter-
nal validity, this report has higher validity than a standard within
vs. cross data comparison effort estimation study.

Another consideration for external validity is the employed meth-
ods. Due to the nature of our research questions, particularly re-
garding selection tendency, we utilized ABE methods. There are
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Figure 12: Percentiles of instances selected by ABE0 and
log+ABE0 with k={4, best} from WC and CC datasets.

thousands of possible ABE variants and there is no way that this
study covers them all. There is obviously need for future research
that repeats these experimentations with different ABE variants.
However, experiments reported here include base variants (ABE0
and log+ABE0) as well as filtering based variants (TEAK) run on
21 WC-CC pairs. Therefore, the extent of the experimentation in
this research offers enough support for the claims that 1) cross data
performs no worse than within data and 2) a within test instance
tends to create an equal mixture of within and cross projects.

Construct validity (i.e. face validity) asks if we are measuring what
we actually intended to measure [27]. Previous studies have con-
cerned themselves with the construct validity of different perfor-
mance measures for effort estimation (e.g. [30]). So as not to bias
our conclusions due to a limited number of performance measures,
we used 4 different performance measures aided with win-tie-loss
statistics. Another threat to construct validity is the formation of
our cross-within divisions. The proposed division criteria for within
and cross data may as well define different corporations in real
world. Also the use of available public data promotes the repro-
ducibility of the conclusions of a research. However, we acknowl-



edge that using within and cross data coming from completely dif-
ferent organizations would be a better option. On the other hand,
the issue with using such proprietary data is the fact that they are
difficult to be shared with research community and therefore pro-
posed results cannot be reproduced, validated or refuted.

In terms of internal validity of our results, there is one dimen-
sion of experimental conditions not explored. We are making use
of LOOCV, whose a possible alternative would be N-Way cross-
validation. In N-Way cross-validation, data is randomly divided
into B bins and each bin is tested on a model learned from the
combination of other bins (typical values for B are 3 or 10). From
a theoretical point of view, not controlling the stability of our results
across different testing strategies is a threat to validity, as different
testing strategies entails different bias and variance conditions [7].
Elsewhere [18], we show that there is very little difference in the
bias and variance values generated for LOOCV and N-way cross-
validation. Since two testing strategies have similar bias-variance
characteristics for effort datasets, we opted for LOOCV due to the
fact that LOOCV is a deterministic procedure that can be exactly
repeated by any other researcher with access to a particular data set.
N-way cross-validation on the other hand requires a random num-
ber generator and a stratification heuristic (to maintain same class
distribution in each bin). Without access to exact same random
number generator and stratification heuristic, it would be difficult
for a researcher “A” to reproduce results of researcher “B”.

7. CONCLUSION
At the end of an extensive experimentation, we can answer the re-
search questions that were defined to guide this research.

RQ1: What can be said about within and cross data perfor-
mances? The results of TEAK experiments confirm the findings
of prior work [17, 32] on a larger scale: After relevancy filtering
cross data performance is comparable to that of within data. The
results of ABE0 experiments are quite interesting. For the selected
effort datasets, there are very limited cases, where within data out-
performs cross data. For the majority of the cases, within and cross
data performances are comparable. The possible explanation for
this outcome may be hidden in the fact that subsets of a particular
effort dataset share similar methodologies and similar concerns in
the collection process. However, we do not yet have enough evi-
dence to strongly support that hypothesis.

RQ2: What is the selection tendency of within instances? A sur-
prising result of this research is the fact that under different ABE
models (TEAK, ABE0, log+ABE0) test instances selected analo-
gies from within as well as cross data. This may be interpreted as a
hint that organizations with very limited within data can incorporate
cross data into their database.

RQ3: What is the reason for a particular tendency of within in-
stances? In our experiments we have identified possible features in
effort datasets for cross-within divisions. Since test instances select
analogies from all the subsets, the cross subsets defined by these
features are obviously good candidates to provide connections be-
tween cross company data.

RQ4: What would be a good mixture of wihin and cross data?
The percentage distributions observed in §5 show that the percent-
age amount of instances selected from within and cross datasets are
very close to one another. So a good mixture seems to be equal
percentages from different datasets, i.e. if an organization uses

x% from their within dataset, then the amount of instances selected
from a cross dataset could be close to x%. Furthermore, the per-
centile figures show that median percentage value is between 5%
to 12%. This can be an indicator interval for the mixture of within
and cross subsets.

RQ5: Under which conditions would cross data be favorable?
Our results show that under 2 conditions cross data would be ben-
eficial for an organization: 1) When a relevancy filter is used and
2) when cross data has a common feature (as those listed in this
research) to the within company.

RQ6: Which features are likely to define cross and within bound-
aries? Our aim with this research question was to find features that
would define boundaries to separate within and cross data from one
another so that test instances would select mostly from its related
within dataset. However, none of the features we have identified
resulted in such a scenario. On the contrary, they defined links be-
tween cross datasets so that test instances selected from all subsets.

8. FUTURE DIRECTIONS
Some of the most likely future directions to this research are:

• Reproduction of this work on proprietary data.
• Investigating why particular subsets (cocomo81s, desharnaisL1)

favor within data, whereas the rest favors both within and
cross.
• Using different ABE or non-ABE methods under similar set-

tings.
• Experimenting if limited within data can be supplemented

with cross data.
• Using different features on different datasets to see if they

can define a border between within and cross data.
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