General Expert System for Anomaly Detection

Andrew Butcher, Oussama Elrawas, Ekrem Kocaguneli
Lane Department of Computer Science and Electrical Engineering
West Virginia University
Morgantown, WV 26505, USA
abutcher@afrolegs.com, orawas@gmail.com, ekocagun@mix.wvu.edu

ABSTRACT

The effort to model and understand knowledge and data has
given rise to a large variety of implementations of knowledge
level modeling. Aimed at achieving various operations such
as anomaly detection, classification and planning, among
others, knowledge level modeling allows us to derive gen-
eralizations concerning data. In this paper, we present a
toolkit aimed conducting KL modeling. This toolkit will
be presented at this stage of its implementation to allow
for anomaly detection in classification data. By using this
toolkit, we implemented a two-step, likelihood-based anomaly
detector and tested it on simulated classification datasets for
various different scenarios. Our model has achieved to per-
fectly identify the normal and abnormal test instances from
the simulated datasets.

1. INTRODUCTION

Expert systems have been proposed to solve various prob-
lems in many different contexts [8,11]. Although these sys-
tems were developed separately from each other, all of them
share common properties. The realization of the proper-
ties have led to an exciting idea of knowledge level modeling
(KL). Knowledge level modeling aims to find abstract pat-
terns of inference that appear in various expert systems [3].

In fact the idea of KL is not a very new concept. In 70s and
80s, some applications of high level expert systems have been
reported [5,7,9]. Although some research was conducted to
make this initial work more common and widely applicable,
the current trend of expert system design usually consists of
a somewhat trial and error approach [2].

Although trial and error method when combined with expert
domain knowledge may yield very successful results, most
of these models require quite a lot of planning, design and
research prior to implementation. Therefore, the failure to
exploit re-usable abstract domain independent problem solv-
ing strategies result in waste of resources. Previous research
has also adressed this issue and reported three benefits of

using KL modeling [3]:

e Reuse Benefit:New designs can be bootstratpped from
previous designs. The new design does not need to be
a copy of the previous one and may introduce various
new configurations. However, essential pattern will be
reused and be the start point of a new design.

e Communication Benefit: KL models could be very use-
ful to explain various different expert systems and a
novice designer with the knowledge of KL, models could
easily adapt to a new expert system.

e Guidance Benefit: By analyzing previous models, de-
signers could get an insight regarding where to direct
their focus in the design of a new expert system.

The fundamental idea behind KL is that a knowledge base
is divided into two parts: 1) Domain specific facts and 2)
domain independent problem solving strategies [2]. How-
ever, a wide range of current expert system designs are not
based on this fundamental idea and are missing the afore
mentioned benefits provided by KL modeling.

In this research, we are making an analysis of previous KL
models and going further we are proposing a common tool-
box that includes common methods or tools to these models.
After our analysis, we will build an expert system that will
make use of previous KL models and the necessary methods
from the common toolbox of KL models. The model will be
applied to a classification dataset and its simulated subsets,
which correspond to a generalized version of part one for
a knowledge base, i.e. a general representation for domain
specific facts.

By building this model on the principles of KL. modeling, we
do not only exploit the benefits of KL modeling but we also
propose a widely applicable model for a large set of domains.

2. BACKGROUND

In this section we will describe and briefly discuss previ-
ous work related to the area of knowledge level modelling.
As discussed in the introduction, K. modelling is well re-
searched concept and there have been several variations on
the theme. KL modelling can be presented in one of two
different types of studies and implementations:

e General all encumpassing work on knowledge engineer-
ing that attempt to cover and implement a wide range
of inference functions. These implementations gener-
ally do not target a specific type of data.

e Specific work on KL modeling that seek to implement
a small subset of functionality. Usually such imple-
mentations aim at targeting specific data sets.

The more encompassing studies seek to implement extensive
KL functionality that is able derive knowledge from most
data that is available to their system. such work include
the modeling of cognitive processes that is presented in [1]
by Clancey et. al. In this publication, the authors present
flowchart style description to several processes that include:

e Diagnosis

e Verification
e Correlation
e Suitability

e Classification
e Prediction

e Repair

e Design

e Configuration
e Planning

e Scheduling

While implementations to these descriptions are not imple-
mented, it is important to take note of them. Such extensive
descriptions represent the tradition of knowledge modeling
by way of extensive specification of any knowledge/theory
producing process. These processes are briefly explained in
following sections. As we will see, our own tool is a is based
on his tradition of specification [6].

Detailing current work regarding this approach to knowledge
modeling is currently out of the scope of this paper. How-
ever, we will briefly present two papers that lie on either
side of the fence of this knowledge modeling equation.

The first paper [2] by Menzies provides a description and
a system (HT4) that follows the above tradition and which
is done through abduction. Abduction here meaning that
rules (or hypotheses) are produced such that, given the final
effect /state, we are able to most closely determine our initial
effect/state. in other words, we are producing rules that will
allow us to produce/ infer old data given our current data.
This method is obviously dependent on observing enough
data to produce out rules. These rules will ultimately de-
fine our knowledge. In a similar manner to the cognitive
processes document, this work attempts to apply knowl-
edge modeling to achieve several of the functions mentioned

above. Such functions include prediction, classification, ex-
planation, tutoring, planning, monitoring, validation, ver-
ification and diagnosis. While not identical to the list of
functions mentioned above, it overlaps with regard to most
of the functionality. As such, the author presents a general
tool for use in KL. Our proposed future implementation will
be similar to this, with the main difference being that our
method is based on induction.

When one side of knowledge modeling is that, the other side
of knowledge modeling forgoes specifying all the above func-
tionality, and instead specifies one rule: remember the past
to determine the present [6]. This is called Case Based Rea-
soning (CBR). Argued for by Riesbeck, this method rep-
resents knowledge and experience with dealing with that
knowledge in the form of case bases that include historical
data and actions performed on the data in the past. Cur-
rent actions are determined by the similarity of our current
case/data to previous data. This method is based on the
principle that people don’t create new decisions based on
cognitive analysis, but rather that current actions are based
on previous actions conducted in similar situations.

In the next section we will present a description of the model
that we will be using.

2.1 Library and Toolbox For Design Patterns
KL patterns appear in many different expert systems. In
that respect the goal of KL modeling can be defined to
identify the abstract reusable inference skeletons that ap-
pear multiple times in such systems. A very good exam-
ple to this concept is the example of Clancey [1], where he
reverse engineered 10 expert system tools with various dif-
ferent characteristics and found out that all of them were
using the same abstract inference skeleton: Heuristic classi-
fication. Of course Clancey’s example is not the only one.
Another KL methodology KADS [10] was reported to have
been used in more than 40 knowledge-based systems [3].

Bearing in mind that KL inferece models are used repeatedly
in many different expert systems, it is a good idea to collect
and store them. Clancey proposes a library of pre-defined
problem solving strategies and a a separate knowledge-base
that contains domain specific heuristics [10]. In this library
we can define common problem solving models that underlie
all the expert systems. When the common problem solving
strategy is combined with separate domain specific heuris-
tics, then an expert system can easily be built with less
effort. As examples of models in such a library we can name
verification, incremental configuration, systematic diagnosis
and heuristic classification.

Going further we would also like to mention a toolbox for
such a library that is proposed by Menzies [4]. When we take
a closer look to the library proposed by Clancey [10] we see
that various problem solving models make use of common
methods or algorithms. For instance verification, classifi-
cation, sampling methods, diagnosis, discretization, median
and greedy agglomerative clustering (GAC) are examples to
common methods in the toolbox that can be used by var-
ious inference skeletons to form multiple expert systems in
different settings. We can in fact group these algorithms in
a toolbox that is available to the use of models in the library

of Clancey.

So we can think of building an expert system as a three step
process:

1. Choose a model/template best for your case from the
library

2. Pick up required methods from toolbox

3. Insert domain specific heuristics

In our study we will follow the above described three steps
to build our model that is capable of processing continuous
data and detecting anomalies.

3. METHODOLOGY
3.1 Datasets

In this research we are using 10 different classification datasets
with different properties. The details regarding these datasets
are as follows:

kr-vs-kp: This is a completely discrete dataset that de-
scribes a Chess end game. In this case it is black King and
Pawn, the latter located on A7, versus white King and Rook.
Each instance describes the positions of the chess peices on
the board, where the class attribute indicates whether white
can win or not. This dataset is also a fairly large dataset
that is able to test the performance of our data generation
routines. There are 37 attributes total and 3196 instances
in this dataset.

mushroom: This is a completely discrete dataset that of-
fers a large amoutn of instances of mushroom descriptions
regarding the different parts of the mushroom. The clas-
sification of each instance indicates whether the mushroom
is edible or poisonous. There are 23 attributes total and
8124 instances in this dataset, 2480 of which have missing
attributes.

ionosphere: This is a medium size dataset that shows radar
data from a system in Goose Bay, Labrador studying the
ionosphere. All the attributes in this dataset are continuous,
except for the class attribute. There are two classes of radar
signals indicated: "good”, those that are reflected and able to
show ionoshpere structure, and "bad”, those that go straight
through. There are 35 attributes total and 351 instances in
this dataset.

german-credit: This dataset shows anonymized credit data
from germany. This includes data on the credit itself (eg.
installment rate), and data on the person holding the credit
(eg. status and sex). Each credit situation is classified as
either “good” or “bad”. This dataset has a mix of attribute
types, with 7 continuous and 14 discrete attributes, includ-
ing the class attribute. It contains 1000 instances.

credit-rating: This dataset has similar characteristics to
the german credit dataset, consisting of a mix of continu-
ous and discrete attributes. The instances describe credit
card applications, where all the data has been anonymized.
There are two classes: “+” and “-”. The dataset contains

6 continuous and 10 discrete attributes, including the class,
with 690 instances total, 37 of which have missing values.

cpu: This is a dataset consisting of mainly continuous (8)
attributes describing characteristics of cpus of different ven-
dors. The vendor name is the main discrete attribute in this
dataset, and it will be used to represent the class. This
makes this dataset a multiclass dataset, with 30 unique
classes. In total, there are 209 instances in this dataset.

contactlens: This is one of the smaller datasets we are
using, and contains 3 classes describing different scenarios
for prescribing different contact lenses. The three classes are
“hard”, ”soft”, and "none”. The attributes included in this
dataset are all discrete, with 5 attributes total, including the
class attribute. There are 24 instances total.

cloud: With 194 instances, this dataset includes 2 discrete
and 5 continuous attributes. This dataset shows data related
to a cloud seeding experiment in Tasmania. The season
attribute is used as the class attribute in our experiment.

cleveland-14-heart-disease: This dataset is a 14 attribute
version of the Cleveland heart disease dataset. The class at-
tribute that will be used is the ”“cp” attribute, which has
four unique values. Of the 14 attributes, 6 are continuous,
with the rest being discrete. In total, this dataset has 303
instances.

breast-cancer: The breast cancer dataset shows instances
of recurrence and no recurrence of cancer in breast cancer pa-
tients. The class attribute used is this recurrence attribute,
which, along with all the attributes here, is discrete. There
are 10 attributes, with 286 instances total.

3.2 Using Train and Test Sets for Anomaly De-

tection

In this section we describe our methodology in producing
our subsets for anomaly detection. While describing our
methodology of subset generation, we will use the examaple
of weather-numerics dataset, which has 2 classes. However,
this can be extended to an n-many class case easily. Class
labels of the two classes in weather-numerics dataset are
“YES” and “NO”.

While generating subsets, we first choose an anomaly class,
say class NO. We select all the instances of class NO from the
dataset and populate it to 1000 instances (100 instances will
be given to the model at each era). This will be the so called
anomaly-test-set. The remaining instances, i.e. YES class
instances will be used to generate 90% of the training set or
so called normality-test-set. The remaining 10% will consist
of random instances simulated from anomaly class. The final
training set will consist of 1000 instances (900 normals and
100 anomalies). Of course in the opposite case, we could
have chosen the anomaly class as the YES class, in which
case anomaly-test-set would be the populated YES class and
SO on.

In the previous paragraph we have described how we can
generate the normality-test-set, anomaly-test-set for 2 class
case. However, as can be seen the procedure is easy to gen-
eralize for an n-class case. In an n-class case, one of the

classes at each turn would be selected as the abnormal class
to generate anomaly-test-set and the rest will be used to
generate the normality-test-set.

3.3 Greedy Agglomerative Clustering Simu-

lation Engine

Since the fundamental method in our model will be the
greedy agglomerative clustering (GAC), we will first provide
some information regarding GAC. Agglomerative, or bot-
tom up, clustering starts with every individual data point
and greedily combines similar points using a distance met-
ric [?]. Our model uses euclidean distance to pair similar
data points. The clusters formed can then be mapped into
a tree structure. A GAC tree partitions the data such that
the leaves in the tree are the original data points and each in-
terior node is a cluster containing every point in its subtree.
The root thus contains every data point. When querying the
tree we can easily throw away whole subtrees by comparing
our test with the cluster at hand. This speeds up traversal
greatly, allowing for sub-linear query costs.

A complete GAC tree also allows for data simulation. By
mapping a dataset into a GAC tree structure we can query
the leaf nodes in the tree to produce an arbitrary amount of
new nodes which are a variable distance between a leaf and
it’s immediate parent. Data created this way will always
lie close to a parent/child pair and will thus be similar the
original datasets.

3.4 Experiments

Depending on which class of the dataset we choose as the
abnormal class, we have 2 different treatments in our exper-
imentals settings. In each treatment, we aim our anomaly
dedection model to be able to identify both the abnormal
and the normal cases.

In the first treatment, we choose one of the classes within a
dataset as the normal class (say “YES” class) and one other
class as the abnormal class (say “NO” class). The trianing
has 1000 instances, whose members are simulated from YES
class (90%) and from NO class . For the simulated train
set, we have 2 test sets: Normality-test-set, anomaly-test-
set. Both test sets are of 10 eras * 100 instances =
1000 instances. We run our model on both test sets. In
anomaly detection treatment, since our training set has only
a 10% of its instances belonging to class NO, in the ideal
case we expect all 100 instances of anomaly-test-set in era;
to be identified as abnormal cases by our model. Similar to
anomaly-test-set instances being identified as anomalies, in
the ideal case we expect all the normality-test-set instances
to be identified as normal instances.

4. OUR MODEL
4.1 Building up the model

While building our model, we will use the three step pro-
cedure that was described in Section 2.1. In the following
subsections we will describe these steps.

4.1.1 Select a template from the library
Since our aim is to find anomalies with this model, we are
in fact dealing with a classification problem where we have

Heuristic Match

Data Sulnﬁ?n
Abstractions Abstractions

Data
Abstraction Refigement

i\

Data Solutions

Clancey's Heuristic Classification

Figure 1: Heuristic classification takes raw data and applies
and abstraction. Then on the data abstraction heuristic
match methods are run, which in our case is a likelihood-
based two step procedure. Then hypothesis coming from the
heuristic match is evaluated and the solution is reached.

two classes: Normal and abnormal. The most suitable tem-
plate for the type of problem we are tryinig to tackle with
is “heuristic classification”. The template for heuristic clas-
sification is given in Figure 1.

4.1.2 Pick up methods from toolbox

Now we have a basic frame to build our model, but we need
to select the appropriate tools to be able to implement this
model. To abstract our data we expect the them to be pro-
vided in the form of a two dimensional array in which the
rows will correspond to instances and the columns will cor-
respond to features of the instances. Then the data will be
normalized to the interval of 0 to 1 and this will form our
dataset. Therefore, we will use a “NORMALIZE” method
from the toolbox first. We also bin the numeric attributes
into ten different bins and for that purpose we use the “DIS-
CRETIZE” from the toolbox. Furthermore, since we use
GAC tree to simulate our test and training sets, we will
need a “GAC” method where we also need to calculate the
distances between clusters. Thus, we will pick up a “DIS-
TANCE?” function from the toolbox as well. We calculate
the distance of a single instance to the centroid of clusters in
GAC, and centroids are represented by the mean of all the
features of all the instances in that cluster. Therefore, we
will also select “MEAN” method of the toolbox. Our test
instances go into the model one era at a time, which requires
us to pick up the “FRAS” method from the toolbox as well.

4.1.3 Insert domain specific heuristics

Since we are aiming to provide a generic model, we will not
have any domain specific heuristics in our work. There-
fore, we will cover only the first two steps while building our
model.

4.2 Executing the Model

Our model processes incoming new data in terms of sepa-
rate eras, therefore we are able to process endless stream of
data by letting the model work on it one era at a time. In
our research each era contains 100 test instances, but one
can change this number according to the performance and
memory needs of a particular problem.

When the model starts processing an era, instances within
an era are treated one at a time, i.e. model decides whether
an instance is anomalous or normal one at a time. For learn-
ing what is abnormal and what is normal, the model relies
on past data. For our case, we use 1000 instances in training
set, in other words initially our past experience is made up
of 1000 samples (1000 instances are generated by the GAC
simulator).

The datasets we use in our research have both numeric and
non-numeric attributes. We want to treat each attribute
in a similar fashion, therefore we discretize the numeric at-
tributes before conducting any computation on them. Fur-
thermore, before using the data in our model, we normalize
the test and training sets to remove the bias that would
otherwise come from the range of different numbers. Once
the data is normalized, the heuristic match mechanism will
start to work. Our match mechanism or so called model is a
likelihood based model that consists of a rejection/acception
step. In the rejection/acception step, we decide for a test
instance whether to accept it as a normal case or whether
to reject it as an abnormal case.

The rejection step of the model aims both numeric and non-
numeric features. In this step, we use a likelihood calcula-
tion. We first calculate the likelihood probabilities of all the
instances in the training set. Then we take the minimum
and the maximum probabilities from the training distribu-
tion. The minimum and the maximum probabilities give us
an idea of probability range on which the so called normal
instances are distributed. When we calculate the same like-
lihood probability for the test set, we expect its probability
value to fall between the maximum and the minimum prob-
ability values of the normal instances. If the test instance
has a probability value outside this range, then we reject it
as an anomaly. On the other hand, if the likelihood proba-
bility of the test instance is in this range, then we accept it
and call it a normal case.

During training, we produce a frequency table of class counts.

This table contains attribute/range/class values for every
instance in the training set which appear as a combination
with a count. For example, [sex, male, pregnant] = 0. Using
this table we calculate the likelihood of an incoming instance
by determining the product of each attributes’ probability
in the instance.

frequencylattr, range,” seen”

) (1)

roduct
p (frequency[’ seen”

As stated previosly, we assign a probability of 1 to a numeric
attribute which is within the minimum/maximum range of
that attribute and a probability of 0 to a numeric attribute
which isn’t within the range.

Remember that we have a tuning mechanism in that model.
We have minimum and maximum values that decide on
whether an instance is to be labeled as an anomaly or not.
We can play with these minimum and maximum indicators
manually. If we increase the maximum value and/or de-
crease the minimum value in the model, then we enlarge the
normality zone and let more instances be labeled as normal.
However, if we do the opposite, i.e. decrease the maximum
and increase the minimum indicator (thereby increasing the
constraint to be a normal case) we will be more strict while
selecting a normal case and therefore less instances will be
labeled as normal.

Basically our model works in 3 steps:

1. Take one era of 100 test instances, let’s say era;
2. Label each instance in era; as normal or abnormal

3. Correct anomalies in era;, then check via a statistical
test whether the correction worked or not.

The model whose specifications have been verbally given
above is a generic likelihood-based anomaly detector, which
is designed to work particularly for streaming data. For
more detail, we provide the pseudocode in Figure 2.

| Normal Anomalous
Dataset PD PF | PD PF
Breast Cancer 1 0.55 1 0.08
Clevaland Heart Disease 1 0.82 1 0
Cloud 1 0.16 1 0.61
CPU 1 0.9 1 0
Credit Rating 1 1 1 0
Tonosphere 0 1 1 0.01
KR-VS-KP 1 0.9 1 0
Mushroom 1 0.99 1 0
Splice 1 1 1 0
Contact lense 1 0.17 1 0

Figure 3: PD and PF results for 5% cut in low likelihood
values. In every treatment we have 2 different experiments:
Anomaly and normality. In 9 of 10 datasets our model at-
tains very high PD rates (1). Furthermore, for the detection
of anomalies, PF rates are also very low.However, the PF
rates for normal instances are usually very high. In only 2
(contact lense and cloud) out of 10 datasets we have very
low pf rates. Therefore, our model is quite successful in
terms of detecting anomalies, yet suffers from high PF rates
in normal case identification.

S. RESULTS

In this section we present the results of our anomaly detec-
tor. The summary of our results for all of the 10 datasets are
provided in Figure 3 and Figure 4. After building the likeli-
hood table for the instances in our train set, we prune away
some of the instances depending on their likelihood values.
For example, the difference between results in Figure 3 and
Figure 4 is that in Figure 3 we prune train instances that

for all era; € testSet do
for ¢ =1 to size(era;) do

testInstance — ithInstance(era;)
trainingSet «— discretize(trainingSet)
trainingSet < normalize(trainingSet)
minProb «— minimum(likelihood(allcolumns))
max Prob — maximum(likelihood(allcolumns))
probTestInstance «— likelihood(testInstance)

testlmin < isBetween(probTestInstance, minProb, maxProb)
testlmas — isBetween(probTestInstance, minProb, max Prob)

if isTrue(testlmin, testlmin) then
testInstance < normal
else
testInstance < anomaly
end if
end for
correctedInstances «— correct(anomalies)

if Wilcozon(correctedInstances, trainingSet) says they are the same then

correctionSuccess ful «— 1
else
correctionSuccess ful «— 0
end if
end for

Figure 2: Pseudocode for generic anomaly detector. Test-set can be a normal or an anomaly test set, i.e. it can consist of
all abnormal test instances or all normal test instances. The anomalous instances are corrected and at the end of each era
correction is controlled with Wilcoxon test to see whether it was successful or not.

| Normal Anomalous
Dataset PD PF | PD PF
Breast Cancer 1 0.71 1 0
Clevaland Heart Disease 1 0.97 1 0
Cloud 1 0.67 1 0
CPU 1 0.99 1 0
Credit Rating 1 1 1 0
Tonosphere 0 1 1 0
KR-~VS-KP 1 0.95 1 0
Mushroom 1 0.98 1 0
Splice 1 1 1 0
Contact lense 1 0.25 1 0

Figure 4: PD and PF results for 10% cut in low likelihood
values. Getting rid of more difficult instances (low likelihood
valued instances) improves the anomaly detection, i.e. we
have PD’s of 1 and PF’s of 0. However, it increases the PF
rates for normal instance identification.

have the lowest 5% likelihood values and in Figure 4 we do
the same for the lowest 10%.

As we can see in Figures 3 and 4, our model is able to detect
both the normal cases and the abnormal cases with very high
pd (probability of detection) rates. Furthermore, for the
anomalies our pf (false alarm rates) are extremely low except
the cloud dataset. Although we also have very high pd rates
in normal cases, our pf rates are high as well. Therefore,
we can say that our model is quite successful in terms of
detecting anomalies (high pd and low pf values). However,
when the model is used for detecting normal cases, our false
alarm rates are usually very high.

The actual difference between Figure 3 and Figure 4 is that
10% cut of low likelihood train instances helps our model to
learn the normality in a better way. We can see the effect
of getting rid of difficult-to-learn instances in the pf rates
of Figure 4. As we can see the pf rates which had non-zero

values in Figure 3 have all dropped down to zero in Figure
4. However, the drop in pf rates of anomaly detection comes
with its own cost, slightly higher pf rates in normal instance
detection.

6. ANOMALY CORRECTION

Whenever we reject anomalies, we provide user the option
to correct the anomalies. We have conducted anomaly cor-
rection on all the datasets for the rejected anomalies and we
were able to cure the anomalies. After anomaly correction,
all the rejected instances were able to be accepted as nor-
mal cases. Therefore, apart form identifying anomalies, our
model also provides means to fix them. In Figure 5 are a
couple of examples from breast-cancer dataset.

During the processing of each era, the model goes through an
sequence of steps to correct anomalies and check if correction
really worked. The sequence of steps as well as what they
mean and how they are employed in our model is as follows:

1. Monitoring: To observe each test instance at a time in
our current era. In each era, we monitor the likelihood
value of each test instance.

2. Diagnosing: To identify anything we think is out of
line. Instances with either too low or too high likeli-
hoods are identified to be taken care of.

3. Predicting: What’s wrong with the diagnosed instance?
We use contrast set learner to determine what is wrong
with the diagnosed instance.

4. Controlling: Where we go from here? Are we going to
fix it or not? We figure out how -if possible- we can
correct the fault with the diagnosed instance.

5. Planning: Propose a change. If we can propose a solu-
tion of correcting the fault in controlling phase, then

Anomalies

1- (60-69 GE40 20-24 0-2 NO 2 LEFT LEFT_UP NO NO-RECURRENCE-EVENTS)
2- (40-49 PREMENO 35-39 0-2 NO 2 RIGHT RIGHT_UP NO NO-RECURRENCE-EVENTS)
3- (50-59 LT40 20-24 3-5 NO 2 LEFT LEFT_LOW NO NO-RECURRENCE-EVENTS)

Corrections

1’- (60-69 GE40 20-24 0-2 NO 2 LEFT LEFT_UP NO RECURRENCE-EVENTS)
2’- (50-59 PREMENO 50-54 9-11 YES 3 RIGHT LEFT_UP NO RECURRENCE-EVENTS)
3’- (50-59 GE40 20-24 3-5 NO 2 LEFT LEFT_UP NO RECURRENCE-EVENTS)

Figure 5: Sample anomalies and their corrected versions. Corrected version of anomaly 1 is shown with 1’ and so on. The

corrected features are shown with bold face.

we plan a change that would result in the proposed
solution.

6. Repair: Apply the change. the planned change is ap-
plied and the instance is corrected

7. Success: Were we successful with the previous steps?
This step is executed at the end of each era and not for
each test instance. At the end of each era, we control if
we fixed all the diagnosed instances. For that purpose,
we apply a Wilcoxon Test on the likelihood values of
train as well as on those of corrected era-instances and
if Wilcoxon Test says that they are statistically the
same, then we say that this era was successfully re-
paired.

7. CONCLUSION

In this research we identified a generic procedure as well as a
toolkit to aid anomaly detection and repair procedure. Fur-
thermore, by following the proposed generic procedure we
developed a sample expert system for anomaly detection in
classification datasets with 2 or more classes. According to
our results, our model is extremely successful in terms of di-
agnosing and fixing anomalies. For anomalies we have very
high pd and very low pf rates. The model’s performance
in terms of identifying the normal cases is questionnable.
Model can attain very high pd rates for normal instance
identification. However, at the same time it has very high pf
rates. Therefore, our model can be used to identify anoma-
lies in classification datasets, but if it is to be used on normal
instance identification it will come with the cost of high pf
rates.

The model is also capable of repairing the detected anoma-
lies. Our experiments have shown that we are able to pro-
pose a solution (fix) all the anomalous instances. We also
control whether the success of our fixing procedure with a
statistical test. Statistical test has also shown that we were
able to correct whole eras as well.

A further contribution we made in this research is to use
GAC simulating engine. We used GAC simulating engine to
generate/simulate similar but unique datasets out of a single
classification dataset.

8. REFERENCES
[1] W. J. Clancey. Heuristic classification. Artif. Intell.,
27(3):289-350, 1985.
[2] T. Menzies. Applications of abduction:
knowledge-level modelling. Int. J. Hum.-Comput.
Stud., 45(3):305-335, 1996.

[3] T. Menzies. Object-oriented patterns: Lessons from
expert systems, 1997.

[4] T. Menzies. Theory of everything: Toe, 2009.

[5] R. Reboh. Extracting useful advice from conflicting
expertise. In IJCAI’83: Proceedings of the Eighth
international joint conference on Artificial
intelligence, pages 145-150, San Francisco, CA, USA,
1983. Morgan Kaufmann Publishers Inc.

[6] C. Riesbeck. What Next? The Future of Case-based
reasoning in Post-Modem Al. . In Leake, ed., Case-
Based Reasoning: Fxperiences, Lessons, and Future
Directions., 1996.

[7] E. H. Shortliffe. Mycin: a rule-based computer program
for advising physicians regarding antimicrobial therapy
selection. PhD thesis, Stanford, CA, USA, 1975.

[8] A. O. Tim Menzies, David Allen. Bayesian anomaly
detection (bad v0.1). 2006.

[9] S. M. Weiss, C. A. Kulikowski, and A. Safir. A
model-based consultation system for the long-term
management of glaucoma. In IJCAI’77: Proceedings of
the 5th international joint conference on Artificial
intelligence, pages 826-832, San Francisco, CA, USA,
1977. Morgan Kaufmann Publishers Inc.

[10] B. J. Wielinga, A. T. Schreiber, and J. A. Breuker.
Kads: a modelling approach to knowledge engineering.
Knowl. Acquis., 4(1):5-53, 1992.

[11] W.-K. Wong, A. Moore, G. Cooper, and M. Wagner.
What’s strange about recent events (wsare): An
algorithm for the early detection of disease outbreaks.
J. Mach. Learn. Res., 6:1961-1998, 2005.

