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Abstract

This paper gives an overview about the development of the field of Knowledge Engineering
over the last 15 years. We discuss the paradigm shift from a transfer view to a modeling view
and describe two approaches which considerably shaped research in Knowledge Engineering:
Role-limiting Methods and Generic Tasks. To illustrate various concepts and methods which
evolved in the last years we describe three modeling frameworks: CommonKADS, MIKE,
and PROTEGE-Il. This description is supplemented by discussing some important
methodological developments in more detail: specification languages for knowledge-based
systems, problem-solving methods, and ontologies. We conclude with outlining the
relationship of Knowledge Engineering to Software Engineering, Information Integration and
Knowledge Management.
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1 Introduction

In earlier days research in Atrtificial Intelligence (Al) was focused on the development of



formalisms, inference mechanisms and tools to operationalize Knowledge-based Systems
(KBS). Typically, the development efforts were restricted to the realization of small KBSs in
order to study the feasibility of the different approaches.

Though these studies offered rather promising results, the transfer of this technology into
commercial use in order to build large KBSs failed in many cases. The situation was directly
comparable to a similar situation in the construction of traditional software systems, called
.Software crisis” in the late sixties: the means to develop small academic prototypes did not
scale up to the design and maintenance of large, long living commercial systems. In the same
way as the software crisis resulted in the establishment of the discipline Software Engineering
the unsatisfactory situation in constructing KBSs made clear the need for more
methodological approaches.

So the goal of the new discipline Knowledge Engineering (KE) is similar to that of Software
Engineering: turning the process of constructing KBSs from an art into an engineering
discipline. This requires the analysis of the building and maintenance process itself and the
development of appropriate methods, languages, and tools specialized for developing KBSs.

Subsequently, we will first give an overview of some important historical developments in
KE: special emphasis will be put on the paradigm shift from the so-¢ediesfer approach

to the so-calleanodeling approachThis paradigm shift is sometimes also considered as the
transfer from first generation expert systems to second generation expert systems [43]. Based
on this discussion Section 2 will be concluded by describing two prominent developments in
the late eightiesRole-limiting Methodg99] andGeneric Task$36]. In Section 3 we will
present some modeling frameworks which have been developed in recent years:
CommonKADS [129], MIKE [6], and PROTEGE-II [123]. Section 4 gives a short overview

of specification languages for KBSs. Problem-solving methods have been a major research
topic in KE for the last decade. Basic characteristics of (libraries of) problem-solving
methods are described in Section 5. Ontologies, which gained a lot of importance during the
last years are discussed in Section 6. The paper concludes with a discussion of current
developments in KE and their relationships to other disciplines.

In KE much effort has also been put in developing methods and supporting tools for
knowledge elicitation (compare [48]). E.g. in the VITAL approach [130] a collection of
elicitation tools, like e.g. repertory grids (see [65], [83]), are offered for supporting the
elicitation of domain knowledge (compare also [49]). However, a discussion of the various
elicitation methods is beyond the scope of this paper.

2 Historical Roots

2.1 Basic Notions

In this section we will first discuss some main principles which characterize the development
of KE from the very beginning.

Knowledge Engineering as a Transfer Process

»This transfer and tansformation of mrblem-solving xpertise fom a knowledg souce to a pogram is
the heart of thex@ert-system deelopment prcess.[81]

In the early eighties the delopment of a KBS has been seen &masfer pocessof human



knowledge into an implemented kntedge base. This transfeas/based on the assumption
that the knwledge which is required by the KBS alreadysts and just has to be collected
and implemented. Most often, the requiredkisalge vas obtained by interwéng experts
on hav they solve specific tasks [108].ypically, this knavledge vas implemented in some
kind of production rules which weraecuted by an associated rule interpreter

However, a careful analysis of the various rule knowledge bases showed that the rather
simple representation formalism of production rules did not support an adequate
representation of different types of knowledge [38]: e.g. in the MYCIN knowledge base [44]
strategic knowledge about the order in which goals should be achieved (e.g. “consider
common causes of a disease first*) is mixed up with domain specific knowledge about for
example causes for a specific disease. This mixture of knowledge types, together with the
lack of adequate justifications of the different rules, makes the maintenance of such
knowledge bases very difficult and time consuming. Therefore, this transfer approach was
only feasible for the development of small prototypical systems, but it failed to produce large,
reliable and maintainable knowledge bases.

Furthermore, it was recognized that the assumption of the transfer approach, that is that
knowledge acquisition is the collection of already existing knowledge elements, was wrong
due to the important role of tacit knowledge for an expert's problem-solving capabilities.
These deficiencies resulted in a paradigm shift from the transfer approach to the modeling
approach.

Knowledge Engineering as a M odeling Process

Nowadays there exists an overall consensus that the process of building a KBS may be seen
as amodeling activity. Building a KBS means building a computer model with the aim of
realizing problem-solving capabilities comparable to a domain expert. It is not intended to
create a cognitive adequate model, i.e. to simulate the cognitive processes of an expert in
general, but to create a model which offers similar results in problem-solving for problems in
the area of concern. While the expert may consciously articulate some parts of his or her
knowledge, he or she will not be aware of a significant part of this knowledge since it is
hidden in his or her skills. This knowledge is not directly accessible, but has to be built up and
structured during the knowledge acquisition phase. Therefore this knowledge acquisition
process is no longer seen as a transfer of knowledge into an appropriate computer
representation, but as a model construction process ([41], [106]).

This modeling view of the building process of a KBS has the following consequences:

» Like every model, such a model is only approximation of the reality In principle, the
modeling process is infinite, because it is an incessantitactvith the aim of
approximating the intended befaur.

» The modeling process iscgclic process. N& obserations may lead to a refinement,
modification, or completion of the alreadyil-up model. On the other side, the model
may guide the further acquisition of kmedge.

» The modeling process is dependent on the subgertterpretations of the kmdedge
engineer Therefore this process is typicafulty and an ealuation of the model with
respect to reality is indispensable for the creation of an adequate model. According to
this feedback loop, the model must therefore bsable in gery stage of the modeling
process.



Problem Solving Methods

In [39] Clancey reported on the analysis of a set of first generation expert systems developed
to solve different tasks. Though they were realized using different representation formalisms
(e.g. production rules, frames, LISP), he discovered a common problem solving behaviour.
Clancey was able to abstract this common behaviour to a generic inference pattern called
Heuristic Classification, which describes the problem-solving behaviour of these systems on

an abstract level, the so call&howledge Level [113]. This knowledge level allows to
describe reasoning in terms of goals to be achieved, actions necessary to achieve these goals
and knowledge needed to perform these actions. A knowledge-level description of a problem-
solving process abstracts from details concerned with the implementation of the reasoning
process and results in the notion é¢frablem-Solving Method (PSM).

A PSM may be characterized as follows (compare [20]):
* A PSM specifies whicimference actions have to be carried out for solving asgn task.
* A PSM determines the sequence in which these activestbde actiated.
* In addition, so-callecknowledge roles determine which role the domain kmedge

plays in each inference action. Thesewdealge roles define a domain independent
generic terminology

When considering the PSMeuristic Classification in some more detail (Figure 1) we can
identify the three basic inference acti@istract, heuristic match, andrefine. Furthermore,

four knowledge roles are definedbservables, abstract observables, solution abstractions,
andsolutions. It is important to see that such a description of a PSM is given in a generic way.
Thus the reuse of such a PSM in different domains is made possible. When considering a
medical domain, an observable like %41“ may be abstracted to ,high temperature“ by the
inference actionabstract. This abstracted observable may be matched to a solution
abstraction, e.g. ,infection®, and finally the solution abstraction may be hierarchically refined
to a solution, e.g. the disease ,influenca*“.

abstract solution
observables abstractions

observables | solutions |

> inference action I:I role

Fig. 1 The Problem-Solving Method Heuristic Classification

In the meantime various PSMs have been identified, like@oger-and-Differentiate for
solving diagnostic tasks [99] &ropose-and-Revise [100] for parametric design tasks.

PSMs may be exploited in the knowledge engineering process in different ways:



* PSMs contain inference actions which need specifiovladge in order to perform
their task. Br instanceHeuristic Classificatiomeeds a hierarchically structured model
of obsenables and solutions for the inference actiabstiact andrefing respecitiely.

So a PSM may be used as a guideline to acquire static domarte&ge.

* A PSM allavs to describe the main rationale of the reasoning process of a KBS which
supports thealidation of the KBS, because theert is able to understand the problem
solving process. In addition, this abstract description may be used during the problem-
solving process itself forxplanation &cilities.

* Since PSMs may be reused foveleping diferent KBSs, a library of PSMs can be
exploited for constructing KBSs from reusable components.

The concept of PSMs has strongly stimulated research in KE and thus has influenced many
approaches in this area. A more detailed discussion of PSMs is given in Section 5.

2.2 Specific Approaches

During the eighties two main approaches evolved which had significant influence on the
development of modeling approaches in KE: Role-Limiting Methods and Generic Tasks.

Role-Limiting Methods

Role-Limiting Methods (RLM) ([99], [102]) have been one of the first attempts to support the
development of KBSs by exploiting the notion of a reusable problem-solving method. The
RLM approach may be characterized as a shell approach. Such a shell comes with an
implementation of a specific PSM and thus can only be used to solve a type of tasks for which
the PSM is appropriate. The given PSM also defines the generic roles that knowledge can
play during the problem-solving process and it completely fixes the knowledge representation
for the roles such that the expert only has to instantiate the generic concepts and relationships,
which are defined by these roles.

Let us consider as an example the PSddiristic Classificatior{see Figure 1). A RLM based

on Heuristic Classification offers a rabdservablego the expert. Using that role the expert

(i) has to specify which domain specific concept corresponds to that role, e.g. ,patient data”
(see Figure 4), and (ii) has to provide domain instances for that concept, e.g. concrete facts
about patients. It is important to see that the kind of knowledge, which is used by the RLM, is
predefined. Therefore, the acquisition of the required domain specific instances may be
supported by (graphical) interfaces which are custom-tailored for the given PSM.

In the following we will discuss one RLM in some more detail: SALT ([100], [102]) which is
used for solving constructive tasks.Then we will outline a generalization of RLMs to so-
called Configurable RLMs.

SALT is a RLM for building KBSs which use the PSM Propose-and-Revise. Thus KBSs may
be constructed for solving specific types of design tasks, e.g. parametric design tasks. The
basic inference actions that Propose-and-Revise is composed of, may be characterized as
follows:

» extend a partial design by proposingaue for a design parameter not yet computed,
» determine whether all computed parameters fulfil thevaekeconstraints, and
» apply fixes to remwee constraint violations.

In essence three generic roles may be identified for Propose-and-Revise ([100]):



» ,design-etensions” refer to kneledge for proposing a me value for a design
parameter

» constraints” preide knawledge restricting the admissiblalues for parameters, and
» fixes” male potential remediesailable for specific constraint violations.

From this characterization of the PSM Propose-and-Revise, one can easily see that the PSM
Is described in generic, domain-independent terms. Thus the PSM may be used for solving
design tasks in different domains by specifying the required domain knowledge for the
different predefined generic knowledge roles.

E.g. when SALT was used for building the VT-system [101], a KBS for configuring
elevators, the domain expert used the form-oriented user interface of SALT for entering
domain specific design extensions (see Figure 2). That is, the generic terminology of the
knowledge roles, which is defined by object and relation types, is instantiated with VT
specific instances.

1 Name: CAR-AMB-RETURN

2 Precondition: DOOR-OPENING = CENTER

3 Procedure: CALCULATION

4 Formula: [PLATFORM-WIDTH -
OPENING-WIDTH]/ 2

5 Justification:  CENTER-OPENING DOORS LOOK

BEST WHEN CENTERED ON
PLATFORM.

(the walue of the design parameter CAR-JUMB-RETURN is
calculated according to the formula - in case the precondition
is fulfilled; the justification gies a description wh this
parameter @lue is preferredwer other alues (&ample takn
from [100]))

Fig. 2 Design Extension Knowledge for VT

On the one hand, the predefined knowledge roles and thus the predefined structure of the
knowledge base may be used as a guideline for the knowledge acquisition process: it is
clearly specified what kind of knowledge has to be provided by the domain expert. On the
other hand, in most real-life situations the problem arises of how to determine whether a
specific task may be solved by a given RLM. Such task analysis is still a crucial problem,
since up to now there does not exist a well-defined collection of features for characterizing a
domain task in a way which would allow a straightforward mapping to appropriate RLMs.
Moreover, RLMs have a fixed structure and do not provide a good basis when a particular
task can only be solved by a combination of several PSMs.

In order to overcome this inflexibility of RLMs, the concept of configurable RLMs has been
proposed Configurable Role-Limiting Methods (CRLMs) as discussed in [121] exploit the

idea that a complex PSM may be decomposed into several subtasks where each of these
subtasks may be solved by different methods (see Section 5). In [121], various PSMs for
solving classification tasks, likdeuristic Classification or Set-covering Classification, have

been analysed with respect to common subtasks. This analysis resulted in the identification of



shared subtasks like ,data abstraction” or ,hypothesis generation and test”. Within the CRLM
framework a predefined set of different methods are offered for solving each of these
subtasks. Thus a PSM may be configured by selecting a method for each of the identified
subtasks. In that way the CRLM approach provides means for configuring the shell for
different types of tasks. It should be noted that each method offered for solving a specific
subtask, has to meet the knowledge role specifications that are predetermined for the CRLM
shell, i.e. the CRLM shell comes with a fixed scheme of knowledge types. As a consequence,
the introduction of a new method into the shell typically involves the modification and/or
extension of the current scheme of knowledge types [121]. Having a fixed scheme of
knowledge types and predefined communication paths between the various components is an
important restriction distinguishing the CRLM framework from more flexible configuration
approaches such as CommonKADS (see Section 3).

It should be clear that the introduction of such flexibility into the RLM approach removes one
of its disadvantages while still exploiting the advantage of having a fixed scheme of
knowledge types, which build the basis for generating effective knowledge-acquisition tools.
On the other hand, configuring a CRLM shell increases the burden for the system developer
since he has to have the knowledge and the ability to configure the system in the right way.

Generic Task and Task Structures

In the early eighties the analysis and construction of various KBSs for diagnostic and design
tasks evolved gradually into the notion ofeneric Task (GT) [36]. GTs likeHierarchical
Classification or State Abstraction are building blocks which can be reused for the
construction of different KBSs.

The basic idea of GTs may be characterized as follows (see [36]):
» A GT is associated with a generic description of its input and output.
« A GT comes with a fied scheme of kwdedge types specifying the structure of
domain knavledge needed to saha task.
A GT includes a figd problem-solving stragg specifying the inference steps the
stratg)y is composed of and the sequence in which these stepsoiae carried out.

The GT approach is based on #mng interaction problem hypothesis which states that the
structure and representation of domain knowledge is completely determined by its use [33].
Therefore, a GT comes with both, a fixed problem-solving strategy and a fixed collection of
knowledge structures.

Since a GT fixes the type of knowledge which is needed to solve the associated task, a GT
provides a task specific vocabulary which can be exploited to guide the knowledge
acquisition process. Furthermore, by offering an executable shell for a GT, called a task
specific architecture, the implementation of a specific KBS could be considered as the
instantiation of the predefined knowledge types by domain specific terms (compare [34]). On
a rather pragmatic basis several GTs have been identified includiagrchical
Classification, Abductive Assembly andHypothesis Matching. This initial collection of GTs

was considered as a starting point for building up an extended collection covering a wide
range of relevant tasks.

However, when analyzed in more detail two main disadvantages of the GT approach have
been identified (see [37]):

+ The notion of task is conflated with the notion of the PSM used te fudvtask, since
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each GT included a predetermined problem-solving glyate

» The compleity of the proposed GTsasg \ery different, i.e. it remained open what the
appropriate leel of granularity for the dnlding blocks should be.

Based on this insight into the disadvantages of the notion of a GT, the so-Tadled
Structure approach was proposed [37]. The Task Structure approach makes a clear distinction
between a task, which is used to refer to a type of problem, and a method, which is a way to
accomplish a task. In that way a task structure may be defined as follows (see Figure 3): a
task is associated with a set of alternative methods suitable for solving the task. Each method
may be decomposed into several subtasks. The decomposition structure is refined to a level
where elementary subtasks are introduced which can directly be solved by using available
knowledge.

diagnosis Task
/| Statistical |\ / Heuristic \ /[ Decision |\ g(r)?\?ilr(]am-
Classification Classification Tree Methog

@bstraa (match (refine} Subtasks

C) Task / Subtasks Problem-Solving Method

Fig. 3 Sample Task Structure for Diagnosis

As we will see in the following sections, the basic notion of task and (problem-solving)
method, and their embedding into a task-method-decomposition structure are concepts which
are nowadays shared among most of the knowledge engineering methodologies.

3 Modeding Frameworks

In this section we will describe three modeling frameworks which address various aspects of
model-based KE approaches: CommonKADS [129] is prominent for having defined the
structure of the Expertise Model, MIKE [6] puts emphasis on a formal and executable
specification of the Expertise Model as the result of the knowledge acquisition phase, and
PROTEGE-II [51] exploits the notion of ontologies.

It should be clear that there exist further approaches which are well known in the KE
community, like e.g VITAL [130], Commet [136], and EXPECT [72]. However, a discussion
of all these approaches is beyond the scope of this paper.



3.1 The CommonKADS Approach

A prominent knowledge engineering approackKA®S[128] and its further development to
CommonKADS [129]. A basic characteristic of KADS is the construction of a collection of
models, where each model captures specific aspects of the KBS to be developed as well as of
its environment. In CommonKADS th@rganization Model, the Task Model, the Agent

Model, the Communication Model, the Expertise Model and the Design Model are
distinguished. Whereas the first four models aim at modeling the organizational environment
the KBS will operate in, as well as the tasks that are performed in the organization, the
expertise and design model describe (non-)functional aspects of the KBS under development.

Subsequently, we will briefly discuss each of these models and then provide a detailed
description of the Expertise Model:

» Within the Organization Model the oganizational structure is described together with a
specification of the functions which are performed by eadanizational unit.
Furthermore, the deficiencies of the currargibess processes, as well as opportunities
to improve these processes by introducing KBSs, are identified.

» TheTask Model provides a hierarchical description of the tasks which are performed in
the oganizational unit in which the KBS will be installed. This includes a specification
of which agents are assigned to théedént tasks.

» TheAgent Model specifies the capabilities of each agewbived in the gecution of the
tasks at hand. In general, an agent can be a human or some kind afeseftstem, e.g.

a KBS.

« Within the Communication Model the \arious interactions between thefeient agents
are specified. Among others, it specifies which type of informatiorxéhaeged
between the agents and which agent is initiating the interaction.

A major contrilution of the KADS approach is its proposal for structuringHkgertise
Model, which distinguishes three tifent types of knwledge required to sodva particular
task. Basicallythe three dferent types correspond to a staticwi@ functional viev and a
dynamic viev of the KBS to be wilt (see in Figure 4 respeatily “domain layer, “inference
layer and “task layer*):



task: diagnosis
goal: find causes which explain the
observed symptoms;
input: observables: set of observed
symptoms;
output: solutions: set of identified causes

task body:
control: abstract()
match() task
refine() layer

abstract solution
observables abstractions

observables
A inference
‘ / layer
y Ty
patient data infectious
temp: REAL deseases
indicate
domain
layer

Fig. 4 Expertise Model for medical diagnosis
(simplified CML notation)
» Domain layer At the domain layer all the domain specific Wiedge is modeled which
is needed to soévthe task at hand. This includes a conceptualization of the domain in a
domain ontology (see Section 6), and a declaratineory of the required domain
knowledge. One objeate for structuring the domain layer is to model it as reusable as
possible for solving diérent tasks.

» Inference layerAt the inference layer the reasoning process of the KBS is specified by
exploiting the notion of a PSM. The inference layer describesfbence actionshe
generic PSM is composed of as well as tbles which are played by the domain
knowledge within the PSM. The dependencies between inference actions and roles are
specified in what is called anference structue. Furthermore, the notion of roles
provides a domain independent wien the domain kneledge. In Figure 4 (middle
part) we see the inference structure for the R&ristic ClassificationAmong others
we can see that ,patient data” plays the role of ,olzd#es” within the inference
structure oHeuristic Classification

» Task layer The task layer prades a decomposition of tasks into subtasks and inference
actions including a goal specification for each task, and a specificationvahbase
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goals are achied. The task layer also pides means for specifying the contreko
the subtasks and inference actions, which are defined at the inference layer

Two types of languages are offered to describeEgrertise Model: CML (Conceptual
Modeling Language) [127], which is a semi-formal language with a graphical notation, and
(ML)? [79], which is a formal specification language based on first order predicate logic,
meta-logic and dynamic logic (see Section 4). Whereas CML is oriented towards providing a
communication basis between the knowledge engineer and the domain expeft,iSML)
oriented towards formalizing tHexpertise Model.

The clear separation of the domain specific knowledge from the generic description of the
PSM at the inference and task layer enables in principle two kinds of reuse: on the one hand,
a domain layer description may be reused for solving different tasks by different PSMs, on
the other hand, a given PSM may be reused in a different domain by defining a new view to
another domain layer. This reuse approach is a weakening of the strong interaction problem
hypothesis [33] which was addressed in the GT approach (see Section 2). In [129] the notion
of arelative interaction hypothesis is defined to indicate that some kind of dependency exists
between the structure of the domain knowledge and the type of task which should be solved.
To achieve a flexible adaptation of the domain layer to a new task environment, the notion of
layered ontologies is proposelisk andPSM ontologies may be defined as viewpoints on an
underlying domain ontology.

Within CommonKADS a library of reusable and configurable components, which can be
used to build up aixpertise Model, has been defined [29]. A more detailed discussion of
PSM libraries is given in Section 5.

In essence, thé&xpertise Model and the Communication Model capture the functional
requirements for the target system. Based on these requiremeniediga Modd is
developed, which specifies among others the system architecture and the computational
mechanisms for realizing the inference actions. KADS aims at achievistgucure-
preserving design, i.e. the structure of thBesign Model should reflect the structure of the
Expertise Model as much as possible [129].

All the development activities, which result in a stepwise construction of the different
models, are embedded in a cyclic and risk-driven life cycle model similar to Boehm’s spiral
model [21].

The basic structure of the expertise model has some similarities with the data, functional, and
control view of a system as known from software engineering. However, a major difference
may be seen between an inference layer and a typical data-flow diagram (compare [155]):
Whereas an inference layer is specified in generic terms and provides - via roles and domain
views - a flexible connection to the data described at the domain layer, a data-flow diagram is
completely specified in domain specific terms. Moreover, the data dictionary does not
correspond to the domain layer, since the domain layer may provide a complete model of the
domain at hand which is only partially used by the inference layer, whereas the data
dictionary is describing exactly those data which are used to specify the data flow within the
data flow diagram (see also [54]).

3.2 TheMIKE Approach
The MIKE approach (Model-based and Incremental Knowledge Engineering) (cf. [6], [7])
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provides a development method for KBSs covering all steps from the initial elicitation
through specification to design and implementation. MIKE proposes the integration of
semiformal and formal specification techniques and prototyping into an engineering
framework. Integrating prototyping and support for an incremental and reversible system
development process into a model-based framework, is actually the main distinction between
MIKE and CommonKADS [129]:

* MIKE takes theExpertise Model of CommonKADS as its general model pattern and
provides a smooth transition from a semiformal representatiorgtheture Model, to
a formal representation, théARL Model, and further to an implementation oriented
representation, thédesign Model. The smooth transition between the faliént
representation \@ls of theExpertise Model is essential for enabling incremental and
reversible system delopment in practice.
* In MIKE the eecutability of theKARL Model enables alidation of theExpertise
Model by prototyping. This considerably enhances thegnatigon of the ®pert in the
development process.
The different MIKE development activities and the documents resulting from these activities
are shown in Figure 5. In MIKE, the entire development process is divided into a number of
subactivities: Elicitation, Interpretation, Formalization/Operationalization, Design, and
Implementation. Each of these activities deals with different aspects of the system
development.

The knowledge acquisition process starts \Elilsitation. Methods like structured interviews

[48] are used for acquiring informal descriptions of the knowledge about the specific domain
and the problem-solving process itself. The resulting knowledge expressed in natural
language is stored in so-callkbwledge protocols.

During theInterpretation phase the knowledge structures which may be identified in the
knowledge protocols are represented in a semi-formal variant of Expertise Model: the

Sructure Model [112]. All structuring information in this model, like the data dependencies
between two inferences, is expressed in a fixed, restricted language while the basic building
blocks, e.g. the description of an inference, are represented by unrestricted texts. This
representation provides an initial structured description of the emerging knowledge structures
and can be used as a communication basis between the knowledge engineer and the expert.
Thus the expert can be integrated in the process of structuring the knowledge.

The Structure Model is the foundation for théormalization/Operationalization process

which results in the formdaEtxpertise Model: the KARL Model. The KARL Model has the

same conceptual structure as 8reicture Model while the basic building blocks which have

been represented as natural language texts are now expressed in the formal specification
languageKARL (cf. [53], [55]). This representation avoids the vagueness and ambiguity of
natural language descriptions and thus helps to get a clearer understanding of the entire
problem-solving process. ThEARL Model can be directly mapped to an operational
representation because KARL (with some small limitations) is an executable language.

The result of the knowledge acquisition phase, KA&L Model, captures all functional
requirements for the final KBS. During thBesign phase additional non-functional
requirements are considered. These non-functional requirements include e.g. efficiency and
maintainability, but also the constraints imposed by target software and hardware
environments. Efficiency is already partially covered in the knowledge acquisition phase, but
only to the extent as it determines the PSM. Consequently, functional decomposition is

12



aready part of the knowledge acquisition phase. Therefore, the design phase in MIKE
constitutes the equivalent of detailed design and unit design in software engineering
approaches. The Design Model which is the result of this phase is expressed in the language
DesignKARL [89]. DesignKARL extends KARL by providing additional primitives for
structuring the KARL Model and for describing algorithms and data types. DesignKARL
additionally allows to describe the design process itself and the interactions between design
decisions[90].

The Design Model captures all functional and non-functional requirements posed to the
KBS. In the Implementation process the Design Model isimplemented in the target hardware
and software environment.

Elicitation

Z > knowledge

expert @ - i protocols
® P

Interpretation\

_
=~ < = : Structure
——— | == ==_| Model
Formalization
Implemen- \ N Operationalization
tation * N
N

— ~ —
. == N
De5|gn gopg %»OE
Model | == = == %] = == | KARL Model
Design EE
‘\_/

> <= [ ]

activity evaluation document

Fig. 5 Steps and documents in the MIKE development process

The result of al phases is a set of severa interrelated refinement states of the Expertise
Model. The knowledge in the Sructure Model is related to the corresponding knowledge in
the knowledge protocols via explicit links. Concepts and inference actions are related to
protocol nodes, in which they have been described using natural language. The Design Model
refines the KARL Model by refining inferences into algorithms and by introducing additional
data structures. These parts of the Design Model are linked to the corresponding inferences of
the KARL Model and are thus in turn linked to the knowledge protocols. Combined with the
goal of preserving the structure of the Expertise Model during design, the links between the
different model variants and the final implementation ensure traceability of (non-)functional
requirements.

The entire development process, i.e. the sequence of knowledge acquisition, design, and
implementation, is performed in a cycle guided by a spiral model [21] as process model.
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Every cycle produces a prototype of the KBS which may be evaluated by testing it in the real
target environment. The results of the evaluation are used in the next cycle to correct, modify,
or extend this prototype.

The development process of MIKE inherently integrates different types of prototyping [7]:
The executability of the language KARL allows thpertise Modelto be built by
explorative prototyping. Thus the different steps of knowledge acquisition are performed
cyclically until the desired functionality has been reached. In a similar way, experimental
prototyping can be used in the design phase for evaluatingDésgn Modelsince
DesignKARL can be mapped to an executable version. Odsgn Modelis refined by
iterating the subphases of the design phase until all non-functional requirements are met.

Recently, a new version of the specification language KARL has been developed [5] which
integrates the notion of task and thus provides means to formally specify task-to-method
decomposition structures.

The MIKE approach as described above is restricted to modeling the KBS under
development. To capture the embedding of a KBS into a business environment, the MIKE
approach is currently extended by new models which define different views on an enterprise.
Main emphasis is put on a smooth transition from business modeling to the modeling of
problem-solving processes [45].

3.3 The PROTEGE-II A pproach

The PROTEGE-II approacifcf. [123], [51]) aims at supporting the development of KBSs by
the reuse of PSMs and ontologies. In addition, PROTEGE-II puts emphasis on the generation
of custom-tailored knowledge-acquisition tools from ontologies [50].

PROTEGE-II relies on the task-method-decomposition structure (compare Section 2.2): By
applying a PSM a task is decomposed into corresponding subtasks. This decomposition
structure is refined down to a level at which primitive methods, so-caléshanismsare
available for solving the subtasks. Up to now, PROTEGE-II offers a small library of
implemented PSMs (see Section 5) which have been used to solve a variety of tasks (see [51],
[69] for more details).

In PROTEGE-II the input and output of a method is specified by a so-caditibd ontology

(cf. [51], [137]) (see Figure 6): such a method ontology defines the concepts and relationships
that are used by the PSM for providing its functionality. E.g.Bibard-Game Metho¢b1]

uses among others the notions of ‘pieces’, ‘locations’, and ‘moves’ to provide its
functionality, that is to move pieces between locations on a board. In this way a method
ontology corresponds to the generic terminology as introduced by the collection of
knowledge roles of a PSM (compare Section 2.1).

A second type of ontology used within PROTEGE-II deenain ontologiesthey define a

shared conceptualization of a domain (see Section 6). Both PSMs and domain ontologies are
reusable components for building up a KBS. However, due to the interaction problem the
interdependence between domain ontologies and PSMs with their associated method
ontologies has to be taken into account when constructing a KBS from reusable components.
Therefore, PROTEGE-II proposes the notion ofaaplication ontologyto extend domain
ontologies with PSM specific concepts and relationships [71]. In order to associate an
application ontology with a method ontology, PROTEGE-II offers different types of mapping
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relations [71]:

* Renaming mappings are used for translating domain specific terms into method specific
terms.

» Filtering mappings provide means for selecting a subset of domain instances as
instances of the corresponding method concept.

» Class mappings provide functions to compute instances of method concepts from
application concept definitions rather than from application instances.

Mappings are, on the one hand, similar to the schema translation rules as discussed in the
area of interoperable database systems (see e.g. [126]), and, on the other lyand, the
correspond e.g. to the lift operator in (ML)9] or the viev definitions in KARL [53]
(compare Section 4). RREGE-Il aims at preiding a small collection of rather simple
mappings to limit the reusefeft needed to specify these mappings. Thu©HRGE-II
recommends to reuse domain Wwhedge only in situations where the required mappings can
be kept relatvely simple [71].

problem-solving
method

described by

r 1
| method |

| ontology |
I mapping
r—— - — "7 _, 4 .- - "= = il

_I r
| domain 1 etended,  application |
| ontology T o T ontology |
_I L

Fig. 6 Ontologies in PROTEGE-II

A feature of PROTEGE-II is that it can generate knowledge-acquisition tools from domain or
application ontologies [50]. Therefore, the PROTEGE-Il system includes the DASH
component which takes an ontology as input and generates as output a knowledge-acquisition
tool that allows domain specialists to enter instances of the domain concepts. Thus domain
facts can be specified by the domain expert himself.

Recently, the PROTEGE-II approach has been extended to CORBA-based PSMs and
ontologies which enables the reuse of these components in an Internet environment [70].

4  Specification Approaches in Knavledge Engineering

Over the last ten years a number of specification languages have been developed for
describing KBSs. These specification languages can be used to specify the knowledge
required by the system as well as the reasoning process which uses this knowledge to solve

15



the task which is assigned to the system. On the one hand, these languages should enable a
specification which abstracts from implementation details. On the other hand, they should
enable a detailed and precise specification of a KBS at a level which is beyond the scope of
specifications in natural language. This area of research is quite well documented by a
number of workshodsand comparison papers that were based on these workshops. Surveys
of these languages can be found in [143] and [61]. A short description of their history and
usefulness is provided by [80], and [54] provides a comparison to similar approaches in
software engineering. In this article, we will focus on the main principles of these languages.
Basically, we will discuss the general need for specification languages for KBSs, we show
their essence, we sketch some approaches, add a comparison to related areas of research and
conclude by outlining lines of current and future research.

4.1 Why did the Need Arise br Specification Languages in the Late 198§’

As mentioned above, we can roughly divide the development of knowledge engineering into
the knowledge transfer and the knowledge modelling period. During the former period,
knowledge was directly encoded using rule-based implementation languages or frame-based
systems. The (implicit) assumption was that these representation formalisms are adequate to
express knowledge, reasoning, and functionality of a KBSs in a way which is understandable
for humans and for computers. However, as mentioned in Section 2, severe difficulties arose
[40]:

 different types of kneledge were represented uniformly

» other types of kneledge were not presentexipdcitly,

 the level of detail vas too high to present abstract models of the KBS,

» and knavledge leel aspects got constantly reck with aspects of the implementation.

As a consequence, such systems were hard to build and to maintain when they become larger
or used over a longer period. In consequence, many research groups worked on more abstract
description means for KBSs. Some of them were still executable (like the generic tasks [37])
whereas others combined natural language descriptions with semiformal specifications. The
most prominent approach in the latter area is the KADS and CommonKADS approach [129]
that introduced a conceptual model (Ebgertise Model) to describe KBSs at an abstract and
implementation independent level. As explained aboveExpertise Model distinguishes
different knowledge types (called layers) and provides for each knowledge type different
primitives (for example, knowledge roles and inference actions at the inference layer) to
express the knowledge in a structured manner. A semiformal specification language CML
[127] arose that incooperates these structuring mechanisms in the knowledge level models of
KBSs. However, the elementary primitives of each model were still defined by using natural
language. Using natural language as a device to specify computer programs has well known
advantages and disadvantages. It provides freedom, richness, easiness in use and
understanding, which makes it a comfortable tool in sketching what one expects from a
program. However, its inherent vagueness and implicitness make it often very hard to answer
guestions whether the system really does what is expected, or whether the model is consistent
or correct (cf. [2], [80]). Formal specification techniques arose that overcome these
shortcomings. Usually they were not meant as a replacement of semiformal specifications but
as the possibility to improve the preciseness of a specification when required.

1. See ftp://swi.psyva.nl/pub/leml/keml.html at the Wirld Wide W\eh
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Meanwhile, around twenty different approaches can be found in the literature ([61], [54]).
Some of them aim mainly at formalization. A formal semantics is provided that enables the
unique definition of knowledge, reasoning, or functionality along with manual or automated
proofs. Other approaches aim at operationalization, that is, the specification of a system can
be executed which enables prototyping in the early phase of system development. Here, the
evaluation of the specification is the main interest. They help to answer the question whether
the specification really specifies what the user is expecting or the expert is providing. Some
approaches aim at formalizing and operationalizing, however they have to tackle conflicting
requirements that arise from these two goals.

In the following subsection, we will discuss the main common features of these approaches.

4.2 The Essence of Specification Languages fKBSs

We identify three key features of specification languages for KBSs. First, most languages
make use of a strong conceptual model to structure formal specifications. This reflects the
fact that these languages were motivated by formalizing semiformal notations to describe
KBSs. Therefore, these languages offer more than just a mathematical notation to define a
computer program as an input-output relationship. Second, these languages have to provide
means to specify the dynamic reasoning of a KBSs because this establishes a significant piece
of the expertise required by such systems. Third, a KBS uses a large body of knowledge
requiring structured and rich primitives for representing it. In the following, we will discuss
these different aspects.

Formalising a Conceptual Model

Specification languages for KBSs arose to formalize conceptual models of KBSs. They use
the structuring principles of semiformal specifications and add formal semantics to the
elementary primitives and their composition (cf. [46], [47], [154]). As introduced above, the
Expertise Model [129] describes the different types of knowledge required by a KBS as well
as the role of this knowledge in the reasoning process of the KBS. Based on this, specification
languages provide formal means for precisely defining:

» the goals and the process to achithem,
* the functionality of the inference actions, and
» the precise semantics of thefdient elements of the domain kvledge.

Definitions in natural language are supplemented with formal definitions to ensure
disambiguity and preciseness. The structure of the conceptual models naturally organizes the
formal specification, improving understandability and simplifying the specification process.

The What and the How: Specification of Reasoning

In Software Engineering, the distinction between a functional specification and the design/
implementation of a system is often discussed as a separatidratohndhow. During the
specification phaseyhat the system should do is established in interaction with the users.
How the system functionality is realized is defined during design and implementation (e.g.,
which algorithmic solution can be applied). This separation - which even in the domain of
Software Engineering is often not practicable in the strict sense ndoe®rk in the same

way for KBSs: A high amount of the problem-solving knowledge, i.e. knowledge bhbwout
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to meet the requirements, is not a question of efficient algorithms and data structures, but
exists as domain-specific and task-specific heuristics as a result of the experience of an
expert. For many problems which are completely specifiable it is not possible to find an
efficient algorithmic solution. Such problems are easy to specify but it is not necessarily
possible to derive an efficient algorithm from these specifications (cf. [32], [110]); domain-
specific heuristics or domain-specific inference knowledge is needed for the efficient
derivation of a solution. “In simple terms this means that analysis is not simply interested in
what happens, as in conventional systems, but also hathandwhy” [31]. One must not

only acquire knowledge about what a solution for a given problem is, but also knowledge
about how to derive such a solution in an efficient manner [60]. Already at the knowledge
level there must be a description of the domain knowledge and the problem-solving method
which is required by an agent to solve the problem effectively and efficiently. In addition, the
symbol level has to provide a description of efficient algorithmic solutions and data structures
for implementing an efficient computer program. As in Software Engineering, this type of
knowledge can be added during the design and implementation of the system. Therefore a
specification language for KBSs mugimbine non-functional and functional specification
techniques On the one hand, it must be possible to express algorithmic control over the
execution of substeps. On the other hand, it must be possible to characterize the overall
functionality and the functionality of the substeps without making commitments to their
algorithmic realization. The former is necessary to express problem solving at the knowledge
level. The latter is necessary to abstract from aspects that are only of interest during
implementation of the system.

Representing Rich Knowledge Structures

Most of the specification languages provide at least epistemological primitives like constants,
sorts/types, functions, predicates/relations, and some mathematical toolkit as a means to
specify the static aspects of a system. However, richer languages provide additional
syntactical sugar on top of these mathematical primitives. In particular, object-oriented or
frame-based specification languages provide a rich variety of appropriate modelling
primitives for expressing static system aspects: values, objects, classes, attributes with
domain and range restrictions, set-valued attributes, is-a relationships with attribute
inheritance, aggregation, grouping etc. For example, KARL [53] provides such modelling
primitives which enables a smooth transformation from semiformal specification languages
like CML to formal specifications of these models.

4.3 Some Approaches And Their Technical M eans

In the follawving, we briefly sktch three dferent specification languages for KBSstL)?,
KARL, and DESIRE. A more detailed discussion and comparison can be found in [54].

(ML)? [79], which was developed as part of the KADS projects fisraalizationlanguage

for KADS Expertise ModelsThe language provides a formal specification language for the
KADS Expertise Modeby combining three types of logic: order-sorted first-order logic
extended by modularization for specifying the domain layer, first-order meta-logic for
specifying the inference layer, and quantified dynamic logic [77] for specifying the task layer.

KARL [53] is an operationallanguage which restricts the expressive power of the object
logic by using a variant of Horn logic. It was developed as part of the MIKE project [6] and
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provides a formal and executable specification language for the KAPStise Model by
combining two types of logic: L-KARL and P-KARL. L-KARL, a variant of Frame Logic
[84], is provided to specify domain and inference layers. It combines first-order logic with
semantic data modelling primitives (see [30] for an introduction to semantic data models). A
restricted version of dynamic logic is provided by P-KARL to specify a task layer.
Executability is achieved by restricting Frame logic to Horn logic with stratified negation and
by restricting dynamic logic to regular and deterministic programs.

The language DESIREDEsIgn and Specification of Interacting REasoning components
[91],[92]) relies on a different conceptual model for describing a KBS: the notion of a
compositional architecture. A KBS is decomposed into several interacting components. Each
component contains a piece of knowledge at its object-layer and has its own control defined
at its internal meta-layer. The interaction between components is represented by transactions
and the control flow between these modules is defined by a set of control rules. DESIRE
extensively uses object-meta relationships to structure specifications of KBSs. At the object-
level, the system reasons about the world state. Knowledge about how to use this knowledge
to guide the reasoning process is specified at the meta-level. The meta-level reasons about
controlling the use of the knowledge specified at the object-level during the reasoning
process. The meta-level describes the dynamic aspects of the object-level in a declarative
fashion. A module may reason on its object-level about the meta-level of another module.

From a semantic point of view a significant difference between DESIRE on the one hand and
(ML)? and KARL on the other hand lies in the fact that the former uses temporal logics for
specifying the dynamic reasoning process whereas the latter use dynamic logic. In dynamic
logic, the semantics of the overall program is a binary relation between its input and output
sets. In DESIRE, the entire reasoning trace which leads to the derived output is used as
semantics [142].

4.4 Comparison with Related Work

In the following, we investigate the relationships with three other areas. We take a look at the
work that is done on validation and verification of KBSs, we discuss related work on
specification languages in Software Engineering, and finally we discuss a recent trend in
Software Engineering that makes use of the knowledge level for specifying other types of
software products than KBSs only.

Comparison with V&V

The work on validation and verification of KBSs only partially follows the paradigm shift in
Knowledge Engineering. Most of the work is still oriented to specific implementation
formalisms like rule-based languages or languages stemming from the knowledge
representation area. Surveys can be found in [96], [120]. A typical example is the work of
[122] that provides algorithms to verify knowledge that is represented with production rules.
Examples of such properties are:

» Unsatisfiable rule: the precondition of a rule cannot be true folegal input.
* Unusable rule: the postcondition of the rule cannot be used to infer the goalynor an
preconditions of another rule.

» Subsumed rule: thereists are more general rule in the rule set.
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Other approaches apply testing as a means to validate KBSs. Most approaches do not rely on
a formal specification in addition to the implemented knowledge. As a consequence,
verification of the functionality of a system with respect to its formal specification is not
possible. Only recently, the need was recognized for formal specifications and conceptual
models that guide and structure the validation and verification process ([103],[78], [59]).

Comparison with Traditional Specification Approaches in SE

Work in Software Engineering on formal specification languages has a more than thirty year
old tradition which has lead to a large number of approaches. An important line of research
are algebraic specifications (cf. [46], [154]) that provide well-studied means for the
mathematical definitions of the functionality of software systems. Some of the existing
specification languages rely directly on these techniques (e.g., [134], [117]), other use similar
ideas. The main extensions that are necessary to use them for KBSs are:

» Algebraic specification formalisms piide generic mathematical notations thatento
be intgrated into risting conceptual modelling techniques for KBSs to enable smooth
transitions from semiformal to formal specifications.

» Algebraic specification formalisms pide a means to define the functionality of a
software system abstracting fromvdt is computed. W explained earlier that such an
abstraction is too strong for the purpose of specifying KBSs as part of a specification is to
define hav the output can be dedd.

Specification approaches like the Vienna Development Method (VDM) [82] and Z [135],
which describe a system in terms of states and operations working on these states, are closer
in spirit to most specification approaches customized for KBSs. However, their vocabulary
for expressing control over these state transitions is rather restricted by their purpose.
Algorithmic control is regarded as an aspect that is added during design and implementation
of a system. Also, the need for a rich conceptual model that structures a specification of a
KBSs becomes apparent through the large case study of [105]. There the architecture of Soar
is specified with more than hundred pages filled with formal specification “code” in Z. Still,
work on specification languages for KBSs must always be aware of approaches from
Software Engineering or Information Systems Engineering because at a technical level many
problems are basically the same.

Comparison with Recent Approaches in SE

“USER: | need a softare system that will help me manage ragtbry

SOFTWARE ENGINEER: W¢ll, let's see. | can put together components that do
sorting, searching, stacks, queues, and so forth.

USER: Hmm, thas interesting. But he would those fit into my system?*[132]

Recently, the knowledge level has been encountered in Software Engineering (cf. [132]).
Work on software architectures establishes a much higher level to describe the functionality
and the structure of software artefacts. The main concern of this new area is the description of
generic architectures that describe the essence of large and complex software systems. Such
architectures specific classes of application problems instead of focusing on the small and
generic components from which a system is built up.
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The conceptual models developed in Knowledge Engineering for KBSs fit nicely in this
recent trend. They describe architecture for a specific class of systems: KBSs. Work on
formalizing software architectures characterizes the functionality of architectures in terms of
assumptions over the functionality of its components [118], [119]. This shows strong
similarities to recent work on problem-solving methods that define the competence of
problem-solving methods in terms of assumptions over domain knowledge (which can be
viewed as one or several components of a KBSs) and the functionality of elementary
inference steps (cf. [59]).

45 Recent Issues

One of the goals of formal specification approaches is to provide a clear formal notation.
However, some constructs in the existing languages are rather ad-hoc and work is going on to
provide well-defined formal ground for these languages. These activities also enable another
goal of formal specifications: semiautomatic or automated proof support which helps to deal
with the overwhelming amount of details that arise in formal proofs of specifications. Above,
we mentioned recent work that integrate conceptual models into existing verification tools
similar to earlier activities that integrates conceptual models into mathematical notations to
provide high-level specification support. In addition to formal support in verification, one
could also wish to provide automated support in deriving refined specifications or
implementations of KBSs with techniques of automated program development (cf.[133]).

In the following sections we will discuss the subfields problem-solving methods and
ontologies which are fruitful research areas generalizing the original notions of inference
engines and domain knowledge bases. Clearly, these fields introduce new interesting
requirements for formal approaches. The competence of problem-solving methods (i.e., their
functionality and utility) need to be characterized in terms of assumptions on available
knowledge. Ontologies need to provide meta-level characterizations of knowledge bases to
support their reuse and to solve the interaction problem between the problem-solving process
and the domain knowledge. Building large knowledge bases requires sophisticated
structuring of, and mediation facilities between different ontologies.

5 Problem-Solving Methods

Originally, KBSs used simple and generic inference mechanisms to infer outputs for provided
cases. The knowledge was assumed to be given “declaratively” by a set of Horn clauses,
production rules, or frames. Inference engines like unification, forward or backward
resolution, and inheritance captured the dynamic part of deriving new information. However,
human experts have exploit knowledge about the dynamics of the problem-gwhcass

and such knowledge is required to enable problem-solving in practice and not only in
principle [60]. [38] provided several examples where knowledge engineers implicitly
encoded control knowledge by ordering production rules and premises of these rules that
together with the generic inference engine, delivered the desired dynamic behaviour. Making
this knowledge explicit and regarding it as an important part of the entire knowledge
contained by a KBS, is the rationale that undefiesblem-Solving Methods (PSMs). PSMs

refine generic inference engines mentioned above to allow a more direct control of the
reasoning process. PSMs describe this control knowledge independent from the application
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domain enabling reuse of this strategical knowledge for different domains and applications.
Finally, PSMs abstract from a specific representation formalism as opposed to the general
inference engines that rely on a specific representation of the knowledge. Meanwhile, a large
number of such PSMs have been developed and libraries of such methods provide support in
reusing them for building new applications.

In general, software and knowledge engineers agree that reuse is a promising way to reduce
development costs of software systems and knowledge-based systems. The basic idea is that a
KBS can be constructed from ready-made parts instead of being built up from scratch.
Research on PSMs has adopted this philosophy and several PSM libraries have been
developed.

In the following, we will discuss several issues involved in developing such libraries.

5.1 Typesof PSM Libraries

Currently, there exist several libraries with PSMs. They all aim at facilitating the knowledge-
engineering process, yet they differ in various ways. In particular, libraries differ along
dimensions such as genericness, formality, granularity and size:

* The genericness dimension describes whether PSMs in a library aweldped for a
particular task. dsk-specific libraries contain PSMs that are specialised in solving
(parts of) a specific task such as diagnosis or design. Their ‘task-specificness’ resides
mainly in the terminology in which the PSMs are formulated. Examples include
libraries for design ([35], [107]), assessment [145], diagnosis [13] and planning ([10],
[9]). The CommonKADS library can be wed as an»ensve collection of task-
specific PSMs [29]. 8sk-independent libraries pide problem-solving methods that
are not formulated in task-specific terminology [2].

» The formality dimension diides the libraries in informal, formal and implemented
ones. Implemented libraries pide operational specifications of PSMs, which are
directly executable ([123], [71]). é&rmal libraries allow for formal \erification of
properties of PSMs ([2],[3], [15], [139]). Finallinformal libraries preide structured
textual representations of PSMs. Note that within the informal approaches, PSM
descriptions can ary from just tetual descriptions [35], to highly structured
descriptions using diagrams [13].

» Thegranularity dimension distinguishes between libraries with compl@mponents,
in the sense that the PSMs realise a complete task [107], and libraries with fine-grained
PSMs that realise a small part of the task [2]e8a libraries contain both Ige and
small huilding-blocks where the former areilt up from the latter ([13], [35], [10]).

* The size dimension. The most comprehessigeneral library is the CommonKADS
library [29] which contains PSMs for diagnosis, prediction of behs, assessment,
design, planning, assignment and scheduling and engineering modelling. The most
extensve library for diagnosis [13] contains 38 PSMs for realising 14 tasks related to
diagnosis. The library for parametric design [107] consists ef B8Ms, seeral of
them being &riations of Propose-and-®Wee [100]. The design library of [35] mentions
about 15 PSMs.

The type of a library is determined by its characterisation in terms of the above dimensions.

Each type has a specific role in the knowledge engineering process and has strong and weak
points. The more general (i.e. task-neutral) PSMs in a library are, the more reusable they are,
because they do not make any commitment to particular tasks. However, at the same time,
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applying such a PSM in a particular application requires considerable refinement and

adaptation. This phenomenon is known as the reusability-usability trade-off [85]. Recently,

research has been conducted to overcome this dichotomy by introducing adapters that
gradually adapt task-neutral PSMs to task-specific ones [58] and by semi-automatically

constructing the mappings between task-neutral PSMs and domain knowledge [19].

Libraries with informal PSMs provide above all support for the conceptual specification
phase of the KBS, that is, they help significantly in constructing the reasoning part of the
Expertise Model of a KBS [128]. Because such PSMs are informal, they are relatively easy to
understand and malleable to fit a particular application. The disadvantage is - not
surprisingly - that still much work has to be done before arriving at an implemented system.
Libraries with formal PSMs are particularly important if the KBS needs to have some
guaranteed properties, e.g. for use in safety-critical systems such as nuclear power plants.
Their disadvantage is that they are not easy to understand for humans [24] and limit the
expressiveness of the knowledge engineer. Apart from the possibility to prove properties,
formal PSMs have the additional advantage of being a step closer to an implemented system.
Libraries with implemented PSMs allow the construction of fully operational systems. The
other side of the coin is, however, that the probability that operational PSMs exactly match
the requirements of the knowledge engineer, is lower.

Developing a KBS using libraries with coarse-grained PSMs, amounts to selecting the most
suitable PSM and then adapt it to the particular needs of the application [107]. The advantage
Is that this process is relatively simple as it involves only one component. The disadvantage
is, however, that it is unlikely that such a library will have broad coverage, since each
application might need a different (coarse-grained) PSM. The alternative approach is to have
a library with fine-grained PSMs, which are then combined together (i.e. configured) into a
reasoner, either manually ([123], [137]) or automatically ([14], [9]).

5.2 Organisation of Libraries

There are several alternatives for organising a library and each of them has consequences for
indexing PSMs and for their selection. Finding the ‘best’ organisation principle for such
libraries is still an issue of debate. In the following, we will present some organisation
principles.

Several researchers propose to organise librariestask-method decomposition structure

([37], [123], [136], [130], [140], [153]), and some available libraries are indeed organised in
this way ([13], [29], [10]). According to this organisation structure, a task can be realised by
several PSMs, each consisting of primitive and/or composite subtasks. Composite subtasks
can again be realized by alternative methods, etc. Guidelines for library design according to
this principle are discussed in ([116], [115]). In a library organised according to the task-
method principle, PSMs are indexed, based on two factors: (1) on the competence of the
PSMs - which specifies what a PSM can achieve [8], and (2) on their assumptions - which

specify the assumptions under which the PSM can be applied correctly, such as its
requirements on domain knowledge ([17], [18]). Selection of PSMs from such libraries first
considers the competence of PSMs (selecting those whose competences match the task at
hand), and then the assumptions of PSMs (selecting those whose assumptions are satisfied).

Libraries can also be organised, based on the functionality of PSMs, in which case PSMs with
similar functionality are stored together. In addition, the functionality of PSMs can be
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configured from pre-established parameters and values [139]. An opposite way to organize
PSMsiis proposed in [124] where PSMs are indexed according to the algorithms they use.

Another criterion to structure libraries of PSMsis based on solely assumptions, which specify
under what conditions PSMs can be applied. Assumptions can refer to domain knowledge
(e.g. a certain PSM needs a causal domain model) or to task knowledge (a certain PSM
generates locally optimal solutions). To our knowledge, there does not exist a library
organised following this principle, but work is currently being performed to shed more light
on the role of assumptionsin libraries for knowledge engineering ([17], [18], [56], [58]).

A last proposal to organise libraries of PSMs is based on a suite of so-called problem types
([27], [28]) (or tasks, for the purpose of this article, tasks and problem types are treated as
synonyms). The suite describes problem types according to the way that problems depend on
each other. The solution to one problem forms the input to another problem. For example, the
output of a prediction task is a certain state, which can form the input to a monitoring task that
tries to detect problems, which on their turn can be the input to a diagnosis task. It turns out
that these problem dependencies recur in many different tasks. According to this principle,
PSMs are indexed under the problem type they can solve. Selection of PSMsin such alibrary
would first identify the problem type involved (or task), and then look at the respective PSMs
for this task.

5.3 Selection of PSMs - Assumptions

Whatever the organisational structure of the library, PSMs are used to realise tasks (tasks
describe the what, PSM's describe the how) by applying domain knowledge. Therefore, there
are two possible causes why a PSM cannot be applied to solve a particular problem: (1) if its
requirements on domain knowledge are not fulfilled, or (2) if it cannot deliver what the task
requires, that is, if its competence or functionality is not sufficient for the task. In practical
knowledge engineering, there are two respective solutions to this problem. In case the
requirements on domain knowledge are not fulfilled, we can assume that they are fulfilled or
acquire extra domain knowledge, and still apply the PSM. If the competence of the PSM is
not sufficient for the task to be realised, we can weaken the task in such a way that the
competence of the PSMs does deliver the (now weakened) task requirement [17].

5.4 Declarative versus Operational Specifications of PSMs

Traditionally, PSMs are described in an operational style. They are described as decomposing
a task into a set of subtasks, by introducing their dataflows and knowledge roles, and by
defining some control on how to execute the subtasks. However, from the standpoint of reuse
these are not the most important aspects. As mentioned earlier, two main aspects decide about
the applicability of a PSM in a given application. Whether the competence of the method is
able to achieve the goal of the task and whether the domain knowledge required by the
method is available. [8] discussed the characterizations of PSMs by their functionality where
the functionality is defined in terms of assumptions over available domain knowledge.
Meanwhile severa papers have appeared providing declarative characterizations of PSMs
(e.0.[17], [59], [139], [42]) and we assume that this will become an important line of future
works on PSMs.
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6 Ontologies

Since the beginning of the nineties ontologies have become a popular research topic
investigated by several Atrtificial Intelligence research communities, including knowledge
engineering, natural-language processing and knowledge representation. More recently, the
notion of ontology is also becoming widespread in fields such as intelligent information
integration, information retrieval on the Internet, and knowledge management. The reason for
ontologies being so popular is in large part due to what they promise: a shared and common
understanding of some domain that can be communicated across people and computers.

The main motivation behind ontologies is that they allow for sharing and reuse of knowledge
bodies in computational form. In the Knowledge Sharing Effort (KSE) project [111],
ontologies are put forward as a means to share knowledge bases between various KBSs. The
basic idea was to develop a library of reusable ontologies in a standard formalism, that each
system developer was supposed to adopt.

6.1 Definition of Ontology

Originally, the term ontology comes from philosophy - it goes as far back as Aristotle's

attempt to classify the things in the world - where it is employed to describe the existence of

beings in the world. Artificial Intelligence (Al) deals with reasoning about models of the
world. Therefore, it is not strange that Al researchers adopted the term ontology to describe
what can be (computationally) represented of the world in a program. Many definitions of
ontologies have been given in the last decade, but one that characterises best, in our opinion,
the essence of an ontology is based on the related definitions in ([74] AR®]tology isa

formal, explicit specification of a shared conceptualisation. A ‘conceptualisation’ refers to an
abstract model of some phenomenon in the world by having identified the relevant concepts
of that phenomenon. ‘Explicit’ means that the type of concepts used, and the constraints on
their use are explicitly defined. For example, in medical domains, the concepts are diseases
and symptoms, the relations between them are causal and a constraint is that a disease cannot
cause itself. ‘Formal’ refers to the fact that the ontology should be machine readable, which
excludes natural language. ‘Shared’ reflects the notion that an ontology captures consensual
knowledge, that is, it is not private to some individual, but accepted by a group.

Almost all ontologies that are nowadays available are concerned with modelling static

domain knowledge, as opposed to dynamic reasoning knowledge (e.g., domain models in
medicine, power plant, cars, mechanic machines). In its strongest form, an ontology tries to
capture universally valid knowledge, independent of its use, a view closely related to its

philosophical origin. However, Al researchers quickly gave up this view, because it turned

out that specific use of knowledge influenced its modelling and representation. A weaker, but
still strong, notion of ontology is CYC's aim to capture human common-sense knowledge

[93]. Other researchers aim at capturing domain knowledge, independent of the task or
method that might use the knowledge [76].

Within a given domain, an ontology is not just a representation - in a computer - of that
domain. An ontology also claims to reflect a certain rate of consensus about the knowledge in
that domain. However, in practical ontological engineering research, the definition of
ontology has been somewhat diluted, in the sense that taxonomies are considered to be full
ontologies. Ontologies differ in two respects from taxonomies as such: they have richer
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internal structure and reflect some consensus. The question is then of course, consensus
between whom? In practice, this question does not have one unique answer; it depends on the
context. For example, if a hospital is building up an ontology with knowledge about a
particular disease - say AIDS - that can be consulted by all doctors in a hospital, then the
consensus should be between the doctors involved. If, on the other hand, a government wants
to setup a nation-wide network of bibliographic, ontology-based databases that can be
consulted from nearly every terminal with an Internet connection in the country, then the
consensus should be nation-wide (i.e. everybody should accept this ontology as workable). In
the library example, consensus should be reached about terms such as books, authors,
journals, etc., and about axioms such as: if two articles appear in the same journal, they
should have the same volume and issue number.

Especially because ontologies aim at consensual domain knowledge, their development is
often a cooperative process involving different people, possibly at different locations. People
who agree to accept an ontology are said to commit themselves to that ontology.

6.2 Ontologiesoutside Knowledge Engineering

In this article, we are concerned with the role of ontologies in knowledge engineering. That
IS, how ontologies can help in building KBSs. Any KBS comprises at |east two fundamental
parts. domain knowledge and problem-solving knowledge. Ontologies mainly play arole in
analysing, modelling and implementing the domain knowledge, although they also influence
problem-solving knowledge.

Due to the fact that ontologies capture commonly agreed, static knowledge of a particular
domain, they are also valuable for other research areas [63]. In natural language applications,
ontologies can be used for natural language processing, which is the aim of the Generalised
Upper Model ([12], [11]) and of the SENSUS ontology ([138], [86]), or to automatically
extract knowledge from (scientific) texts [146]. Wordnet [104] is one of the largest lexical
ontologies.

In the database and information retrieval areas, ontologies can be used for interoperability of
heterogeneous information sources (databases or information systems): each information
source needs to be provided with a wrapper that maps the data-scheme of the source to the
ontology ([150], [151], [152]). The retriever only knows about the ontology and not about
each individual information source.

Ontologies are interesting candidates to facilitate communication between people in
organisations. Ontologies provide the terms, their meanings, their relations and constraints,
etc. and in the communication process al participants should commit to these definitions. A
currently popular and commercially successful application of this is in knowledge
management [62]. Companies realize more and more that the knowledge they possess (aka
corporate memory) is of essential importance for successful operation on the market ([87],
[141]). Such knowledge should be accessible for the appropriate people and should be
maintained to be always up-to-date. It is still an open debate whether corporate memories
should be consistent or not. Inconsistent knowledge is sometimes very valuable. In any case,
having knowledge about the inconsistency is already very useful information. It has turned
out that ontologies, coupled to Intranets are good candidates to improve knowledge
management.
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6.3 TheRoleof Ontologiesin Knowledge Engineering

Basically, the role of ontologies in the knowledge engineering process is to facilitate the
construction of a domain model. An ontology provides a vocabulary of terms and relations
with which to model the domain. Depending on how close the domain at hand is to the
ontology, the support is different. For instance, if the ontology perfectly suites the domain,
then a domain model can be obtained by only filling the ontology with the instances.
However, this situation rarely occurs because the nature of an ontology prevents it from being
directly applicable to particular domains.

There are several types of ontologies, and each type fulfils a different role in the process of
building a domain model. In the following sections, we will discuss different types of
ontologies, how to build them in the first place, how to organise them and how to assemble
them from smaller ontologies.

6.4 Typesof Ontologies

Although the term ontology is widely used in Knowledge Engineering, there are different
types of ontologies around. While they all share - to some extent - the underlying idea of
capturing explicitly static knowledge about some domain, they also vary considerably. Most
researchers agree that it is useful to distinguish between different generality levels of
ontologies ([147], [148], [4], [22]):

» Domain ontologies capture the kneledge \alid for a particular type of domain (e.qg.
electronic, medical, mechanic, digital domain).

» Generic ontologies are \alid across seeral domains. & example, an ontology about
mereology (part-of relations) is applicable in matechnical domains. Generic
ontologies are also referred tosaper theories [23] and asore ontologies [148].

» Application ontologies contain all the necessary kaedge for modelling a particular
domain (usually a combination of domain and method ontologies) [71].

* Representational ontologies do not commit to anparticular domain. Such ontologies
provide representational entities without stating what should be represented. A well-
known representational ontology is theame Ontology [74], which defines concepts
such as frames, slots and slot constraintsvaillp to express knaledge in an object-
oriented or frame-baseday

The ontologies mentioned above all capture static knowledge in a problem-solving
independent way. Knowledge Engineering, however, is also concerned with problem-solving
knowledge, therefore another useful type of ontology are so-catktddod and task
ontologies ([58], [137]). Task ontologies provide terms specific for particular tasks (e.g.
'hypothesis’ belongs to the diagnosis task ontology), and method ontologies provide terms
specific to particular PSMs [71] (e.g. ‘correct state’ belongs to the Propose-and-Revise
method ontology). Task and method ontologies provide a reasoning point of view on domain
knowledge. In this way, these ontologies help to solve the ‘interaction problem’ [33], which
states that domain knowledge cannot be independently represented from how it will be used
in problem solving, and vice versa. Method and task ontologies enable to make explicit the
interaction between problem-solving and domain knowledge through assumptions ([17], [60],
[18]).
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6.5 Building an Ontology from Scratch

Part of the research on ontology is concerned with envisioning and building enabling
technology for large-scale reuse of ontologies at a world-wide level. However, before we can
reuse ontologies, they need to be available in the first place. Today, many ontologies are
already available, but even more will have to be built in the future. Basically, building an
ontology for a particular domain requires a profound analysis, revealing the relevant
concepts, attributes, relations, constraints, instances and axioms of that domain. Such
knowledge analysis typically results in a taxonomy (an isa hierarchy) of concepts with their
attributes, values and relations. Additional information about the classes and their relations to
each other, as well as constraints on attribute values for each class, are captured in axioms.

Once a satisfying model of the domain has been built, two things have to be done before it
can be considered an ontology. (1) Different generality levels have to distinguished,
corresponding to different levels of reusability (see ontology types). (2) The domain model
should reflect common understanding or consensus of the domain. Many of the current
ontologies are valuable domain models but do not qualify as ontologies because they do not
fulfil these two criteria.

6.6 Internal Organisation of an Ontology

In order to enable reuse as much as possible, ontologies should be small modules with high
internal coherence and limited amount of interaction between the modules. This requirement
and others are expressed in design principles for ontologies ([75], [73], [144], [148]). An
ontology is optimal if it satisfies as much as possible all design principles. Notice however
that design principles may be contradictory to each other; satisfying one principle may violate
another. Some of these design principles are: modularity, internal coherence, extensibility,
minimal encoding bias, centre definitions around natural categories, keep the number of
theory inclusions to a minimum, and minimal ontological commitment. Most of these
principles are understandable from their name. A remark can be made, however, about the
‘minimal ontological commitment’ principle. Minimal ontological commitment assures
maximum reusability, but there is a well-known trade-off between reusability and usability
(the more reusable, the less usable and vice versa) [85].

6.7 Constructing Ontologies from Reusable Ontologies

Assuming that the world is full of well-designed modular ontologies, constructing a new
ontology is a matter of assembling existing ones. There are several ways to combine
ontologies. Here, we will only give the most frequently occurring ones. The simplest way to
combine ontologies is throughclusion. Inclusion of one ontology into another has the effect
that the composed ontology consists of the union of the two ontologies (their classes,
relations, axioms). In other words, the starting ontology is extended with the included
ontology. Conflicts between names have to be resolved, and a good tool for engineering
ontologies should take care of that. For example, a developer building an ontology of a
research community might want to include an existing ontology about bibliographic data to
model the publications of researchers.

Another way to combine ontologies is t®gtriction [52]. This means that the added ontology
only is applied on a restricted subset of what it was originally designed for. [52] gives the
example of including an ontology for numbers (where ‘+' applies to all numbers) in an

28



ontology for integer arithmetic (where ‘+' only is applied to integers, since all numbers are
integers in that world). The last way to assemble ontologies that we discuss here is
polymorphic refinement, known from object-oriented approaches. Suppose we want to
include an ontology about numbers - that defines '+’ - in two other ontologies. We can
include this numbers ontology in one ontology - say about vectors - where we want ‘+’ to

work on vectors, and in another ontology - say about strings - where ‘+’ does concatenation

of strings.

The KACTUS project [16] was concerned with constructing large ontologies for technical
devices through incremental refinement of general ontologies into technical ontologies.

6.8 Specification and Implementation of Ontologies

In order to actually enable sharing of ontologies in electronic form, they have to be
implemented in some formal or computer language. Earlier we already pointed out the close
relation between ontologies and taxonomies. Traditionally, the Al subfield of knowledge
representation (KR) has dedicated much effort in representing taxonomies, and it is therefore
not surprisingly that KR languages and techniques are used to implement ontologies. Most
KR languages and techniques allow to represent classes (also known as objects, concepts),
attributes (aka properties), relations and instances, and have the ‘isa’-relation - which allows

for inheritance - built-in as a primitive along with its associated semantics.

However, as we stated earlier, ontologies are more than taxonomies. Ontologies include all
relevant constraints between classes, attribute values, instances and relations (i.e. axioms).
For example, in some domains the ‘part-of’ relation is fundamental, and an ontology of such
domain has to include and define this relation (see the mereological super theory of the
PHYSSYS ontology [22]).

Typical Al languages that can be used for implementing ontologietesoreption logics for
representing declarative knowledge. Most of such languages support subsumption checking,
automatic classification and consistency maintenance. Examples of such description logics
include KL-ONE [26], LOOM [97], KRYPTON [25], CYCL [94].

A dedicated language for specifying ontologies is Ontolingua [74], which has become quite
popular in the last years. Ontolingua is based on KIF - the Knowledge Interchange Format

[67] - which is basically first-order predicate logic extended with meta-capabilities to reason

about relations. Ontolingua’'s main aim is to allow sharing and communication of ontologies,
and not so much reasoning with them. Therefore, Ontolingua comes with several translators
able to generate code in Prolog, CORBA's IDL [114], CLIPS, LOOM [97], KIF, Epikit [66].

7 Conclusion and Related Verk

During the last decade research in Knowledge Engineering (KE) resulted in several important
achievements which are also relevant for other disciplines like Software Engineering,
Information Integration or Knowledge Management. Notable developments are:

» Within the framavork of model-based KE, model structuresdbeen defined which
clearly separate the tfent types of kneledge which are important in the caoxitef
Knowledge-based Systems (KBSs). TEepertise Model is the most prominent
example of these models.
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* The clear separation of the notions of task, problem-solving method, and domain
knowledge preides a promising basis for making the reuse-orientedldement of
KBSs more feasible.
* The intgration of a strong conceptual model is a distuectfeature of formal
specification languages in Kwtedge Engineering.
Subsequently, we will discuss some relationships between methods in Knowledge
Engineering and other disciplines.

7.1 Software Engineering

Analogously to model-based approaches in KE a lot of approaches in Software Engineering
consider the development of software systems as a model construction process. E.g. in
Sructured Analysis [155] different types of models are constructed for capturing different
aspects of the system under development: functional aspects are specified in data flow
diagrams, whereas process aspects are described by using statecharts. In the same way
various models are constructed within t@MT methodology [125]: e.g. OMT object
diagrams correspond to domain models in CommonKADS or MIKE, OMT design models to
MIKE design models. Furthermore, a lot of primitives for modeling static system aspects are
shared among most approaches, e.g. the notion of classes and instances as well as the
embedding of classes in a generalization hierarchy combined with (multiple) inheritance.

We already mentioned the relationships to work on software architectures [132]. Conceptual
models of KBSs describe an architecture for a specific class of systems, namely KBSs.
Interestingly, both fields currently show the trend to characterize architectures in a declarative
way. E.g. [119] defines an architecture in terms of assumptions of its components and [139]
defines a class of problem-solving methods in terms of the assumed functionality of its
components. Therefore, referring to work on software architectures enables to put work on
Knowledge Engineering in a broader context. Reversible, an architecture specifies a problem
decomposition (each component deals with a subproblem) and work on software
architectures could profit heavily from the large body of work on problem decompositions in
Knowledge Engineering.

In KE, model-based approaches exploit the structure of the models to guide the knowledge
elicitation process. E.g. the notion of roles in problem-solving methods gives a strong hint
concerning what type of knowledge has to be gathered for being able to apply the selected
problem-solving method. In a similar way some Software Engineering approaches exploit the
structure of system models to guide the acquisition of requirements. E.g. NATRERE
framework an approach is described which uses the structure of predefined object system
models to generate different types of questions for eliciting system requirements [98].

7.2 Information Integration and | nformation Services

During the last years a strong demand for information services evolved which are integrated
and global in their scope [109]. One specific challenge to be addressed is the development of
methods and tools for integrating partially incompatible information sources. In that context
the notion of mediators is proposed as a middle layer between information sources and
applications [152]. Among others, mediators rely on the notion of ontologies for defining the
conceptualization of the underlying information sources. Therefore, methods for constructing
and reusing ontologies as described in Section 6 are directly relevant for developing
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mediators.

In [68], thelnfomaster system is described which is a generic tool for integrating different
types of information sources, like e.g. relational databases or Web pages. Each information
source is associated with a wrapper that hides the source specific information structure of the
information sources. Internally, Infomaster uses the Knowledge Interchange Format for
representing knowledge (compare Section 6). In Infomaster so-called base relations are used
for mediating between the conceptual structure of the information sources and the user
applications. The collection of base relations may be seen as a restricted domain ontology for
integrating the different heterogeneous information sources.

In the meantime ontologies are also used for supporting the semantic retrieval of information
from the World-Wide Web. ThEBHOE approach [95] proposes to annotate Web pages with
ontological information which can then be exploited for answering queries. Thus, the
syntactic based retrieval of information from the Web as known from the various Web search
engines is replaced by a semantic based retrieval process. A further step is taken in the
Ontobroker project [57] which proposes to use a more expressive ontology combined with a
corresponding inference mechanism. Thus, the search metaphor of SHOE is replaced by an
inference metaphor for retrieving information from the Web since the inference mechanism
can use complex inferences as part of the query answering process.

7.3 Knowledge Management

During the last years more and more companies became aware of the fact that knowledge is
one of their important assets. Therefore, active management of knowledge is nowadays
considered as an important means to achieve an enterprise’'s effectiveness and
competitiveness [1]. Overall consensus is that knowledge management requires an
interdisciplinary approach including technical support by IT technology, but also for example
human resource management ([88], [64]).

A central technical aspect of knowledge management is the construction and maintenance of
an Organizational Memory as a means for knowledge conservation, distribution and reuse
[149]. Typically, the knowledge within an Organizational Memory will be a combination of
informal, semi-formal, and formal knowledge. Since enterprise-wide Organizational
Memories will evolve to very large collections of rather diverse knowledge elements, novel
methods for accessing and distributing these knowledge elements are required. In that
context, ontologies may be exploited for defining the concepts which are used for organizing
and structuring the knowledge elements in the Organizational Memory. Furthermore, such
ontologies may be used for supporting the users in finding relevant knowledge, e.g. by
offering the appropriate concepts for posing queries [88]. Nevertheless, one should be aware,
that although a considerable effort is put into knowledge management, the construction and
application of Organizational Memories is still in a very early stage.

In general, we can see that recent developments in several disciplines rely on extracting,
modeling and exploiting various types of knowledge in order to address the demands which
arise among others from the growing complexity of applications. Methods and concepts from

Knowledge Engineering are certainly one of the promising approaches for developing

solutions which are able to meet these demands.

31



Acknowledgement

Thanks are due to Stefan Decker for valuable comments on a draft version of the paper.
Rainer Perkuhn provided valuable editorial support.

Richard Benjamins was partially supported by the Netherlands Computer Science Research
Foundation with financial support from the Netherlands Organisation for Scientific Research
(NWO), and by the European Commission through a Marie Curie Research Grant (TMR).

References

[1]  A. Abecker, S. Decker, K. Hinkelmann, and U. Reimer, Proc. Workshop Knowledge-based Systems for
Knowledge Management in Enterprises, 21st Annual German Conference on Al,(Kiex)rg, 1977.
URL: http://www.dfki.uni-kl.de/lkm/ws-ki-97.html

[2] M. Aben, Formally Specifying Re-usable Knowledge Model Components, Knowledg@ Acquisition
5:119-141, 1993.

[3] M. Aben, Formal Methods in Knowledge EngineerjifpD Thesis, University of Amsterdam, 1995.

[4  A. Abu-Hanna, Multiple Domain Models in Diagnostic ReasoninBhD Thesis, University of
Amsterdam, Amsterdam 1994.

[5] J Angele S. Decker, R. Perkuhn, and R. Studer, Modeling Problem-Solving Methods in NewKARL, in:
Proc. of the 10th Knowledge Acquisition for Knowledge-based Systems Workshop (K/AAHHG)
1996.

[6] J. Angele, D. Fensel, and R. Studer, Developing Knowledge-Based Systems with MIKE, to appear in
Journal of Automated Software Engineerith§98.

[71  J. Angele, D. Fensel, and R. Studer, Domain and Task Modeling in MIKE, in: A. Sutcliffe et a., eds,,
Domain Knowledge for Interactive System Des@fmepman & Hall, 1996.

[8] H.Akkermans, B. Wielinga, and A.Th. Schreiber, Steps in Constructing Problem-Solving Methaods, in:
N. Aussenac et d., eds., Knowledge Acquisition for Knowledge-based Systems, 7th European Workshop
(EKAW’'93) Toulouse, Lecture Notesin Al 723, Springer-Verlag, 1993.

[9] Barros, L. Nunes de, J. Hendler, and V. R. Benjamins, Par-KAP: A Knowledge Acquisition Tool for
Building Practical Planning System, in: Proc. of the 15th International Joint Conference on Artificial
Intelligence (IJCAI "97)pages 1246-1251, Japan, 1997, Morgan Kaufmann Publishers, Inc.

[10] Barros, L. Nunes de, A. Valente, and V. R. Benjamins, Modeling Planning Tasks, in:Third International
Conference on Artificial Intelligence Planning Syst€&i®S-9§, pages 11-18. American Association of
Artificia Intelligence (AAAL), 1996.

[11] J. A. Bateman, On the Relationship Betweem Ontology Construction and Natural Language: A Socia-
semiotic View, International Journal of Human-Computer Studié3(2/3):929-944, 1995.

[12] J. A. Bateman, B. Magini, and F.Rinaldi, The Generalized Upper Model, in: N.J.1. Mars, editor,
Working Papers European Conference on Atrtificial Intelligence ECAI'94 Workshop on Implemented
Ontologies pages 35-45, Amsterdam, 1994.

[13] V.R. Benjamins, Problem Solving Methods for DiagnosiBhD Thesis, University of Amsterdam,
Amsterdam, The Netherlands, 1993.

[14] V.R. Benjamins, Problem-solving Methods for Diagnosis and Their Role in Knowledge Acquisition,
International Journal of Expert Systems: Research and Applica®@2)s93-120, 1995.

[15] V.R. Benjamins and M.Aben, Structure-preserving KBS Development Through Reusable Libraries: A
Case-study in Diagnosis, International Journal of Human-Computer Studi€&259-288, 1997.

[16] J. Benjamin, P. Borst, H. Akkermans, and B. Wielinga, Ontology Construction for Technical Domains,
in: N. Shadbolt et al., eds., Advances in Knowledge Acquisitidrecture Notes in Artificial Intelligence
1076, Springer-Verlag, Berlin, 1996.

[17] V.R. Benjamins, D. Fensel, and R. Straatman, Assumptions of Problem-solving Methods and Their Role
in Knowledge Engineering, in: W. Wahlster, editor, Proc. ECAI-96 pages 408-412. J. Wiley & Sons,
Ltd., 1996.

[18] V.R. Benjamins and C. Pierret-Golbreich, Assumptions of Problem-solving Methods, in: N. Shadbolt et
a., eds, Lecture Notesin Artificial Intelligence, 1076, 9th European Knowledge Acquisition Workshop,

32



[19]

(20]
(21]
(22]
(23]
(24]
(25]
(26]

(27]

(28]
(29]
(30]
(31]
(32]

(33]

(34]

(35]
(36]

[37]
(38]

(39]
[40]

[41]

[42]

EKAW-96 pages 1-16, Berlin, 1996. Springer-Verlag.

P. Beys, V. R. Benjamins, and G. van Heijst, Remedying the Reusability-usability Tradeoff for Problem-
solving Methods, in: B. R. Gaines and M. A. Musen, editorsProceedings of the 10th Banff Knowledge
Acquisition for Knowledge-Based Systems Workspages 2.1-2.20, Alberta, Canada, 1996. SRDG
Publications, University of Calgary. http://ksi.cpsc.ucalgary.ca:80/KAW/KAW96/KAW96Proc.html.

W. Birmingham and G. Klinker, Knowledge Acquisition Tools with Explicit Problem-Solving Models,
The Knowledge Engineering Reviéwl (1993), 5-25.

B.W. Boehm, A Spiral Model of Software Development and Enhance@entputer21, 5 (May 1988),
61-72.

W. N. Borst, Construction of Engineering OntologjeBhD Thesis, University of Twente, Enschede,
1997.

W. N. Borst and J. M. Akkrmans, Engineering Ontologidsternational durnal of Human-Computer
Studies 46(2/3):365-406, 1997.

J.P. Bowen and M. G. Hinchey, Ten Commands of Formal Methods,|IEEE Computer 28(4):56-63,
1995.

R. J. Brachman, V. P. Gilbert, and H. J. Levesque, An Essential Hybrid Reasoning System: Knowledge
and Symbol Level Accounts of KRYPTON, iAroceedings IJCAI-851985.

R. J. Brachman and J. Schmolze, An Overview of the KL-ONE Knowledge Representation System,

Cognitive Science9(2), 1985.

J. Breuker, Components of Problem Solving and Types of Problems, in: Steels et al., eds.,A Future of

Knowledge Acquisition, Proc. 8th European Knowledge Acquisition Workshop (EKAWG@4parden,
Lecture Notes in Atrtificial Intelligence 867, Springer-Verlag, 1994.

J. Breuker, A Suite of Problem Types, in: J. A. Breuker and W. van de VeldeTlegl<CommonKADS
Library For Expertise ModellinglOS Press, Amsterdam, 1994.

J. A. Breuker and W. van de Velde, edthe CommonKADS Library For Expertise Modellin@S
Press, Amsterdam, 1994.

M. L. Brodie, On the Development of Data Models, in: Brodie et al., &s.Conceptual Modeling
Springer-Verlag, Berlin, 1984.

A. G. Brooking, The Analysis Phase in Development of Knowledge-Based Systems, in: W. A. Gale, ed.,
Al and StatisticAddison-Wesley Publishing Company, Reading, Massachusetts, 1986.

T. Bylander, D. Allemang, M.C. Tanner, and J.R. Josephon, The Computational Complexity of
Abduction,Artificial Intelligence49, 1991.

T. Bylander and B. Chandrasekaran, Generic Tasks in Knowledge-based Reasoning: The Right Level of
Abstraction for Knowledge Acquisition, in: B. Gaines and J. Boose, Kdswledge Acquisition for
Knowledge Based Systeriv®l. 1, Academic Press, London, 1988.

T. Bylander and S. Mittal, CSRL, A Language for Classificatory Problem Solinlylagazine8, 3,
1986, 66-77.

B. Chandrasekaran, Design Problem Solving: A Task Analysis,Al Magazine 11:59-71, 1990.

B. Chandrasekaran, Generic Tasks in Knowledge-based Reasoning: High-level Building Blocks for
Expert System DesighiEE Expertl, 3 1986, 23-30.
B. Chandrasekaran, T. R. Johnson, and J. W. Smith, Task Structure Analysis for Knowledge Modeling,
Communications of the ACBb, 9 (1992), 124—137.

W.J. Clancey, The Epistemology of a Rule-Based Expert System - a Framework for Explanation,
Artificial Intelligence20 (1983), 215-251.

W.J. Clancey, Heuristic Classificatiofwtificial Intelligence27 (1985), 289-350.

W.J. Clancey, From Guidon to Neomycin and Heracles in Twenty Short Lessons, in: A. van
Lamsweerde, edCurrent Issues in Expert SysterAsademic Press, 1987.

W.J. Clancey, The Knowledge Level Reinterpreted: Modeling How Systems InMeattine Learning

4, 1989, 285-291.

F. Cornelissen, C.M. Jonker, and J. Treur: Compositional Verification of Knowledge-based Systems: A
Case Study for Diagnostic Reasoning, in: E. Plaza and R. BenjaminsKed&ledge Acquisition,
Modeling, and Management, 10th European Workshop (EKAW®aNt Feliu de Guixols, Lecture
Notes in Artificial Intelligence 1319, Springer-Verlag, 1997.

33



[43]
[44]

[45]

[46]
[47]
(48]

[49]
[50]

[51]
[52]
(53]
[54]
[55]

[56]

[57]

(58]

[59]

[60]

[61]
[62]
[63]
[64]
[65]

[66]
[67]

J.-M. David, J.-P. Krivine, and R. Simmons, e@cond Generation Expert Syste@gringer-Verlag,

Berlin, 1993.

R. Davis, B. Buchanan, and E.H. Shortcliffe, Production Rules as a Representation for a Knowledge-base
Consultation Program#rtificial Intelligence8 (1977), 15-45.

S. Decker, M. Daniel, M. Erdmann, and R. Studer, An Enterprise Reference Scheme for Integrating

Model-based Knowledge Engineering and Enterprise Modeling, in: E. Plaza and R. Benjamins, eds.,

Knowledge Acquisition, Modeling, and Management, 10th European Workshop (EKAB&87J-eliu

de Guixols, Lecture Notes in Artificial Intelligence 1319, Springer-Verlag, 1997.

H. Ehrig and B. Mahr, edd-undamentals of Algebraic SpecificationsSpringer-Verlag, Berlin, 1985.

H. Ehrig and B. Mahr, eddzundamentals of Algebraic SpecificationsSpringer-Verlag, Berlin, 1990.

H. Eriksson, A Survey of Knowledge Acquisition Techniques and Tools and their Relationship to
Software Engineeringlournal of Systems and Softwdi@ 1992, 97-107.

Epistemics, PCPACK Portable KA Toolkit, 1995.

H. Eriksson, A. R. Puerta, and M. A. Musen, Generation of Knowledge Acquisition Tools from Domain
Ontologies/)nt. J. Human-Computer Studid4, 1994, 425-453.

H. Eriksson, Y. Shahar, S.W. Tu, A.R. Puerta, and M.A. Musen, Task Modeling with Reusable Problem-
Solving MethodsArtificial Intelligence79 (1995), 293-326.

A. Farquhar, R.Fikes, and J.Rice, The Ontolingua Server: A Tool for Collaborative Ontology
Construction)nternational Journal of Human-Computer Studié6:707-728, 1997.

D. Fensel,The Knowledge Acquisition and Representation Language KKRilver Academic Publ.,
Boston, 1995.

D. Fensel, Formal Specification Languages in Knowledge and Software Engindéringnowledge
Engineering ReviedO, 4, 1995.

D. Fensel, J. Angele, and R. Studer, The Knowledge Acquisition and Representation Language KARL, to
appear inEEE Transactions on Knowledge and Data Engineering

D. Fensel and V. R. Benjamins, Assumptions in Model-based Diagnosis, in: B. R. Gaines and M. A.
Musen, editorsProceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based Systems
Workshop pages 5.1-5.18, Alberta, Canada, 1996. SRDG Publications, University of Calgary. http://
ksi.cpsc.ucalgary.ca:80/KAW/KAW96/KAW96Proc.html.

D. Fensel, S. Decker, M. Erdmann, and R. Studer, Ontobroker: Transforming the WWW into a
Knowledge Base, submitted for publication.

D. Fensel and R. Groenboom, Specifying Knowledge-based Systems with Reusable Components, in:
Proceedings 9th Int. Conference on Software Engineering and Knowledge Engineering (SEKE '97)
pages 349-357, Madrid, 1997.

D. Fensel and A. Schénegge, Using KIV to Specify and Verify Architectures of Knowledge-Based
Systems, in:Proceedings of the 12th IEEE International Conference on Automated Software
Engineering (ASEC-97)ncline Village, Nevada, November 1997.

D. Fensel and R. Straatman, The Essence of Problem-Solving Methods: Making Assumptions for
Efficiency Reasons, in: N. Shadbolt et al., edslyances in Knowledge Acquisiitdrecture Notes in
Artificial Intelligence (LNAI) 1076, Springer-Verlag, Berlin, 1996.

D. Fensel and F. van Harmelen, A Comparison of Languages which Operationalize and Formalize KADS
Models of ExpertiseThe Knowledge Engineering Reviéw2, 1994.

M. S. Fox, J. Chionglo, and F. Fadel, A Common-sense Model of the Enterprise, inProceedings of the
Industrial Engineering Research Conferent893.

N. Fridman-Noy and C.D. Hafner, The State of the Art in Ontology Design,Al Magazine 18(3):53-74,
1997.

B. Gaines et al., eds/forking Notes AAAI-97 Spring Symposium Atrtificial Intelligence in Knowledge
ManagementStanford, March 1977.

B. Gaines and M.L.G. Shaw, New Directions in the Analysis and Interactive Elicitation of Personal
Construct Systemént. J. Man-Machine Studiel3 (1980), 81-116.

M.R. Genesereth, edlhe Epikit ManuglEpistmemics, Inc, Palo Alto, CA, 1992.

M.R. Genesereth and R.E. Fikes, Knowledge Interchange Format, Version 3.0, Reference Manual.
Technical Report, Logic-92-1, Computer Science Dept.,, Stanford University, 1992. http://

34



[68]
[69]

[70]

[71]
[72]

(73]

[74]
[75]
[76]
[77)
[78]
[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]

(87]

(88]

(89]

[90]

[91]

www.cs.umbc.edu/kse/.

M.R. Genesereth, A.M. Keller, and O.M. Duschka, Infomaster: An Information Integration System, in:
Proc. ACM SIGMOD Confereng&ucson, 1997.

J.H. Gennari, R.B. Altman, and M.A. Musen, Reuse with PROTEGE-II: From Elevators to Ribosomes,
in: Proceedings of the Symposium on Software R&estle, 1995.

J.H. Gennari, A.R. Stein, and M.A. Musen, Reuse for Knowledge-based Systems and CORBA
Components, inProc. of the 10th Knowledge Acquisition for Knowledge-based Systems Workshop
Banff, 1996.

J.H. Gennari, S.W. Tu, T.E. Rothenfluh, and M.A. Musen, Mappings Domains to Methods in Support of
Reuse)nt. J. on Human-Computer Studié$ (1994), 399-424.

Y. Gil and C. Paris, Towards Method-independent Knowledge AcquiskioonwledgeAcquisition6, 2
(1994), 163-178.

A. Gomez-Perez, A.Fernandez, and M. De Vicente, Towards a Method to Conceptualize Domain
Ontologies, in:Working Notes of the Workshop on Ontological Engineering, ECAp8ges 41-52.
ECCAI, 1996.

T.R. Gruber, A Translation Approach to Portable Ontology Specificatiomsyledge Acquisitiob, 2,
1993, 199-221.

T.R. Gruber, Towards Principles for the Design of Ontologies used for Knowledge Sharing,
International Journal of Human-Computer Studié3:907-928, 1995.

N. Guarino, Formal Ontology, Conceptual Analysis and Knowledge Representation, International
Journal of Human-Computer Studjei8(2/3):625-640, 1995.

D. Harel, Dynamic Logic, in: D. Gabby et al., edéandook of Philosophical Logiwol. I, Extensions
of Classical LogicPublishing Company, Dordrecht (NL), 1984.

F. van Harmelen and M. Aben, Structure-preserving Specification Languages for Knowledge-based
Systems|nternational Journal of Human-Computer Studddls 1996.

F. van Harmelen and J. Balde, (ML)A Formal Language for KADS Conceptual Modé{siowledge
Acquisition4, 1, 1992.

F. van Harmelen and D. Fensel, Formal Methods in Knowledge Enginedigy, Knowledge
Engineering Review, 2, 1994.

F. Hayes-Roth, D.A. Waterman, and D.B. Leatilding Expert System#éddison-Wesley, New York,
1983

C. B. JonesSystematic Software Development Using VRM ed., Prentice Hall, 1990.

G.A. Kelly, The Psychology of Personal Constrydi®rton, New York, 1955.

M. Kifer, G. Lausen, and J. Wupgical Foundations of Object-Oriented and Frame-Based Languages
Journal of the ACMI2 (1995), 741-843.

G. Klinker, C.Bhola, G. Dallemagne, D.Marques, and J. McDermott, Usable and Reusable
Programming Construct&nowledge Acquisitigr3:117-136, 1991.

K. Knight and S. Luk, Building a Large Knowledge Base for Machine Translation, iniProc. AAAI-94
Seattle, 1994.

O. Kiithn, An Ontology for the Conservation of Corporate Knowledge About Crankshaft Design, in:

N. J. I. Mars, editorWorking Papers European Conference on Artificial Intelligence ECAI'94 Workshop
on Implemented Ontologiggages 141-152, Amsterdam, 1994.

O. Kihn and A. Abecker, Corporate Memories for Knowledge Management in Industrial Practice:
Prospects and Challengek, of Universal Computer Scien@& 8 (August 1977), Special Issue on
Information Technology for Knowledge Management, Springer Science Online. URL: http://
www.iicm.edu/jucs_3_8/corporate_memories_for_knowledge.

D. Landes, DesignKARL - A Language for the Design of Knowledge-based Systenfspn:6th
International Conference on Software Engineering and Knowledge Engineering (SEKRI8%gala,
Lettland, 1994, 78-85.

D. Landes and R. Studer, The Treatment of Non-Functional Requirements in MIKE, in: W. Schaefer et
al., eds.Proc. of the 5th European Software Engineering Conference (ESEGifggs, Lecture Notes
in Computer Science 989, Springer-Verlag, 1995.

I. van Langevelde, A. Philipsen, and J. Treur, Formal Specification of Compositional Architectures, in:

35



[92]

(93]

[94]
[99]

[96]

[97]
(98]

[99]

[100]
[101]
[102]
[103]
[104]
[105]
[106]

[107]

[108]
[109]

[110]

[111]
[112]
[113]
[114]
[115]

[116]

Proceedings of the 10th European Conference on Atrtificial Intelligence (ECAM82)na, Austria,
August, 1992.

I. van Langevelde, A. Philipsen, and J. Treur, A Compositional Architecture for Simple Design Formally
Specified in DESIRE, in: J. Treur and Th. Wetter, eBisrmal Specification of Complex Reasoning
SystemgsEllis Horwood, New York, 1993.

D. Lenat and R.V. Guh&uilding Large Knowledge-Based Systems: Representation and Inference in the
CYC Project Addison-Wesley Publ. Co., 1990.

D. B. Lenat and R. V. GuhaRepresentation and Inference in the Cyc Profatdison-Wesley, 1990.

S. Luke, L. Spector, D. Rager, and J. Hendler, Ontology-based Web Agemdnist Int. Conf. on
Autonomous Agentd977.

T. J. Lydiard, Overview of Current Practice and Reserach Initiatives for the Verification and Validation
of KBS, The Knowledge Engineering Revijei(2), 1992.

R. MacGregor, Inside the LOOM Classifier,SIGART Bulletin2(3):70-76, June 1991.

N.A.M. Maiden, Acquiring Requirements: a Domain-specific Approach, in: A. Sutcliffe et al., eds.,
Domain Knowledge for Interactive System Desi@napman & Hall, 1996.

S. Marcus, ed.Automating Knowledge Acquisition for Experts Systdfhsver Academic Publisher,
Boston, 1988.

S. Marcus, SALT: A Knowledge Acquisition Tool for Propose-and-Revise Systen$s, iarcus, ed.,
Automating Knowledge Acquisition for Experts Systéthaver Academic Publisher, Boston, 1988.

S. Marcus, J. Stout, and J. McDermott, VT: An Expert Elevator Configurer that Uses Knowledge-based
Backtracking Al Magazine9 (1), 1988, 95-112.

J. McDermott, Preliminary Steps toward a Taxonomy of Problem-solving Method, tarcus, ed.,
Automating Knowledge Acquisition for Experts Systéthaver Academic Publisher, Boston, 1988.

P. Meseguer and A. D. Preece, Verification and Validation of Knowledge-Based Systems with Formal
SpecificationsThe Knowledge Engineering Revi&d(4), 1995.

G. A. Miller, WORDNET: An Online Lexical Database, International Journal of Lexicography
3(4):235-312, 1990.

B. G. Milnes, A Specification of the Soar Cognitive Architecture in Z, Research Report CMU-CS-92-
169, School of Computer Science, Carnegie Mellon University, Pittsburg, PA, 1992,

K. Morik, Underlying Assumptions of Knowledge Acquisition as a Process of Model Refinement,
Knowledge Acquisitio, 1, March 1990, 21-49.

E. Motta and Z. Zdrahal, Parametric Design Problem Solving, in: B. R. Gaines and M. A. Musen, editors,
Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based Systems Wqdgesp
9.1-9.20, Alberta, Canada, 1996. SRDG Publications, University of Calgary. http:/
ksi.cpsc.ucalgary.ca:80/KAW/KAW96/KAW96Proc.html.

M.A. Musen, An Overview of Knowledge Acquisition, in: J.-M. David et al., éfscond Generation
Expert System$pringer-Verlag, 1993.

J. Myplopoulos and M. Papazoglu, Cooperative Information Systems, Guest Editors’ Introd&&len,
Intelligent System$2, 5 (September/October 1997), 28-31.

B. Nebel, Artificial Intelligence: A Computational Perspective, in: G. Brewka, Rdnciples of
Knowledge Representatio@SLI Publications, Studies in Logic, Language and Information, Stanford,
1996.

R. Neches, R. E. Fikes, T. Finin, T. R. Gruber, T. Senator, and W. R. Swartout, Enabling Technology for
Knowledge Sharingil Magazine 12(3):36-56, 1991.

S. Neubert, Model Construction in MIKE, in: N. Aussenac et al., édsowledge Acquisition for
Knowledge-based Systems, Proc. 7th European Workshop (EKAW®@dpuse, Lecture Notes in
Artificial Intelligence 723, Springer-Verlag, 1993.

A. Newell, The Knowledge Levehrtificial Intelligencel8, 1982, 87-127.

R. Orfali, D. Harkey, and J. Edwards, editorsThe Essential Distributed Objects Survival Guidehn
Wiley & Sons, New York, 1996.

K. Orsvirn,Knowledge Modelling with Libraries of Task Decomposition MethBd® Thesis, Swedish
Institute of Computer Science, 1996.

K. Orsvirn, Principles for Libraries of Task Decomposition Methods - Conclusions from a Case-study,

36



[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]
[125]

[126]

[127]

[128]
[129]
[130]
[131]
[132]

[133]

[134]

[135]
[136]

[137]

[138]

in: N. Shadbolt et al., edsAdvances in Knowledge Acquisiitdrecture Notes in Artificial Intelligence

1076, Springer-Verlag, Berlin, 1996.

C. Pierret-Golbreich and X. Talon: An Algebraic Specification of the Dynamic Behaviour of
Knowledge-Based SysteniBhe Knowledge Engineering Reviedd(2), 1996.

J. Penix and P. Alexander, Toward Automated Component AdaptioRrateedings of the 9th
International Conference on Software Engineering & Knowledge Engineering (SEKBA8d)id,

Spain, June 18-20, 1997.

J. Penix, P. Alexander, and K. Havelund, Declarative Specifications of Software Architectures, in:
Proceedings of the 12th IEEE International Conference on Automated Software Engineering (ASEC-97)
Incline Village, Nevada, November 1997.

R. Plant and A. D. Preece, Special Issue on Verification and Validattemational Journal of Human-
Computer Studie@JHCS), 44, 1996.

K. Poeck and U. Gappa, Making Role-Limiting Shells More Flexible, in: N. Aussenac et al., eds.,
Knowledge Acquisition for Knowledge-Based Systems, Proc. 7th European Knowledge Acquisition
Workshopf EKAW 93)Toulouse, Lecture Notes in Atrtificial Intelligence 723, Springer-Verlag, 1993.

A. D. Preece, Foundations and Applications of Knowledge Base Verificati@nnational Journal of
Intelligent System®, 1994.

A. R. Puerta, J. W. Egar, S. W. Tu, and M. A. Musen, A Multiple-Method Knowledge Acquisition Shell
for the Automatic Generation of Knowledge Acquisition To#lapwledge Acquisitiod, 1992, 171-

196.

F. Puppe Systematic Introduction to Expert Systems: Knowledge Representation and Problem-Solving
Methods Springer-Verlag, Berlin, 1993.

J. Rumbaugh, M. Blaha, W. Premerlani, F.Eddy, and W. Lorensef)bject-Oriented Modelling and
Design Prentice Hall, Englewood Cliffs, New Jersey, 1991.

F. Saltor, M.G. Castellanos, and M. Garcia-Solaco, Overcoming Schematic Discrepancies in
Interoperable Databases, in: D.K. Hsiao et al., ddseroperable Database Systems (DS-B)P
Transactions A-25, North-Holland, 1993.

A.Th. Schreiber, B. Wielinga, H. Akkermans, W. van de Velde, and A. Anjewierden, CML: The
CommonKADS Conceptual Modeling Language, in: Steels et al., éddzuture of Knowledge
Acquisition, Proc. 8th European Knowledge Acquisition Workshop (EKAWH&8gaarden, Lecture
Notes in Artificial Intelligence 867, Springer-Verlag, 1994.

A.Th. Schreiber, B. Wielinga, and J. Breuker, eH&DS. A Principled Approach to Knowledge-Based
System Developmemtnowledge-Based Systems, vol 11, Academic Press, London, 1993.

A.Th. Schreiber, B.J. Wielinga, R. de Hoog, H. Akkermans, and W. van de Velde, CommonKADS: A
Comprehensive Methodology for KBS DevelopméBEE Expert December 1994, 28-37.

N. Shadbolt, E. Motta, and A. Rouge, Constructing Knowledge-based SyHi€iRsSoftwarel0, 6, 34-

38.

M.L.G. Shaw and B.R. Gaines, The Synthesis of Knowledge Engineering and Software Engineering, in:
P. Loucopoulos, edAdvanced Information Systems Engineerit/dCS 593, Springer-Verlag, 1992.

M. Shaw and D. Garlargoftware Architecture: Perspectives on an Emerging Discipfnentice Hall,

1996.

D. R. Smith, Towards a Classification Approach to DesignPnoceedings of the 5th International
Conference on Algebraic Methodology and Software Technology (AMASNR@tGiLh, Germany, July,

1996.

J. W. Spee and L. in 't Veld, The Semantics ¢fsBF: A Language For KBS Desigknowledge
Acquisition6, 1994.

J. M. Spivey,The Z Notation. A Reference Manuzd ed., Prentice Hall, New York, 1992.

L. Steels, The Componential Framework and its Role in Reusability, in: David et al.Sedsnd
Generation Expert Systenfpringer-Verlag, Berlin, 1993.

R. Studer, H. Eriksson, J.H. Gennari, S.W. Tu, D. Fensel, and M.A. Musen, Ontologies and the
Configuration of Problem-Solving Methods, Proc. of the 10th Knowledge Acquisition for Knowledge-
based Systems Worksh@&anff, 1996.

B. Swartout, R. Patil, K. Knight, and T. Russ, Toward Distributed Use of Large-scale Ontologies, in:

37



B. R. Gaines and M. A. Musen, editors,Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshmages 32.1-32.19, Alberta, Canada, 1996. SRDG Publications,
University of Calgary. http://ksi.cpsc.ucalgary.ca:80/KAW/KAW96/K AW96Proc.html.

[139] A.ten Teije, Automated Configuration of Problem Solving Methods in Diagnd2i® Thesis,
University of Amsterdam, Amsterdam, The Netherlands, 1997.

[140] P. Terpstra, G. van Heijst, B. Wielinga, and N. Shadtbolt, Knowledge Acquisition Support through
Generalised Directive Models, in: J.-M. David et al., eds., Second Generation Expert Systei@sringer-
Verlag, Berlin, 1993.

[141] Tove, Manual of the Toronto Virtual Enterprise, Technical Report, University of Toronto, 1995.
Available at: www.ie.utoronto.ca/ElL/tove/ontoTOC.html.

[142] J. Treur, Temporal Semantics of Meta-Level Architectures for Dynamic Control of Reasoning, in: L.
Fribourg et al., eds.,, Logic Program Synthesis and Transformation - Meta Programming in Logic,
Proceedings of the 4th International Workshops, LOPSTER-94 and METReSdire Notes in
Computer Science 883, Springer Verlag-Berlin, 1994.

[143] J. Treur and Th. Wetter, eds., Formal Specification of Complex Reasoning Systé&itis Horwood, New
York, 1993.

[144] M. Uschold and M. Gruninger, Ontologies: Principles, Methods, and Applications, Knowledge
Engineering Revieyl1(2):93-155, 1996.

[145] A. Valente and C.Ldckenhoff, Organization as Guidance: A Library of Assessment Models, in: N.
Aussenac et a., eds, Knowledge Acquisition for Knowledge-based Systems, Proc. 7th European
Workshop (EKAW’93)Toulouse, Lecture Notesin Artificial Intelligence 723, Springer-Verlag, 1993.

[146] P.E. vande Vet, P.-H. Speel, and N.J. I. Mars, The Plinius Ontology of Ceramic Materials, in: N. J. L.
Mars, editor, Working Papers European Conference on Artificial Intelligence ECAI'94 Workshop on
Implemented Ontologiepages 187-206, Amsterdam, 1994.

[147] G. van Heijst,The Role of Ontologies in Knowledge Engineerd Thesis, University of Amsterdam,
May 1995.

[148] G. van Heijst, A. Th. Schreiber, and B. J. Wielinga, Using Explicit Ontologies in KBS Development,
International Journal of Human-Computer Stuqié&(2/3):183-292, 1997.

[149] G. van Heijst, R. van der Spek, and E. Kruizinga, Organizing Corporate Memories, in: Proc. of the 10th
Knowledge Acquisition for Knowledge-based Systems Worki3hwai, 1996.

[150] G. Wiederhold, Mediators in the Architecture of Future Information Systems,|EEE Computer25(3):38-

49, 1992,

[151] G. Wiederhold, Intelligent Integration of Information,Journal of Intelligent Information Systen®pecial
Issue on Intelligent Integration of Information, 1996.

[152] G. Wiederhold and M. Genesereth, The Conceptual Basis for Mediation Services, IEEE Intelligent
System4?2, 5 (September/October 1997), 38-47.

[153] B.J. Widinga, A.Th. Schreiber, and JA. Breuker, KADS: A Modelling Approach to Knowledge
Engineering, Knowledge Acquisitiod, 1 (1992), 5-53.

[154] M. Wirsing, Algebraic Specification, in: J. van Leeuwen, ed., Handbook of Theoretical Computer
ScienceElsevier Science Publ., 1990.

[155] E. Yourdon, Modern Structured AnalysiBrentice-Hall, Englewood Cliffs, 1989.

38



