
How to Find Relevant Data for Effort Estimation?

Ekrem Kocaguneli, Tim Menzies
Lane Department of Computer Science and Electrical Engineering

West Virginia University,Morgantown, USA
ekocagun@mix.wvu.edu, tim@menzies.us

ABSTRACT

Background: Building effort estimators requires the correct selec-
tion of training data. How can we find that data? It is tempting
to cross the boundaries of development type, location, language,
application and hardware to use existing datasets of other organi-
zations. However, prior results caution that using such cross data
may not be useful.
Aim: We test the conjecture that instance selection can automat-
ically prune irrelevant instances and retrieval from the remaining
examples is useful for effort estimation, regardless of their source.
Method: We selected 8 cross-within divisions (21 pairs of within-
cross subsets) out of 19 datasets and evaluated these divisions under
different analogy-based estimation (ABE) methods.
Results: Between the within and cross experiments, there were
very few statistically significant differences in (a) the performance
of effort estimators; or (b) the amount of instances retrieved for es-
timation.
Conclusion: There is no practical difference between cross and
within data. After applying instance selection, the remaining ex-
amples, be they from within or from cross source divisions, can be
used for effort estimation.

Categories and Subject Descriptors
H.4 [Software Cost Estimation]: k-NN; D.2.8 [Software Engi-
neering]: Cost—within resource, cross resource

1. INTRODUCTION
A recurring problem in effort estimation is finding training data that
is relevant to some local problem. When we cannot find enough lo-
cal training data, it is tempting to try and import data from other
sources. However, it is not clear that this approach is useful: many
studies report that using imported data degrades estimation efficacy,
perhaps because the imported data is not relevant to the local con-
text (e.g. see the Kitchenham et al. [14] and Zimmermann et al. [31]
studies discussed later in this paper).

In this paper, we offer one solution to the problem of importing
relevant data from other sources in order to make estimates about

local models. Our solution is based on a fresh look at what it
means to say that examples are local or imported. Many publi-
cations [2, 6–8, 19, 28, 29] including several of our own [21, 22]
either explicatively or tacitly assume “locality(1)”; i.e. clumps of
similar projects can be discovered using a single feature. For ex-
ample, some authors claim that, for a project in a specific organiza-
tion, software effort models work better when calibrated with local
data collected within that same organization. Proponents of such
a within source approach assume that it is best to retrieve training
data for examples divided acccording to:

• The project type being developed: e.g. embedded, etc;
• The development centers of the different developers;
• The development language of the projects;
• The application type (management information system; guid-

ance, navigation, and control; etc);
• The targeted hardware platform;
• Just the in-house or outsourced development projects;

It would be useful if locality(1) were false since, if true, this means
that any lessons learned from one organization may never apply to
another. If so, then our ability to make general conclusions about
software engineering (SE) would be confined to small, highly spe-
cialized, sub-groups (e.g. just one company).

The opposite to locality(1) is “locality(N)”; i.e. the assump-
tion that effort estimation data forms a complex multi-dimensional
space that can only be usefully divided using multiple features.
If this were true, then this would be very good news since that
would mean that relevant data for effort estimation does not come
just from small sub-groups within one organization. Rather, use-
ful data could be collected from many projects including cross
sources. This would simplify the construction of effort models for
new projects: just search other contexts for the right data for the
new project. Also, it could lead to conclusions about SE that are
general to many development contexts. This paper argues against
locality(1) and for locality(N) using two predictions that would
support locality(N) and would contradict locality(1):

PREDICTION 1: Effort models built from training data divided
on a single feature will perform no better (and, perhaps, even worse)
than those that divide the data using multiple features.

PREDICTION 2: Consider project data that was grouped into di-
visions w.r.t. to the value of a feature. If training data is retrieved
from within and across those divisions, then it would be equally as
probable to find useful data within as cross those divisions.

Recent research offers much support for PREDICTION 1. In a
study of 90 effort estimation methods (ten pre-processors × nine
learners), we found that the best methods were those that divided
the training data according to multiple features [12]. That result is
detailed in our Related Work section.

For PREDICTION 2, we test if divisions based on different single
features change the effort estimation process. We allow an instance
selection & retrieval algorithm to find which instances are best for
training. That algorithm is given access to all the training data, or
just the data divided via a single feature. It will be shown that:

The probability of retrieving training data from within
or across divisions based on single features is the same.

This result, plus the results in [12], are strong support for locality(N)
since they confirm both PREDICTION 1 and PREDICTION 2.
These results have three practical implications: Firstly, it would
mean that effort estimation is not dependent on some artificial, and
trite, division of training data such as the source organization; the
kind of application; or any other single feature division. Given the
complex multi-dimensional nature of the software creation process,
divisions of training data based on (say) geographical dimensions
may be less important than other factors. The most similar software
to what you are writing now may not be in the next office. Rather,
it may be in an office on the other side of the world (and automatic
instance selection & retrieval algorithms can find that data).

Secondly, if locality(N) was true, it would be useful to build effort
estimation models from data taken from multiple contexts. Hence:

• Building estimation models is less expensive since generat-
ing local models need not wait for an elaborate (and expen-
sive and time-consuming) collection process from local data.
• There are effects in SE that transcend our current divisions

of data (e.g. data from company1 or company2). This is a
very exciting result since it promises future generalizable SE
results that apply to many organizations.

Thirdly, locality(N) offers a strong business case for collecting
SE data in some sharable repository. Such repositories can now be
trusted to provide, at least some, relevant historical examples for
building effort estimators for some new project.

1.1 Terminology
Here, we offer some terminology clarification. Other papers such
as Kitchenham et al. [14] and Zimmermann et al. [31] discuss the
impact of dividing data according to a single feature (either the or-
ganization or application name). This paper explores those single-
feature division as well as other single feature divisions such as the
project type being developed; the development centers of the devel-
opers; the development language of the software; the application
type; the targeted hardware platform; and in-house or outsourced
development. So whereas (e.g.) Kitchenham et al. explore cross-
vs-within company data, we explore cross-vs-within data “sources”
where the data is divided by the values of any single feature. As
shown below, we find no examples where single feature division
improves a state-of-the-art effort estimation method.

Other two terms that need clarification are instance selection and
instance retrieval. Instance selection refers to a filtering method,
where data is filtered to a subset of more relevant instances; hence,

instance selection and filtering is used interchangeably in the rest
of the text. On the other hand, instance retrieval is the process of
finding the closest neighbors (e.g. in a k-NN method). In that sense,
instance selection is a pre-processor to a second process; whereas,
instance retrieval is the part of a single estimation process.

2. RELATED WORK
2.1 Evidence for PREDICTION 1
Keung et al. [12] built 90 effort estimators using 10 pre-processors
and 9 learners. Pre-processors included normalization, various dis-
cretization methods and feature selection (PCA, stepwise, sequen-
tial forward). Learners included k = 1 and k = 5-nearest-neighbor,
linear and stepwise regression, CART, neural nets and PCR.

The 90 estimators were assessed via multiple accuracy statistics.
Let t instances have actuals a1, a2, .., at. Prediction models gener-
ate prediction pi for instance i. If |pi − ai| is ARi (the absolute
residual difference between predictions and actuals) then:

• MAR is the mean absolute residual (
∑

i pi − ai)/t.
• MREi and MERi are the ratios ARi/ai and ARi/pi.
• PRED(X) is the percent of t with MREi ≤ X%.
• MMRE =

∑
iMREi/t

• MMER =
∑

iMERi/t.
• MdMRE is median MREi value.
• Finally, the balanced errors are
MBREi = (pi − ai)/min(pi, ai) and
MIBREi = (pi − ai)/max(pi, ai)

The 90 estimators were used in a leave-one-out study on twenty
data sets from http://promisedata.org/?cat=14, and were compared
via a Mann-Whitney test (95% confidence). As it might have been
predicted by Shepperd et al. [25], the ranking of the estimators var-
ied across different data sets and the different accuracy estimators.

However, Keung et al. found a small group of 13 estimators that
were consistently the best performers across all data sets (mea-
sured according to all of MAR, MRE, PRED(25), MMRE, MMER,
MdMRE, MBRE, and MIBRE). In terms of this paper, the major
result of Keung et al. is that all these 13 estimators used CART or
k = 1 nearest neighbor. This is significant since both these estima-
tors use multiple features to sub-divide the training data:

• k-th nearest neighbor algorithms use all project features (per-
haps, weighted by some feature) to determine related projects [26];
• Tree-based algorithms like CART [4] divide data into multi-

ple branches, where each branch tests and divides that data
on multiple features.

Hence, this result is strong support for PREDICTION 1.

2.2 Other Evidence
Other results in the literature are also inconclusive about locality(N).
In their review of papers building effort models using data from
within one company or across multiple companies, Kitchenham et
al. [14] found equal evidence for and against the value of build-
ing effort models based on a single feature division (specifically,
they found four studies favoring the use of within company data,
and another three reporting that using cross data performance is not
significantly worse than within). In other work, in the field of de-
fect prediction, Zimmermann et al. [31] found that predictors per-
formed worse when trained from cross-application data than from

within-application data. The evidence for their conclusion is quite
emphatic: within defeated cross in 618 out of 622 comparisons.

On the other hand, support for locality(N) comes from the work
of Turhan et al. [30], and Kocaguneli et al. [15]. Turhan et al. com-
pare defect predictors learned from cross or within resource data.
Like Zimmermann, they found that using all cross resource data
lead to poor predictor performance (very large false alarm rates).
However, after instance selection pruned away irrelevant cross re-
source data, they found that the cross resource predictors were
equivalent to the predictors learned from within resource data [30].
Inspired by [30], Kocaguneli et al. [15] used instance selection as
a pre-processor for a study on cross-vs-within resource effort esti-
mation. In a limited study with three data sets, they found that af-
ter instance selection, the performance differences in the predictors
learned from cross or within data were statistically insignificant.

2.3 Resolving the Evidence
The results in [30] and [15] support locality(N) but the other re-
sults discussed above are inconsistent or unsupportive. How can
we reconcile this conflicting evidence? One way is to note that:

• Studies supporting locality(N) all used a filtering method
(instance selection).
• Instance selection is not seen in the Kitchenham, Zimmer-

mann et al. studies.

An instance selection method uses every feature (perhaps, with
some feature weighting) to find relevant training examples. Hence,
the studies with instance selection [15, 30] offer more support for
locality(N) than for locality(1); however, they are hardly conclu-
sive, since they do not collect the information required to comment
on PREDICTION 2. What is required is a well-controlled instance
selection and retrieval experiment over data divided by some single
feature. PREDICTION 2 would be supported if the instance se-
lection & retrieval method (TEAK) retrieved as much data within
as across the filtered single feature divisions.

3. METHODOLOGY
Figure 1 illustrates how this study differs to prior work. Most effort
estimation research falls into Figure 1.a where estimation models
are applied within one source set to learn an estimator. Examples
of this approach include [1, 18, 20, 21, 26].

A smaller number of papers, such as those surveyed by Kitchen-
ham et al. [14], explore building models using data that falls across
many sources (see Figure 1.b). Fewer still are the papers like [15,
30]) that, prior to learning, apply some instance selection to cross
resource data sources (see Figure 1.c).

To the best of our knowledge, this paper is the first that allows an
effort estimator to select (filter) training data from either cross or
within different sources, then checks what data was retrieved from
which source (see Figure 1.d).

3.1 Datasets
There are 2 fundamental factors that were considered for selection
of the datasets used in this research:

• Public availability: For reproducibility purposes
• Cross-within divisibility: For enabling cross vs. within ex-

perimentation

(a) Within (b) Cross (c) Filter (d) Within &
Cross Filter

Figure 1: The problem types in within vs. cross data compar-
ison and our conclusions so far. “+” and “-” signs on top of
each approach mean positive and negative results respectively.
A “?” sign means that the approach has not previously been
investigated.

A critical issue in SE is the ability of the proposed results to be
reproducible [10,14] and use of proprietary data is a major obstacle
towards this goal. Therefore, all our datasets are publicly available
through PROMISE data repository [3].

We define cross-within division as the subset(s) of effort data that
are formed through division of one feature: instances having the
same value for that feature form a subset. Such features are plau-
sible candidates for generating a cross source experiment, i.e. the
features should be likely to change from one source to other. Ac-
cordingly, this study began by exploring what PROMISE effort data
can be divided via a single feature. After manually inspecting more
than 20 datasets, six were found to be suitable for cross-within ex-
perimentation. Those six data sets support the 21 cross-within di-
visions shown in Figure 8. The selected division criteria include:

• project type: embedded, organic and semidetached (cocomo81),
• center: geographical development center (nasa93),
• language type: programming language used for development

(desharnais),
• application type: on-line service program, production control

program etc. (finnish and maxwell),
• hardware: PC, mainframe, networked etc. (kemerer and maxwell),
• source: whether in-house or outsourced (maxwell).

We will use the following nomenclatures: If a subset name is fol-
lowed by a set of numbers, they correspond to values of the feature
used to form the subset. If a name has multiple numbers at the end
(e.g. finnishAppType2345) then all instances with these values are
combined in a single subset.

3.2 Instance Selection and Retrieval
The goal of our experiment is to determine at what probability a
learner retrieves training instances from either cross- or within-
sources. The learner used in this study is TEAK [17], which is
best explained as an extension to ABE0 [15, 17].

Dataset Criterion Subsets Subsets Size

cocomo81 project type cocomo81e 28
cocomo81o 24
cocomo81s 11

nasa93 development center nasa93_center_1 12
nasa93_center_2 37
nasa93_center_5 39

desharnais language type desharnaisL1 46
desharnaisL2 25
desharnaisL3 10

finnish application type finnishAppType1 17
finnishAppType2345 18

kemerer hardware kemererHardware1 7
kemererHardware23456 8

maxwell application type maxwellAppType1 10
maxwellAppType2 29
maxwellAppType3 18

maxwell hardware maxwellHardware2 37
maxwellHardware3 16
maxwellHardware5 7

maxwell source maxwellSource1 8
maxwellSource2 54

Figure 2: 6 datasets are selected from 20+ candidates. Then
selected datasets are divided into subsets according to a crite-
rion that can define a cross-within division. The datasets, subset
sizes as well as the selection criteria are provided here.

3.2.1 ABE0
Analogy-based estimators (ABE) generate an estimate for a test
project by retrieving similar past projects (a.k.a. analogies) from a
database of past projects and adapting their effort values into an es-
timate. We use ABE methods in this study since 1) they are widely
investigated methods in the literature [5, 11, 13, 15, 17, 18, 20], 2)
they are particularly helpful for cross source studies as they are
based on distances between individual project instances.

There are various design options associated with ABE methods
such as the distance measure for nearness [20], adaptation of anal-
ogy effort values [20], row processing [5, 13], column process-
ing [13, 18] and so on. Elsewhere we show that these options can
easily lead to more than 6000 ABE variants [12]. Here we define
ABE0 that is a baseline ABE method that combines the tools used
in Kadoda & Shepperd [11], Mendes et al. [20], and Li et al. [18]:

• Input a database of past projects
• For each test instance, retrieve k similar projects (analogies).

– For choosing k analogies use a similarity measure.
– Before calculating similarity, scale independent features

to equalize their influence on the similarity measure.
– Use a feature weighting scheme to reduce the effect of

less informative features.

• Adapt the effort values of the k nearest analogies to come up
with the effort estimate.

ABE0 uses the Euclidean distance as a similarity measure, whose
formula is given in Equation 1, where wi corresponds to feature
weights applied on independent features. ABE0 framework does
not favor any features over the others, therefore each feature has
equal importance in ABE0, i.e. wi = 1. For adaptation ABE0
takes the median of retrieved k projects.

Distance =

√√√√ n∑
i=1

wi(xi − yi)2 (1)

3.2.2 TEAK
TEAK is a variance-based instance selector that discards training
data associated with regions of high estimation variance. It aug-
ments ABE0 with instance selection and an indexing scheme for
filtering relevant training examples. Detailed description of TEAK
can be found in [17]. In summary, TEAK is a two-pass system:

• Pass 1 prunes training instances implicated in poor decisions
(instance selection);
• Pass 2 retrieves closest instances to the test instance (instance

retrieval).

In the first pass, training instances are combined using greedy-
agglomerative clustering (GAC), to form an initial cluster tree that
we call GAC1; e.g. Figure 3. Level zero of GAC1 is formed by
leaves, which are the individual project instances. These instances
are greedily combined into tuples to form the nodes of upper lev-
els. The variance of the effort values associated with each sub-
tree (the performance variance) is then recorded and normalized

Figure 3: A sample GAC tree with regions of high variance
(red) and low variance (green). GAC trees may not always
be binary. For example here, leaves are odd numbered, hence
node “c” is left behind. Such instances are pushed forward into
the closest node in the higher level. For example, “c” is pushed
forward into the “b+f” node to make “b+f+c” node.

GAC1 GAC2

Figure 4: Execution of TEAK on 2 GAC trees, where tree on the
left is GAC1 and the one on the left is GAC2 (i.e. lower variance
sub-tree of GAC1). The instances in the low variance region
of GAC1 (green region) are selected to form GAC2. Then test
instance traverses GAC2 until no decrease in effort variance is
possible. Wherever the test instance stops is retrieved as the
subtree to be used for adaptation (white region of GAC2).

Simple ABE0

T
E

A
K

L
R

N
N

et

k=
be

st

k=
1

k=
16

k=
2

k=
4

k=
8

MdMRE
Cocomo81 N
Cocomo81e N
Cocomo81o N
Nasa93 N
Nasa93c2 N
Nasa93c5 N
Desharnais N
Sdr N
ISBSG-Banking N
Count 6 3 0 0 0 0 0 0 0
Pred(25)
Cocomo81 N
Cocomo81e N
Cocomo81o N
Nasa93 N
Nasa93c2 N
Nasa93c5 N
Desharnais N
Sdr N
ISBSG-Banking N
Count 5 3 1 0 0 0 0 0 0
MAR
Cocomo81 N
Cocomo81e N
Cocomo81o N
Nasa93 N
Nasa93c2 N
Nasa93c5 N
Desharnais N
Sdr N
ISBSG-Banking N
Count 6 3 0 0 0 0 0 0 0

Figure 5: Results from 20 repeats of a leave-one-out exper-
iment, repeated for the performance measures of MdMRE,
Pred(25) and MAR. Black triangles mark when an estimator
was one of the top-ranked methods for a particular data set
(where ranking was computed via win − loss from a Mann-
Whitney test, 95% confidence). The Count rows show the
number of times a method appeared as the top performing vari-
ant. Results from [17].

min..max to 0..1. The high variance sub-trees are then pruned, as
these are the sub-trees that would cause an ABE method to make
an estimate from a highly variable instance space. Hence, pass one
prunes sub-trees with a variance greater than α% of the maximum
variance seen in any tree. After some experimentation, we found
that α = 10 lead to estimates with lowest errors.

The leaves of the remaining sub-trees are the survivors of pass one.
They are filtered to pass 2 where they are used to build a second
GAC tree (GAC2). GAC2 is generated and traversed in a simi-
lar fashion to GAC1, then test instances are moved from root to
leaves. Unlike GAC1, this time variance is a decision criterion for
the movement of test instances: If the variance of the current tree
is larger than its sub-trees, then continue to move down; otherwise,
stop and retrieve the instances in the current tree as the analogies.
TEAK is a form of ABE0, so its adaptation method is the same, i.e.
take the median of the analogy effort values. A simple visualization
of this approach is given in in Figure 4.

We use TEAK in this study since, as shown by the leave-one-out
experiments of [17], its performance is comparable with other
commonly-used effort estimators including neural networks (NNet)
and linear regression (LR). A summary of those performance re-
sults are given in Figure 5 (for a complete analysis and for defini-
tions of datasets please refer to Figure 7 of [17]). That figure shows
the results of a statistical comparison of various performance indi-
cators (defined in [12]) for nine effort estimators and nine data sets
from http://promisedata.org/?cat=14:

wini = 0, tiei = 0, lossi = 0
winj = 0, tiej = 0, lossj = 0
if Mann-Whitney(Pi, Pj) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if mean or median(Pi) < median(Pj) then
wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Figure 6: Pseudocode for win-tie-loss calculation between
methods i and j w.r.t. performance measures Pi and Pj .
Note here that only for Pred(30) the comparison is based on
actual values (Pred(30)i, Pred(30)j) rather than mean or
median values of performance measure arrays (median(Pi),
median(Pj)).

• The columns k = 1, 2, 4, 8, 16 denote variants of standard
ABE0 where estimates are generated from the k-th nearest
neighbors.
• The column k = best denote a variant of ABE0 where k was

chosen by an initial pre-processor that chose a best k value
after exploring the training data.
• The columns LR and NNet refer to linear regression and

neural nets.

The black triangles in Figure 5 mark when an estimator was one
of the top-ranked methods for a particular data set. Ranking was
accomplished via the win − loss calculation of Figure 6. We first
check if two distributions i, j are statistically different according to
the Mann-Whitney test. In our experimental setting, i, j are arrays
of performance measure results coming from two different meth-
ods. If they are not statistically different, then they are said to tie
and we increment tiei and tiej . On the contrary, if they are dif-
ferent, we updated wini, winj and lossi, lossj after a numerical
comparison of performance measures. The related pseudocode is
given in Figure 6. To get rid of any bias due to a particular ex-
perimental setting, for every experiment 20 runs are made. The
key feature of Figure 5 is that TEAK always performed better than
the other ABE0 methods, and usually performed better than neural
nets. TEAK’s only near-rival was linear regresison but, as shown
in the LR columns, TEAK was ranked top nearly twice as much as
linear regression.

3.3 Experimentation
The experimentation of this research has two different goals:

• The performance comparison of a state-of-the-art effort esti-
mation method (TEAK) when trained from within and cross
source data.
• The retrieval tendency goals question the tendency of a within

test instance to retrieve within or cross data. In other words,
given the chance that a test instance had access to within and
cross data at the same time, what percentage of every subset
would be retrieved into k analogies used for estimation?

3.3.1 Performance Comparison
For performance comparison we have two settings: Within and
cross. In within data setting, only within one source is used as

the dataset and a testing strategy of leave-one-out cross-validation
(LOOCV) is employed. LOOCV works as follows: Given a within
dataset of T projects, 1 project at a time is selected as the test
and the remaining T − 1 projects are used for training, so even-
tually we have T predictions. The resulting T predictions are then
used to compute 4 different performance measures defined in §2:
PRED(30), MAR, MMRE, MdMRE.

Cross data setting uses within data as the test set and the cross data
as the training set. In this setting LOOCV is used as follows: each
within source is selected as the test instance and TEAK derives an
estimate for that instance by adapting cross analogies. Ultimately
we end up with T predictions adapted from a cross dataset. Finally
the performances under within and cross data settings are com-
pared. For that purpose we use both mere performance values as
well as win-tie-loss statistics.

3.3.2 Retrieval Tendency
For retrieval tendency, we select test instances according to LOOCV.
For each test instance, we are left with training sets of T −1 within
data and the subsets of cross data. After marking every within and
cross instance, we combine the two datasets into a single training
set and let the test instance choose analogies from the unified train-
ing set (note that analogies are retrieved after filtering in pass #1 of
TEAK). In this setting our aim is to see what percentage of within
and cross subsets would appear among retrieved k analogies. The
retrieval percentage for a subset is the ratio of instances retrieved
in analogies from that subset to its total size (see Equation 2).

Percentage =
SubsetSizeInAnalogies

SubsetSize
(2)

4. RESULTS
4.1 Performance Comparison
For performance comparison 4 different performance measures are
employed: MAR, MMRE, MdMRE and Pred(30). The actual per-
formance values are also evaluated subject to Mann Whitney statis-
tical test at 95% confidence and this evaluation is summarized by
win-tie-loss statistics.

Figure 7 shows within and cross data performance when TEAK is
used as the estimation method. For each performance measure win-
tie-loss statistics (abbreviated with W, T, L respectively) of within
performance when compared to cross over 20 runs as well as actual
performance measure values are reported.

The gray lines in Figure 7 show the experiments where the within
results “dominate”; i.e. win in more than half the comparisons.
Note that there are only two gray lines. In the remaining 19

21
cases,

the within data does not provide an advantage over cross data. In
fact, in one case (kemererHardware1) the within data is far worse
than cross with an L value of 20. These results are confirmation
of previous conclusions [15, 30] in a much larger scale with 4 er-
ror measures and 21 different cases: instance selection on cross
sources improves its performance to an extent where it is no worse
than within data.

4.2 Retrieval Tendency
To explore retrieval tendency, LOOCV is used to choose single test
instances one by one from a within dataset of size T . The remaining
T−1 within instances are combined with the cross subsets. Prior to
combination, every training instance is marked with the source that
it belongs to (cross vs within). Then the test instance is allowed to
choose k analogies from a training set of within and cross data.

The rig lets us check the percentage retrieval of analogies from each
one of the within and cross subsets. Those results are shown in
Figure 8. Each cross-within division is represented with a row of
2 or 3 subsets; columns named “From Si” where i ∈ {1, 2, 3}

Dataset MAR MMRE MdMRE Pred(30)
Median Results Median Results Median Results Median Results

W T L within cross W T L within cross W T L within cross W T L within cross
cocomo81e 0 20 0 1.0E+3 1.1E+3 0 16 4 2.4 0.9 4 16 0 0.7 0.9 4 16 0 0.1 0.1
cocomo81o 0 20 0 8.2E+2 8.1E+2 2 18 0 0.8 2.7 2 18 0 0.8 0.9 2 18 0 0.1 0.2
cocomo81s 18 2 0 3.6E+1 1.8E+2 15 5 0 1.0 8.6 15 5 0 0.5 1.7 13 5 2 0.2 0.1
nasa93_center_1 0 20 0 1.4E+2 1.3E+2 0 20 0 1.2 2.0 0 20 0 0.8 0.8 0 20 0 0.6 0.5
nasa93_center_2 4 16 0 1.8E+2 2.1E+2 2 18 0 1.3 2.8 2 18 0 0.7 0.8 2 18 0 0.2 0.2
nasa93_center_5 0 20 0 6.9E+2 8.9E+2 0 12 8 0.9 0.7 8 12 0 0.6 0.8 8 11 1 0.2 0.2
desharnaisL1 11 9 0 9.9E+2 2.0E+3 9 11 0 0.6 2.4 9 11 0 0.4 1.7 9 11 0 0.4 0.3
desharnaisL2 0 20 0 2.8E+3 2.8E+3 0 20 0 0.5 0.6 0 20 0 0.5 0.5 0 20 0 0.2 0.3
desharnaisL3 0 20 0 2.8E+3 3.2E+3 2 18 0 0.5 0.5 2 18 0 0.4 0.5 2 18 0 0.2 0.2
finnishAppType1 0 20 0 3.2E+3 3.8E+3 0 20 0 1.1 1.0 0 20 0 0.5 0.6 0 20 0 0.3 0.2
finnishAppType2345 0 20 0 7.1E+3 5.4E+3 0 17 3 2.2 0.9 0 17 3 0.8 0.7 0 17 3 0.1 0.2
kemererHardware1 0 0 20 1.4E+2 5.5E+1 0 0 20 1.3 0.3 0 0 20 1.1 0.3 0 0 20 0.4 0.5
kemererHardware23456 0 20 0 2.0E+2 2.0E+2 0 20 0 0.7 0.7 0 20 0 0.6 0.5 0 20 0 0.1 0.1
maxwellAppType1 6 14 0 1.4E+3 3.2E+3 1 19 0 0.8 1.9 1 19 0 0.4 0.7 0 19 1 0.3 0.3
maxwellAppType2 0 18 2 6.6E+3 5.4E+3 0 19 1 1.2 0.9 0 19 1 0.5 0.4 0 19 1 0.3 0.3
maxwellAppType3 0 20 0 5.6E+3 6.6E+3 1 19 0 1.0 1.0 1 19 0 0.5 0.6 1 19 0 0.2 0.2
maxwellHardware2 0 20 0 5.6E+3 5.3E+3 0 20 0 0.8 1.0 0 20 0 0.5 0.5 0 20 0 0.2 0.2
maxwellHardware3 0 20 0 5.3E+3 5.9E+3 0 20 0 0.9 0.7 0 20 0 0.4 0.5 0 20 0 0.3 0.4
maxwellHardware5 0 20 0 3.6E+3 3.6E+3 0 20 0 3.7 2.8 0 20 0 0.7 0.8 0 20 0 0.1 0.1
maxwellSource1 6 14 0 1.5E+3 3.3E+3 1 19 0 0.3 0.4 1 19 0 0.1 0.4 1 19 0 0.8 0.8
maxwellSource2 0 20 0 6.0E+3 6.0E+3 0 20 0 1.2 1.9 0 20 0 0.6 0.7 0 20 0 0.2 0.2

Figure 7: Results of TEAK: Comparison of performance between within and cross data w.r.t. 4 different performance measures
(median of MAR, MMRE, MdMRE, Pred(30) over 20 runs) as well as W, T, L statistics. Highlighted rows are the cases, where
within data is “dominantly” better than cross, i.e. wins more than half the time. Under the columns of within and cross the actual
performance values associated with within and cross source datasets are provided respectively.

represent the subsets of the rows:

• The highlighted diagonal entries of each cell show the amount
of instances retrieved from within subset.
• The off-diagonal values are the amount of instances retrieved

from cross datasets.

To better see the percentages of within and cross subsets, we sorted
and plotted them in Figure 9. Figure 9(a) shows the sorted per-
centage values, where the within percentages are shown with cir-
cles, whereas the cross percentages are represented by triangles.
Observe how the cross percentage values are shifted versions of
within percentages (this shift-effect comes from the fact that there
are more cross subsets than within subsets).

The percentiles from 10th to 90th with increments of 20 are given
in Figure 9(b). When we plot the percentiles, the shift-effect due
to subset number disappears and we are able to observe that within
and cross retrieval tendencies at the indicated percentile values are
very close. A statistical test (Mann-Whitney, 95% confidence) con-
firms this: the distributions of Figure 9 are not statistically signifi-
cantly different.

5. DISCUSSION
5.1 Implications
We have shown above that, for boundaries defined by a single fea-
ture:

• There was usually no difference in the performance of effort
estimators; learned from within or from across those bound-
aries;
• There was usually no difference in the probability of retriev-

ing instances for those estimates from within or from cross
those boundaries.

That is, it was not useful to divide the data by any of single feature
boundaries shown in Figure 8; i.e. by project type, geographical

Test Set From S1 From S2 From S3

S1: cocomo81e (28) 1.0 (3.6%) 1.1 (4.8%) 1.6 (14.4%)
S2: cocomo81o (24) 1.8 (6.6%) 1.3 (5.6%) 1.1 (10.4%)
S3: cocomo81s (11) 1.4 (5.1%) 1.7 (7.0%) 1.0 (9.4%)
S1: nasa93_center_1 (12) 1.0 (8.1%) 2.9 (7.9%) 1.7 (4.3%)
S2: nasa93_center_2 (37) 1.6 (13.0%) 4.6 (12.4%) 3.8 (9.8%)
S3: nasa93_center_5 (39) 0.8 (6.7%) 2.2 (6.0%) 2.1 (5.4%)
S1: desharnaisL1 (46) 2.5 (5.5%) 1.7 (7.0%) 0.8 (7.9%)
S2: desharnaisL2 (25) 2.6 (5.6%) 1.5 (6.1%) 0.7 (6.7%)
S3: desharnaisL3 (10) 1.9 (4.1%) 1.3 (5.0%) 0.4 (4.0%)
S1: finnishAppType1 (17) 1.6 (9.1%) 1.6 (8.8%)
S2: finnishAppType2345 (18) 1.4 (8.2%) 1.6 (8.8%)
S1: kemererHardware1 (7) 0.6 (8.8%) 0.9 (10.7%)
S2: kemererHardware23456 (8) 0.5 (7.3%) 0.8 (10.6%)
S1: maxwellAppType1 (10) 0.7 (7.1%) 1.7 (5.9%) 1.0 (5.8%)
S2: maxwellAppType2 (29) 0.4 (3.7%) 1.8 (6.2%) 1.0 (5.5%)
S3: maxwellAppType3 (18) 0.6 (6.3%) 0.9 (3.2%) 1.0 (5.6%)
S1: maxwellHardware2 (37) 1.7 (4.6%) 0.8 (4.9%) 0.4 (6.0%)
S2: maxwellHardware3 (16) 2.5 (6.8%) 1.1 (6.8%) 0.3 (4.3%)
S3: maxwellHardware5 (7) 2.3 (6.2%) 0.8 (5.0%) 0.3 (4.5%)
S1: maxwellSource1 (8) 0.1 (1.6%) 2.8 (5.2%)
S2: maxwellSource2 (54) 0.4 (4.6%) 2.8 (5.3%)

Figure 8: The average amount of analogies (k) retrieved from
within and cross resource datasets by TEAK. In parenthesis the
percentage of retrieved instances out of the actual within source
dataset is given. The diagonal entries that are highlighted with
gray are the within source retrieval amounts and percentages.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

S
o

rt
ed

 P
er

ce
n

ta
g

es

Index

WC
CC

(a) Percentages

 4

 8

 12

 16

10 30 50 70 90

P
er

ce
n

ta
g

e

Percentile

WC
CC

(b) Percentiles

Figure 9: Percentages and percentiles of instances retrieved by
TEAK from within and cross datasets. The cross percentages
are very similar to shifted version of within percentages, the
shift-effect is due to different number of subsets. The percentile
graph removes the shift-effect and we see that within test in-
stances retrieve very close percentages of within and cross in-
stances.

location of the development center, language type, application type,
hardware, or source. Hence, at least for the purposes of selecting
and retrieving relevant examples for effort estimation, there is no
information gain in dividing data using a single feature.

5.2 Small Retrieval Sizes
The median values of the percentiles (i.e. 50th percentile) in Fig-
ure 9 is 7%. Initially, this low value troubled us but after a review of
the relevant literature we found that our results are consistent with
prior results:

• Chang’s prototype generators [5] replaced training sets of
size T = (514, 150, 66) with prototypes of sizeN = (34, 14, 6)
(respectively).
• That is, prototypes may be as few as N

T
= (7, 9, 9)% of the

original data. Note that these values are close to how many
instances were retrieved in the above results.

5.3 Geometric Implications

Figure 10:
Projects described
in two dimensions.

Our results imply something about the
location of training data in instance
space. Geometrically, locality(1) as-
sumes that project data lines up along
one dimension; e.g. as shown by the cir-
cles in Figure 10. This figure displays
projects described in terms of a two di-
mensional instance space (labeled here
as x and y). Note that (a) the circles are
arranged (approximately) parallel to the
y axis and that (b) the longer projects
(indicated with larger circles) occur at

higher y values. The space of the circle
examples in Figure 10 could be processed by locality(1) since a
single feature (in this case, the vertical y-axis) usefully divides the
examples with higher effort from those with lower effort.

From a geometic perspective, locality(1) is improbable. Given the
idiosyncrasies of software development, we find it highly unlikely
that naturally occurring project examples will all line up in a row
parallel to one axis. What is more likely, we believe, are geometrics
like those shown as squares in Figure 10. As before, the size of
the shapes indicates the effort associated with each project. Note
these examples do not run parallel to any feature and the longer
and shorter projects are not easily separated by either axis. The
space of small squares and larger squares cannot be divided by any
simplistic locality(1) assumption.

5.4 Threats to Validity
External validity questions whether the results can be generalized
outside the specifications of a study [23]. For the purpose of ex-
ternal validity, we use of 21 within-cross dataset pairs. Among 10
studies investigated by Kitchenham et al. in [14], 9 of them used
single within-cross dataset pairs, and 1 study used 6 pairs. In terms
of external validity, this report has higher validity than a standard
within vs. cross data comparison effort estimation study.

Another consideration for external validity is the employed meth-
ods. There are thousands of possible ABE variants and there is no
way that this study covers them all. There is obviously need for
future research that repeats these experimentations with different
ABE variants. However, experiments reported here include a filter-
ing based variant (TEAK) built on a base variant (ABE0) and run
on 21 within-cross pairs. Therefore, the extent of the experimen-
tation in this research offers enough support for the claims that 1)
cross data performs no worse than within data and 2) a within test
instance tends to retrieve equally from within and cross projects.

Construct validity (i.e. face validity) asks if we are measuring what
we actually intended to measure [24]. Previous studies have con-
cerned themselves with the construct validity of different perfor-
mance measures for effort estimation (e.g. [27]). So as not to bias
our conclusions due to a limited number of measures, we used 4
different performance measures aided with win-tie-loss statistics.

In terms of internal validity of our results, there is one dimen-
sion of experimental conditions not explored. We are making use
of LOOCV, whose a possible alternative would be N-Way cross-
validation. In N-Way cross-validation, data is randomly divided
into B bins and each bin is tested on a model learned from the
combination of other bins (typical values for B are 3 or 10). From
a theoretical point of view, not controlling the stability of our results
across different testing strategies is a threat to validity, as different
testing strategies entails different bias and variance conditions [9].
Elsewhere [16], we show that there is very little difference in the
bias and variance values generated for LOOCV and N-way cross-
validation. Since two testing strategies have similar bias-variance
characteristics for effort datasets, we opted for LOOCV due to the
fact that LOOCV is a deterministic procedure that can be exactly
repeated by any other researcher with access to a particular data set.
N-way cross-validation on the other hand requires a random num-
ber generator and a stratification heuristic (to maintain same class
distribution in each bin). Without access to exact same random
number generator and stratification heuristic, it would be difficult
for a researcher “A” to reproduce results of researcher “B”.

6. CONCLUSION
We have shown that when using a state-of-the-art effort estimator
(TEAC), then after instance selection:

1. The cross performance results are no worse than within
(see Figure 7);

2. The probability that the estimator retrieves a training instance
from cross or within is the same (see Figure 9.b).

Result #1 grants us permission to compare cross-vs-within results
(since there is no performance delta between them). Result #2
shows that the single-feature divisions have no bearing on effort es-
timation. Coupled with the results of [12], these results are strong
support for locality(N) since we have confirmed both PREDIC-
TION 1 and PREDICTION 2.

This means that (to repeat a comment made in our introduction), the
most similar software to what you are writing now may not be in
the next office. Rather, it may be in an office on the other side of the
world. As shown here, using instance selection tools like TEAK, it
is possible to automatically find that relevant training data.

7. FUTURE DIRECTIONS
Some of the most likely future directions to this research are:

• Reproduction of this work on proprietary data.
• Investigating why particular subsets (cocomo81s, desharnaisL1)

favor within data, whereas the rest favors both within and
cross.
• Using different ABE or non-ABE methods under similar set-

tings.
• Experimenting if limited within data can be supplemented

with cross data.
• Using different features on different datasets to see if they

can define a border between within and cross data.

8. REFERENCES
[1] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and

S. Biffl. Optimal Project Feature Weights in Analogy-Based
Cost Estimation: Improvement and Limitations. IEEE
Transactions on Software Engineering, 32(2):83–92, 2006.

[2] B. Boehm. Safe and Simple Software Cost Analysis. IEEE
Software, pages 14–17, 2000.

[3] G. Boetticher, T. Menzies, and T. Ostrand. PROMISE.
[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.

Classification and Regression Trees, 1984.
[5] C.-l. Chang. Finding Prototypes for Nearest Classifiers.

IEEE Transactions on Computer, C(11), 1974.
[6] S. Chulani, B. Boehm, and B. Steece. From Multiple

Regression to Bayesian Analysis for Calibrating
{COCOMO} {II}. Journal of Parametrics, 15(2):175–188,
1999.

[7] D. Ferens and D. Christensen. Calibrating Software Cost
Models to {D}epartment of {D}efense {D}atabase: A
Review of Ten Studies. Journal of Parametrics, 18(1):55–74,
Nov. 1998.

[8] H. Habib-agahi, S. Malhotra, and J. Quirk. Estimating
Software Productivity and Cost for {NASA} Projects.
Journal of Parametrics, pages 59–71, Nov. 1998.

[9] T. Hastie, R. Tibshirani, and J. Friedman. The elements of
statistical learning. Springer, 2 edition, 2008.

[10] N. Juristo and S. Vegas. Using Differences among
Replications of Software Engineering Experiments to Gain
Knowledge. In ESEM, pages 356–366, 2009.

[11] G. Kadoda, M. Cartwright, and M. Shepperd. On configuring
a case-based reasoning software project prediction system. In
UK CBR Workshop, Cambridge, UK, pages 1–10. Citeseer,
2000.

[12] J. Keung, E. Kocaguneli, and T. Menzies. A Ranking
Stability Indicator for Selecting the Best Effort Estimator in
Software Cost Estimation. Automated Software Engineering
(submitted), 2011.

[13] J. W. Keung, B. Kitchenham, and D. R. Jeffery. Analogy-X:
Providing Statistical Inference to Analogy-Based Software
Cost Estimation. IEEE Trans. Softw. Eng., 34(4):471–484,
2008.

[14] B. Kitchenham, E. Mendes, and G. H. Travassos. Cross
versus Within-Company Cost Estimation Studies: A
Systematic Review. IEEE Trans. Softw. Eng., 33(5):316–329,
2007.

[15] E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, and J. W.
Keung. When to use data from other projects for effort
estimation. In ASE’10, pages 321–324, 2010.

[16] E. Kocaguneli and T. Menzies. The Effects of Test Set
Selection on Effort Estimation (in preperation), 2011.

[17] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung.
Exploiting the Essential Assumptions of Analogy-based
Effort Estimation. To Appear in IEEE Trans. Softw. Eng,
2011.

[18] Y. Li, M. Xie, and T. Goh. A study of project selection and
feature weighting for analogy based software cost estimation.
Journal of Systems and Software, 82(2):241–252, Feb. 2009.

[19] K. Lum, J. Powell, and J. Hihn. Validation of Spacecraft
Software Cost Estimation Models for Flight and Ground
Systems. In ISPA Conference Proceedings, Software
Modeling Track, May 2002.

[20] E. Mendes, I. Watson, C. Triggs, N. Mosley, and S. Counsell.
A comparative study of cost estimation models for web
hypermedia applications. Empirical Software Engineering,
8(2):163–196, 2003.

[21] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting Best
Practices for Effort Estimation. IEEE Transaction on
Software Engineering, 32(11):883–895, 2006.

[22] T. Menzies, D. Port, Z. Chen, and J. Hihn. Simple software
cost analysis: safe or unsafe? In PROMISE ’05, pages 1–6,
New York, NY, USA, 2005. ACM.

[23] D. Milic and C. Wohlin. Distribution Patterns of Effort
Estimations. In Euromicro, 2004.

[24] C. Robson. Real world research: a resource for social
scientists and practitioner-researchers. Blackwell Publisher
Ltd, 2002.

[25] M. Shepperd and G. Kadoda. Comparing Software
Prediction Techniques Using Simulation. Software
Engineering, IEEE Transactions on, 27(11):1014–1022,
2002.

[26] M. Shepperd and C. Schofield. Estimating Software Project
Effort Using Analogies. IEEE Transactions on Software
Engineering, 23(12), Nov. 1997.

[27] E. Stensrud, T. Foss, B. Kitchenham, and I. Myrtveit. An
empirical validation of the relationship between the
magnitude of relative error and project size. Eighth IEEE
Symposium on Software Metrics, pages 3–12, 2002.

[28] S. Stukes and H. Apgar. Applications Oriented Software
Data Collection: Software Model Calibration Report,
{TR}-9007/549-1, Management Consulting and Research,
Mar. 1991.

[29] S. Stukes and D. Ferens. Software Cost Model Calibration.
Journal of Parametrics, 18(1):77–98, 1998.

[30] B. Turhan, T. Menzies, A. Bener, and J. Di Stefano. On the
relative value of cross-company and within-company data for
defect prediction. Empirical Software Engineering,
14(5):540–578, 2009.

[31] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy. Cross-project defect prediction. ESEC/FSE’09,
page 91, 2009.

