
General Expert System Anomaly Detection for
Streaming Data

Andrew Butcher, Oussama Elrawas, Ekrem Kocagüneli
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506
abutcher@afrolegs.com, orawas@gmail.com, ekocagun@mix.wvu.edu

Abstract—The effort to model and understand knowledge and
data has given rise to a large variety of implementations of
knowledge level modeling. Aimed at achieving various operations
such as anomaly detection, classification and planning, among
others, knowledge level modeling allows us to derive general-
izations concerning data regardless of the nature of the data.
In this paper, we present a preliminary toolkit aimed conducting
KL modeling on a continuous stream of data. This toolkit will be
presented at this stage of its implementation to allow for anomaly
detection in the data stream.

I. INTRODUCTION

Expert systems have been proposed to solve various prob-
lems in many different contexts. Although these systems
were developed separately from each other, all of them share
common properties. The realization of the properties have
led to an exciting idea of knowledge level modeling (KL).
Knowledge level modeling aims to find abstract patterns of
inference that appear in various expert systems [3].

In fact the idea of KL is not a very new concept. In 70s and
80s, some applications of high level expert systems have been
reported. Although some research was conducted to make this
initial work more common and widely applicable, the current
trend of expert system design usually consists of a somewhat
trial and error approach [2].

Although trial and error method when combined with expert
domain knowledge may yield very successful results, most
of these models require quite a lot of planning, design and
research prior to implementation. Therefore, the failure to
exploit re-usable abstract domain independent problem solving
strategies result in waste of resources. Previous research has
also adressed this issue and reported three benefits of using
KL modeling [3]:

• Reuse Benefit:New designs can be bootstratpped from
previous designs. The new design does not need to be a
copy of the previous one and may introduce various new
configurations. However, essential pattern will be reused
and be the start point of a new design.

• Communication Benefit: KL models could be very useful
to explain various different expert systems and a novice
designer with the knowledge of KL models could easily
adapt to a new expert system.

• Guidance Benefit: By analyzing previous models, design-
ers could get an insight regarding where to direct their
focus in the design of a new expert system.

The fundamental idea behind KL is that a knowledge base is
divided into two parts: 1) Domain specific facts and 2) domain
independent problem solving strategies [2]. However, a wide
range of current expert system designs are not based on this
fundamental idea and are missing the afore mentioned benefits
provided by KL modeling.

In this research, we are making an analysis of previous KL
models and going further we are proposing a common toolbox
that includes common methods or tools to these models. After
our analysis, we will build an expert system that will make use
of previous KL models and the necessary methods from the
common toolbox of KL models. The model will be applied to
a world that is perceived by streaming data, which corresponds
to a generalized version of part one for a knowledge base, i.e.
a general representation for domain specific facts. This will
enable model to be applicable to any specific domain that can
be mapped to the described representative model.

By building this model on the principles of KL modeling,
we do not only exploit the benefits of KL modeling but we also
propose a widely applicable model for a large set of domains.

II. BACKGROUND

In this section WE will describe and briefly discuss previous
work related to the area of knowledge level modelling. As
discussed in the introduction, KL modelling is well researched
concept and there have been several variations on the theme.
KL modelling can be presented in one of two different types
of studies and implementations:

• General all encumpassing work on knowledge engineer-
ing that attempt to cover and implement a wide range of
inference functions. These implementation generally do
not target a specific type of data.

• Specific work on KL modeling that seek to implement a
small subset of functionality. Usually such implementa-
tions aim at targeting specific data sets.

The more encompassing studies seek to implement exten-
sive KL functionality that is able derive knowledge from most
data that is available to their system. such work include the
modeling of cognitive processes that is presented in [1] by
Clancey et. al. In this publication, the authors present flowchart
style description to several processes that include:

-
• Diagnosis

• Verification
• correlation
• suitability
• classification
• Prediction
• Repair
• Design
• Configuration
• Planning
• Scheduling
While implementations to these descriptions are not imple-

mented, it is important to take note of them. Such extensive
descriptions represent the tradition of knowledge modeling
by way of extensive specification of any knowledge/theory
producing process. These processes are briefly explained in
following sections. As we will see, our own tool is a is based
on his tradition of specification, or over-specification according
to who you ask [5].

Detailing current work regarding this approach to knowl-
edge modeling is currently out of the scope of this paper.
However, we will briefly present two papers that lie on either
side of the fence of this knowledge modeling equation.

The first paper [2] by Menzies provides a description and
a system (HT4) that follows the above tradition and which is
done through abduction. Abduction here meaning that rules (or
hypotheses) are produced such that, given the final effect/state,
we are able to most closely determine our initial effect/state.
in other words, we are producing rules that will allow us to
produce/ infer old data given our current data. This method
is obviously dependent on observing enough data to produce
out rules. These rules will ultimately define our knowledge.
In a similar manner to the cognitive processes document,
this work attempts to apply knowledge modeling to achieve
several of the functions mentioned above. Such functions in-
clude prediction, classification, explanation, tutoring, planning,
monitoring, validation, verification and diagnosis. While not
identical to the list of functions mentioned above, it overlaps
with regard to most of the functionality. As such, the author
presents a general tool for use in KL. Our proposed future
implementation will be similar to this, with the main difference
being that our method is based on induction.

While this is one side of knowledge modeling, the other
side of knowledge modeling forgoes specifying all the above
functionality, and instead specifies one rule: remember the past
to determine the present [5]. This is called Case Based Rea-
soning (CBR). Argued for by Riesbeck, this method represents
knowledge and experience with dealing with that knowledge
in the form of case bases that include historical data and
actions performed on the data in the past. Current actions
are determined by the similarity of our current case/data to
previous data. This method is based on the principle that
people don’t create new decisions based on cognitive analysis,
but rather that current actions are based on previous actions
conducted in similar situations.

In the next section we will present a description of the model
that we will be using.

A. Library and Toolbox For Design Patterns

KL patterns appear in many different expert systems. In that
respect the goal of KL modeling can be defined as tpeo identify
the abstract reusable inference skeletons that appear multiple
times in such systems. A very good example to this concept is
the example of Clancey [1], where he reverse engineered 10
expert system tools with various different characteristics and
found out that all of them were using the same abstract in-
ference skeleton: Heuristic classification. Of course Clancey’s
example is not the only one. Another KL methodology KADS
[6] was reported to have been used in more than 40 knowledge-
based systems [3].

Bearing in mind that KL inferece models are used repeat-
edly in many different expert systems, it is a good idea to
collect and store them. Clancey proposes a library of pre-
defined problem solving strategies and a a separate knowledge-
base that contains domain specific heuristics [6]. In this library
we can define common problem solving models that underlie
all the expert systems. When the common problem solving
strategy is combined with separate domain specific heuristics,
then an expert system can easily be built with less effort. As
examples of models in such a library we can name verification,
incremental configuration, systematic diagnosis and heuristic
classification.

Going further we would also like to mention a toolbox
for such a library that is proposed by Menzies [4]. When
we take a closer look to the library proposed by Clancey
[6] we see that various problem solving models make use of
common methods or algorithms. For instance verification, clas-
sification, sampling methods, diagnosis, discretization, median
and greedy agglomerative clustering (GAC) are examples to
common methods in the toolbox that can be used by various
inference skeletons to form multiple expert systems in different
settings. We can in fact group these algorithms in a toolbox
that is available to the use of models in the library of Clancey.

So we can think of building an expert system as a three step
process:

1) Choose a model/template best for your case from the
library

2) Pick up required methods from toolbox
3) Insert domain specific heuristics
In our study we will follow the above described three steps

to build our model that is capable of processing continuous
data and detecting anomalies. Since we are aiming to provide a
generic model, we will not have any domain specific heuristics
in our work. Therefore, we will cover only the first two steps
while building our model.

B. Greedy Agglomerative Clustering

Since the fundamental method in our model will be the
greedy agglomerative clustering (GAC), we will first provide
some information regarding GAC. Agglomerative, or bottom
up, clustering starts with every individual data point and
greedily combines similar points using a distance metric [?].
Our model uses euclidean distance to pair similar data points.

Fig. 1: Heuristic classification takes raw data and applies
and abstraction. Then on the data abstraction heuristic match
methods are run, which in our case is a distance based GAC.
Then hypothesis coming from the heuristic match is evaluated
and the solution is reached.

The clusters formed can then be mapped into a tree structure.
A GAC tree partitions the data such that the leaves in the tree
are the original data points and each interior node is a cluster
containing every point in its subtree. The root thus contains
every data point.

When querying the tree we can easily throw away whole
subtrees by comparing our test with the cluster at hand. This
speeds up traversal greatly, allowing for sub-linear query costs.

III. OUR MODEL

Our model processes streaming data in chunks of certain
number of instances and tries to find anomalies within the
processed data. For learning what is abnormal and what is
normal, the algorithm relies on past data and tries to For our
case, we use 100 instances in each chunk, since GAC may have
performance drawbacks with datasets that have more than 100
instances. While building our model, we will use the three step
procedure that was described in Section II-A. In the following
subsections we will describe these steps.

A. Select a template from the library

Since our aim is to find anomalies with this model, we are in
fact dealing with a classification problem where we have two
classes: Normal and abnormal. The most suitable template for
the type of problem we are tryinig to tackle with is ”heuristic
classification”.

divide dataset into chunks of 100 and process each chunk at a time
for each chunk run 7 times
randomize training dataset
instancei = pick up an instance from in chunki
clusters = build a GAC tree from chunki minux instancei instances
centroidj = mean(clusterj) for all clusters in GAC tree
calculate the distance of of instancei to all the centroids
find closest centroid and see its level in the tree
if level of closest centroid ¡ floor(# of all levels in the tree / 2)
then give normal class label to instancei
otherwise give abnormal class label to instancei

Fig. 2: Pseudocode for training of generic GAC anomaly
detector

B. Pick up methods from toolbox

Now we have a basic frame to build our model, but we need
to select the appropriate tools to be able to implement this
model. To abstract our data we expect the data to be provided
to the model in the form of a two dimensional array in which
the rows will correspond to instances and the columns will
correspond to features of the instances. Then the data will
be normalized to the interval of 0 to 1 and this will form
our abstracted database. Therefore, we will use a “normalize”
method from the toolbox first.

Once the data is normalized, the heuristic match mechanism
will start to work. Since we are building a GAC tree on the
data, we will need a “GAC” method and we will need to
calculate the distances between clusters. Thus, we will pick up
a “distance” function from the toolbox as well. We calculate
the distance of a single instance to the centroid of clusters in
GAC, and centroids are represented by the mean of all the
features of all the instances in that cluster. Therefore, we will
also select “mean” method of the toolbox.

We now have the template and the required tools to build
our expert system. The third step would be to insert domain
specific heuristics into the model. However, the model does
not target any domain for the time being, therefore we will
not include this step.

The model whose specifications have been verbally given
above is a generic GAC anomaly detector. For more detail, we
provide the pseudocode in Figure 2:

The logic here is that, we want instancei to be closer to
majority of the instances in a tree and not close to leaves,
which represent single/specific cases. If instancei is closer to
specific instances than to a majority, then it is more likely to
an anomaly. We do the above loop until we process all our
dataset. At the end we have instances at our hand, which make
up a normal world according to our definition.

After the training, we will have 7 labels for each instance
in the chunk of 100 instances. Depending on the majority of
the labels, decide whether an instance is normal or abnormal.
Then throw away all the abnormals. Pick up another chunk
and apply the same algorithm We do the above loop until
we process all our dataset. At the end we have instances at
our hand, which make up a normal world according to our
definition.

For testing, use a similar strategy. But this time use the

randomize our normal world and then make chunks of 100
build a GAC on chunki
calculate distance of every test instance to centroids and label them in the
same manner to training
after building a GAC for every chunk and labeling test instances for each
chunk, we will have training-size/100 labels for each test instance
depending on the percentage of labels, we have 3 options for each test
instance:
decide its normal (if 75% of the labels indicate its normal)
decide its abnormal (if 75% of labels indicate its abnormal)
decide that you cannot make a sound decision (if none of the labels exceed
75%)

Fig. 3: Pseudocode for testing of generic GAC anomaly
detector

normal instances that were found before for training. The
pseudocode for testing is given in Figure 3.

IV. CONCLUSION

The conclusion goes here.

V. ACKNOWLEDGMENT

We would like to thank...

REFERENCES

[1] W. J. Clancey. Heuristic classification. Artif. Intell., 27(3):289–350, 1985.
[2] T. Menzies. Applications of abduction: knowledge-level modelling. Int.

J. Hum.-Comput. Stud., 45(3):305–335, 1996.
[3] T. Menzies. Object-oriented patterns: Lessons from expert systems, 1997.
[4] T. Menzies. Theory of everything: Toe, 2009.
[5] C. Riesbeck. What Next? The Future of Case-based reasoning in Post-

Modem AI. . In Leake, ed., Case- Based Reasoning: Experiences,
Lessons, and Future Directions., 1996.

[6] B. J. Wielinga, A. T. Schreiber, and J. A. Breuker. Kads: a modelling
approach to knowledge engineering. Knowl. Acquis., 4(1):5–53, 1992.

