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Abstract. As requirements models grow larger, so to does the need for faster re-
quirements optimization methods, particularly when models are used by a large
room of debating experts as part of rapid interactive dialogues. Hence, there is a
pressing need for “real-time requirements optimization”; i.e. requirements opti-
mizers that can offer advice before an expert’s attention wanders to other issues.
One candidate technology for real-time requirements optimization is KEYS2.
KEYS2 uses a very simple (hence, very fast) technique that identifies both the
useful succinct sets of mitigations as well as cost-attainment tradeoffs for par-
tial solutions. This paper reports experiments demonstrating that KEYS2 runs
four orders of magnitude faster than our previous implementations and outper-
forms standard search algorithms including a classic stochastic search (simulated
annealing), a state-of-the art local search (MaxWalkSat), and a standard graph
search (A*).

1 Introduction

The room is crowded and everyone is talking at once. Time is limited: the people in
that room are needed elsewhere, in just a few hours time. While the facilitator tries to
guide the group to consensus, your PDA rings: its a text message from a friend across
the room. She is suggesting an innovative redesign of the file system. You agree that
it is a good idea and the two of you base all your future discussion on that redesign.
Meanwhile, across the room, someone else’s PDA rings and, unknown to you, two other
people are agreeing on a contradictory change to the file system. This design clash is
not detected till much later in the project, at which point it becomes very expensive to
realign separate parts of the design based on conflicting assumptions.

This scenario is not imaginary. For example, at the “Team X” meetings at NASA’s
Jet Propulsion Laboratory, experts in science data collection, communication, guidance,
etc to generate a “mission concept” document which may the basis of millions to bil-
lions of dollars of subsequent development work. There is no time for everyone to talk
to everyone else and, all too often, experts on one side the room can make decisions
that one hinder decisions and the group is unaware of this conflict.

This is not just a NASA problem. Rather, it is a a looming problem with all group-
think tools. As our tools grow better, and they will be used by larger groups who will
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build more complex models. The problem of co-ordinating group discussions is chal-
lenging in the 21st century net-enabled world where participates communicate via via
multiple channels; e.g. talking to the whole room while texting some individuals across
the room. In such a multiple channeled environment, small sub-groups can evolve opin-
ions that are not shared with the rest of the group.

If miscommunication lead to inappropriate decisions, then this can be fatal to soft-
ware projects. For example, it is very common for budgets to be determined after some
requirements analysis. Once set, it can be difficult revise those budgets later in the
project. Also, it can be very expensive to change poor decisions made early in the life-
cycle. The longer a system is designed around the wrong set of assumptions, then more
expensive it becomes to change those assumptions. Boehm & Papaccio advise that re-
working software is far cheaper earlier in the life cycle than later “by factors of 50 to
200” [9]. Hence, when managing software projects, we must make the best decisions
we can, as early as possible.

If requirements analysis is automatic and fast, then automatic methods can help a
group maintain focus within multi-channeled meetings. Individuals will focus on the
whole group is if the activity of the whole team commands their attention. For example,
suppose a requirements analyzer finds a major problem or a novel better solution. Such
a result would command the attention of the whole group, in which case everyone in
the room would interrupt their current deliberations to focus on the new finding.

A premise of this approach is that requirements analyzers offer feedback on their
models in “real time”; i.e. before an expert’s attention wanders to other issues. Neil-
son [61, chp5] reports that “the basic advice regarding response times has been about
the same for thirty years; i.e.

– 1.0 second is about the limit for the user’s flow of thought to stay uninterrupted,
even though the user will notice the delay

– 10 seconds is the limit for keeping a user’s attention focused on the dialogue.”

In this paper, we split the difference and demand five second response time for real-time
requirements analysis.

This is a challenging problem. Based on current projections from JPL, we predict
that by 2013, our requirements models will be ten times larger than today and contain
nearly N ≈ 1000 variables. This is an alarming growth rate since:

– Requirements optimization is often a non-linear problem where possible benefits
must be traded off against the increase cost of implementing those benefits;

– In such non-linear problems, the number of combined options to consider in a
model of size N can grow exponentially on model size to 2N .

– Based on our JPL experience, we find that experts often explore their models in
the context of W what-if scenarios where combinations, these 2N options must be
studied in the context of 2W possible assumptions. That is, the space of options to
explore is 2W ∗ 2N .

– Assuming that users explore just a handful of what-if queries (say, W = 10) models
of size N ≤ 1000, then the total search space to be explored in five seconds (or less)
is ≥ 10300.
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Extrapolating forwards in time, we can generate an estimate of how fast we need to be
processing our current models on our current hardware in order to explore the models
we expect to see in five years time. The appendix of this paper offers a “back of the
envelope” calculation for that extrapolation. Based on that calculation, we assert that
our current models must be terminating in 10−2 seconds if we wish to support five
second response times for the kinds of real-time requirements problems we expect to
see in the near future.

This paper shows that, at least for the case studies we explore here, that three tech-
niques let us achieve runtimes of 10−2. This is a significant improvement (10,000 times
faster) than our prior results in this area [27] that used simulated annealing [47]. The
three techniques are:

1. Like many before us [2, 19, 25, 50, 59, 60, 66, 70], we advocate the use of ultra-
lightweight requirement models. Such ultra-lightweight models are the preferred
options for very early life cycle models when the details required for more elaborate
models are not yet available. Another advantage of such models is that, as shown in
this article, there exists non-trivial ultra-lightweight models that can be processed
fast enough to support real-time requirements engineering.

2. Knowledge compilation pushes some percentage of the query computational over-
head into a compilation phase. This cost is amortized over time as we increase the
number of on-line queries. Previous work with knowledge compilation has focused
on compilation languages utilizing CNF equations, state machines, or BDD [7,21].
These forms may be needlessly complex for ultra-lightweight models. We show
here that a simple procedural target language can suffice.

3. Keys-based search: Many models contain a small number of key variables that set
the remaining variables [4, 20, 48, 55, 75]. For models contain keys, the complexity
of the searching the entire model reduces to just the complexity of searching the key
variables. The KEYS2 algorithm, proposed here, is a very fast method for finding
the key variables.

1.1 Contributions of This Paper

The specific contribution is to define the problem of real-time requirements engineering.
We offer materials that allow other researchers to work on this problem. All the code,
Makefiles, scripts etc used in this paper are available on-line4. Also, we offer a baseline
result. At least for the models explored in this paper, we can achieve optimizations
in around 10−2 seconds. Such baseline results since they allow others in the field to
demonstrate clear advances over (say) this paper.

A more general contribution to this paper is to demonstrate the advantages of keys-
based search. Our keys-based search returns better quality solutions in faster time that
other methods in widespread use (simulated annealing) or which are supposedly state
of the art (MaxWalkSat). our keys-based search is remarkably simple to implement and
finds solutions that constrain fewer variables that other methods (ASTAR) but which
achieve similar, or slightly better scores. Also, the incremental keys-based search de-
scribed in this paper offers extensive information about the space of effects around a

4 See http://unbox.org/wisp/tags/ddpExperiment/install
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particular solution. Alternative search methods offer point solutions that are inappro-
priate when managers do not not have full control over which decisions are made, or
when such control is prohibitively expensive. We hope these results motivates other
researchers to experiment with the keys assumption.

Another important result from this paper is to comment on a standard search en-
gine, used widely in the field of search-based software engineering (SBSE). Clark et
al. [15] warn that simulated annealing may be quite computationally expensive. But
those warning do not go further to say that, assuming simulated annealing terminates,
then its results may be worse than those seen by other methods. More generally, apart
from cautions on the runtime cost of simulated annealing, we are unaware of other cau-
tionary notes on the relative value of the results of simulated annealing in the software
engineering literature. Such cautions should be offered since, here, we show that the
results of simulated annealing can be out-performed by a variety of alternatives search
engines (some of these are quite simple to code such as KEYS). This is an exciting
result since it means that current results from simulated annealing (e.g. [5,8,10,62,73])
could be greatly improved, just by switching to an alternate search engine.

2 Related Work

2.1 Other Requirements Tools

This work on real-time requirements analysis should not be interpreted as a rejection of
other tools. There exist many powerful requirements analysis tools including continuous
simulation (also called system dynamics) [1,71], state-based simulation (including petri
net and data flow approaches) [3, 34, 52], hybrid-simulation (combining discrete event
simulation and systems dynamics) [24,51,69], logic-based and qualitative-based meth-
ods [11, chapter 20] [43], and rule-based simulations [57]. One can find these models
being used in the requirements phase (i.e. the DDP tool described below), design refac-
toring using patterns [30], software integration [23], model-based security [45], and
performance assessment [6]. Many researchers have proposed support environments to
help explore the increasingly complex models that engineers are developing. Gray et
al [32] have developed the Constraint-Specification Aspect Weaver (C-Saw), which
uses aspect-oriented approaches [29] to help engineers in the process of model trans-
formation. Cai and Sullivan [12] describe a formal method and tool called Simon that
“supports interactive construction of formal models, derives and displays design struc-
ture matrices... and supports simple design impact analysis.” Other tools of note are
lightweight formal methods such as ALLOY [44] and SCR [39] as well as various
UML tools that allow for the execution of life cycle specifications (e.g. the CADENA
scenario editor [13]).

Many of the above tools were built to maximize the expressive power of the rep-
resentation language or the constraint language used to express invariants. What dis-
tinguishes our work is that we are willing to trade off representational or constrain
expressiveness for faster runtimes. There exists a class of ultra-lightweight model lan-
guages which, as we show below, can be processed fast enough to support the real-time
requirements engineering problem described above. Any of the tools listed in the last
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paragraph are also candidate solutions to the problem explored in this paper, if it can be
shown that their processing terminates in hundreths of a second.

2.2 Other Optimizers

As documented by the search-based SE literature [17,36,37,64] and Gu et al [33], there
are many possible optimization methods. For example:

– Sequential methods run on one CPU while parallel methods spread the work over
a distributed CPU farm.

– Discrete methods assume model variables have a finite range (that may be quite
small) while continuous methods assume numeric values with a very large (possibly
infinite) range.

– The search-based SE literature prefers meta-heuristic methods like simulated an-
nealing, genetic algorithms and tabu search.

– Some methods map discrete values true/false into a continuous range 1/0 and then
use integer programming methods like CPLEX [58] to achieve results.

– Other methods find overlaps in goal expressions and generate a binary decision
diagram (BDD) where parent nodes store the overlap of children nodes.

This list is hardly exhaustive: Gu et al. list hundreds of other methods and no single
paper can experiment with them all. All the algorithms studied here are discrete and
sequential. We are currently exploring parallel versions of our optimizers but, so far,
the communication overhead outweighs the benefits of parallelism. As to using inte-
ger programming methods, we do not explore them here for two reasons. Coarfa et
al. [18] found that integer programming-based approaches ran two an order of magni-
tude slower than discrete methods like the MaxWalkSat and KEYS2 algorithm we use
below. Similar results reported by Gu et.al where discrete methods ran 100 times faster
than integer programming [33].

Harman offers another reason to avoid integer programming methods. In his search-
based SE manifest, Harman [36] argues that many SE problems are over-constrained
and so there may exist no precise solution that covers all constraints. A complete solu-
tion over all variables is hence impossible and partial solution based on heuristic search
methods are preferred. Such methods may not be complete; however, as Clarke et al
remark, “...software engineers face problems which consist, not in finding the solution,
but rather, in engineering an acceptable or near-optimal solution from a large number
of alternatives.” [17]

2.3 Robust Solutions in SBSE

Another reason to avoid precise solutions that comment on all controllable variables
is that such may be inappropriate for decision making and software projects. In many
cases, managers do not or can not control all variables in a project:

– In any project, there is some expense associated with changing the current organi-
zation of a project. In this case, managers prefer smaller solutions to larger ones.

5
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– In large projects, much of the development is performed by contractors and sub-
contractors (and sub-sub-contractors). In such projects is is difficult to monitor and
control all process options. For example, in government contracts, it is common
for contractors to minimize the amount of contact government personnel have with
the contractors. Such contractors rigorously define a minimum set of monitoring
and control points. Once enabled, it can be difficult (perhaps even impossible) to
change that list.

When offering partial solutions, it is very important to also offer insight into the space
of options around the proposed solution. Such neighborhood information is very useful
for managers with only partial control over their projects since it can give them con-
fidence that even if only some of their recommendations are effected, then at least the
range of outcomes is well understood. Harman [35] comments that understanding the
neighborhood our solutions is an open and pressing issue in SBSE:

“In some software engineering applications, solution robustness may be as im-
portant as solution functionality. For example, it may be better to locate an area
of the search space that is rich in fit solutions, rather than identifying an even
better solution that is surrounded by a set of far less fit solutions.
“Hitherto, research on SBSE has tended to focus on the production of the fittest
possible results. However, many application areas require solutions in a search
space that may be subject to change. This makes robustness a natural second
order property to which the research community could and should turn its at-
tention.”

It is trivial for our preferred method (KEYS and KEYS2) to offer robust information
around partial solutions. As we shall see, such robust neighborhood information cannot
be generated from other methods (e.g. simulated annealing) without extensive and time-
consuming post-processing.

3 Ultra-lightweight Requirements Models

In early life cycle requirements engineering, software engineers often pepper their
discussions with numerous hastily-drawn sketches. Kremer argues convincingly that
such visual forms have numerous advantages for acquiring knowledge [49]. Other re-
searchers take a similar view: “Pictures are superior to texts in a sense that they are
abstract, instantly comprehensible, and universal.” [40].

Normally, hastily-drawn sketches are viewed as precursors to some other, more pre-
cise modeling techniques which necessitate further analysis. Such further formalization
may not always be practical. The time and expertise required to build formal models
does not accommodate the pace with which humans tend to revise their ideas.

Also, such further formalization may not be advisable. Goel [31] studied the effects
of diagram formalism on system design. In an ill-structured diagram (such as a free-
hand sketch using pencil and paper), the denotation and type of each visual element is
ambiguous. In a well-structured diagram (such as those created using MacDraw), each
visual element clearly denotes one thing of one class only. Goel found that ill-structured

6
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DDP assertions are either:

– Requirements (free text) describing the objectives and constraints of the mission and its
development process;

– Weights (numbers) associated with requirements, reflecting their relative importance;
– Risks (free text) are events that damage requirements;
– Mitigations: (free text) are actions that reduce risks;
– Costs: (numbers) effort associated with mitigations, and repair costs for correcting Risks

detected by Mitigations;
– Mappings: directed edges between requirements, mitigations, and risks that capture quanti-

tative relationships among them.
– Part-of relations structure the collections of requirements, risks and mitigations;

Fig. 1. DDP’s ontology

tools generated more design variants — more drawings, more ideas, more re-use of old
ideas — than well-structured tools.

The value of ultra-lightweight ontologies in early life cycle modeling is widely rec-
ognized, as witnessed by the numerous frameworks that support them. For example:

– Mylopoulos’ soft-goal graphs [59, 60]. represent knowledge about non-functional
requirements. Primitives in soft goal modeling include statements of partial influ-
ence such as helps and hurts.

– A common framework in the design rationale community is a “questions-options-
criteria” (QOC) graph [70]. In QOC graphs:
• questions suggest options. Deciding on one option can raise other questions;
• Options shown in a box denote selected options;
• Options are assessed by criteria;
• Criteria are gradual knowledge; i.e. they tend to support or tend to reject op-

tions.
QOCs can succinctly summarize lengthy debates; e.g. the 480 sentences uttered in a
debate on interface options can be displayed in a QOC graph on a single page [50].
Saaty’s Analytic Hierarchy Process (AHP) [66] is a variant of QOC.

– Another widely used framework is Quality Functional Deployment diagrams (QFD) [2]
Where as AHP and QOC propagate influences over hierarchies, QDF (and DDP)
propagate influences over matrices.

Based on the above, Cornford and Feather designed the “Defect Detection and Pre-
vention” (DDP) tool [19, 25]. DDP provides a succinct ontology for representing this
design process. These models allow for the representation of the goals, risks, and risk-
removing mitigations that belong to a specific project. Users of DDP explore combi-
nations of mitigations that cost the least and support the most number of requirements.
DDP is used as follows. A dozen experts, or more, gather together for short, inten-

sive knowledge acquisition sessions (typically, 3 to 4 half-day sessions). These sessions

7
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1. Requirement goals:
– Spacecraft ground-based testing & flight problem monitoring
– Spacecraft experiments with on-board Intelligent Systems Health Management (ISHM)

2. Risks:
– Obstacles to spacecraft ground-based testing & flight problem monitoring

• Customer has no, or insufficient, money available for our use
• Difficulty of building the models / design tools

– ISHM Experiment is a failure (without necessarily causing flight failure)
– Usability, User/Recipient-system interfaces undefined
– V&V (certification path) untried and scope unknown
– Obstacles to Spacecraft experiments with on-board ISHM

• Bug tracking / fixes / configuration management issues, Managing revisions and upgrades (multi-center
tech. development issue)

• Concern about our technology interfering with in-flight mission
3. Mitigations:

– Mission-specific actions
• Spacecraft ground-based testing & flight problem monitoring
• Become a team member on the operations team
• Use Bugzilla and CVS

– Spacecraft experiments with on-board ISHM
• Become a team member on the operations team
• Utilize xyz’s experience and guidance with certification of his technology

Fig. 2. Sample DDP requirements, risks, mitigations.

must be short since it is hard to gather together these experts for more than a very short
period of time. The DDP tool supports a graphical interface for the rapid entry of the
assertions. Such rapid entry is essential, time is crucial and no tool should slow the
debate. Assertions from the experts are expressed using the ontology of Figure 1. The
ontology must be lightweight since only high-level assertions can be collected in short
knowledge acquisition sessions. If the assertions get more elaborate, then experts may
be unable to understand technical arguments from outside their own field of expertise.
These sessions generate a set of requirements/ risks/ and candidate mitigations (e.g. see
Figure 2) linked together into an intricate network (e.g. see Figure 3).

Sometimes, we are asked if requirements optimization is a real problem. The usual
question is something like: “With these ultra-lightweight languages, aren’t all open is-
sues just obvious?”. Such a question is usually informed by the small model fragments
that appear in the ultra-lightweight modeling literature. Those sample model fragments
are typically selected according to their ability to fit on a page or to succinctly illustrate
some point of the authors. Real world ultra-lightweight models can be much more com-
plex, paradoxically perhaps due to their simplicity: if a model is easy to write then it is
easy to write a lot of it. Figure 3, for example, was generated in under a week by four
people discussing one project. It is complex and densely-connected (a close inspection
of the left and right hand sides of Figure 3 reveals the requirements and fault trees that
inter-connect concepts in this model) and it is, by no means, the biggest or most com-
plex DDP model that has ever been built. Given the size of DDP models, and the rich set
of connections between concepts, requirements optimization defeats manual analysis.
Our task is to provide automatic (and rapid) support for this problem of least cost, max
effect mitigation selection.

8
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Fig. 3. An example of a model formed by the DDP tool. Red lines connect risks (middle) to
requirements (left). Green lines connect mitigations (right) to the risks.

9
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We base our experimentation around DDP for three reasons. Firstly, one potential
drawback with ultra-lightweight models is that they are excessively lightweight and
contain no useful information. DDP’s models are demonstrably useful (that is, we are
optimizing a real-world problem of some value). Clear project improvements have been
seen from DDP sessions at JPL. Cost savings in at least two sessions have exceeded
$1 million, while savings of over $100,000 have resulted in others. Cost savings are
not the only benefits of these DDP sessions. Numerous design improvements such as
savings of power or mass have come out of DDP sessions. Likewise, a shifting of risks
has been seen from uncertain architectural ones to more predictable and manageable
ones. At some of these meetings, non-obvious significant risks have been identified and
subsequently mitigated.

Our second reason to use DDP is that we can access numerous large real-world
requirements models written in this format, both now and in the future. The DDP tool
can be used to document not just final decisions but also to review the rationale that lead
to those decisions. Hence, DDP remains in use at JPL: not only for its original purpose
(group decision support), but also as a design rationale tool to document decisions.
Recent DDP sessions included:

– An identification of the challenges of intelligent systems health management (ISHM)
technology maturation (to determine the most cost-effective approach to achieving
maturation) [28];

– A study on the selection and planning of deployment of prototype software [26].

Our third, and most important reason to use DDP in our research is that the tool
is representative of other requirements modeling tools in widespread use. At its core,
DDP is a set of influences expressed in a hierarchy, augmented with the occasional
equation. Edges in the hierarchy have weights that strengthen or weaken influences that
flow along those edges. At this level of abstraction, DDP is just another form QOC or
QFD, or a quantitative variant of Mylopoulos’s qualitative soft goal graphs. In future
work, we will extend our current implementation to those systems.

4 Knowledge Compilation

A simple knowledge compiler exports the DDP models into a form accessible by our
search engines. Knowledge compilation is a technique whereby certain information is
compiled into a target language. These compiled models are used to rapidly answer a
large number of queries while the main program is running [21, 67].

Knowledge compilation pushes some percentage of the computational overhead into
the compilation phase. This cost is amortized over time as we increase the number of on-
line queries. This is a very useful feature in our application since some of the algorithms
that we use make thousands of calls to these DDP models. Previous work with knowl-
edge compilation has focused on compilation languages utilizing CNF equations, state
machines, or BDD [7, 21]. For this work, a procedural target language was sufficient.
Hence, the DDP models were compiled into a structure used by the C programming
language.

Our knowledge compilation process stores a flattened form of the DDP require-
ments tree. In standard DDP:
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#include "model.h"

#define M_COUNT 2
#define O_COUNT 3
#define R_COUNT 2

struct ddpStruct
{

float oWeight[O_COUNT+1];
float oAttainment[O_COUNT+1];
float oAtRiskProp[O_COUNT+1];

float rAPL[R_COUNT+1];
float rLikelihood[R_COUNT+1];
float mCost[M_COUNT+1];
float roImpact[R_COUNT+1][O_COUNT+1];
float mrEffect[M_COUNT+1][R_COUNT+1];

};

ddpStruct *ddpData;

void setupModel(void)
{

ddpData = (ddpStruct *) malloc(sizeof(ddpStruct));
ddpData->mCost[1]=11;
ddpData->mCost[2]=22;
ddpData->rAPL[1]=1;
ddpData->rAPL[2]=1;
ddpData->oWeight[1]=1;
ddpData->oWeight[2]=2;
ddpData->oWeight[3]=3;
ddpData->roImpact[1][1] = 0.1;
ddpData->roImpact[1][2] = 0.3;
ddpData->roImpact[2][1] = 0.2;
ddpData->mrEffect[1][1] = 0.9;
ddpData->mrEffect[1][2] = 0.3;
ddpData->mrEffect[2][1] = 0.4;

}

void model(float *cost, float *att, float m[])
{

float costTotal, attTotal;
ddpData->rLikelihood[1] = ddpData->rAPL[1] * (1 - m[1] * ddpData->mrEffect[1][1])

* (1 - m[2] * ddpData->mrEffect[2][1]);
ddpData->rLikelihood[2] = ddpData->rAPL[2] * (1 - m[1] * ddpData->mrEffect[1][2]);
ddpData->oAtRiskProp[1] = (ddpData->rLikelihood[1] * ddpData->roImpact[1][1])

+ (ddpData->rLikelihood[2] * ddpData->roImpact[2][1]);
ddpData->oAtRiskProp[2] = (ddpData->rLikelihood[1] * ddpData->roImpact[1][2]);
ddpData->oAtRiskProp[3] = 0;
ddpData->oAttainment[1] = ddpData->oWeight[1] * (1 - minValue(1, ddpData->oAtRiskProp[1]));
ddpData->oAttainment[2] = ddpData->oWeight[2] * (1 - minValue(1, ddpData->oAtRiskProp[2]));
ddpData->oAttainment[3] = ddpData->oWeight[3] * (1 - minValue(1, ddpData->oAtRiskProp[3]));
attTotal = ddpData->oAttainment[1] + ddpData->oAttainment[2] + ddpData->oAttainment[3];
costTotal = m[1] * ddpData->mCost[1] + m[2] * ddpData->mCost[2];

*cost = costTotal;

*att = attTotal;
}

Fig. 4. A trivial DDP model after knowledge compilation
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Model LOC Objectives Risks Mitigations
model1.c 55 3 2 2
model2.c 272 1 30 31
model3.c 72 3 2 3
model4.c 1241 50 31 58
model5.c 1427 32 70 99

Fig. 5. Details of Five DDP Models.

– Requirements form a tree;
– The relative influence of each leaf requirement is computed via a depth-first search

from the root down to the leaves.
– This computation is repeated each time the relative influence of a requirement is

required.

In our compiled form, the computation is performed once and added as a constant to
each reference of the requirement.

For example, here is a trivial DDP model where mitigation1 costs $10,000 to
apply and each requirement is of equal value (100):

$10,000︷ ︸︸ ︷
mitigation1 →︸︷︷︸

0.9

risk1 →

〈 0.1︷︸︸︷→ (requirement1 = 100)
→︸︷︷︸
0.99

(requirement2 = 100)

(The other numbers show the impact of mitigations on risks, and the impact of risks on
requirements).

The knowledge compiler converts this trivial DDP model into setupModel and
model functions similar to those in Figure 4. The setupModel function is called
only once and sets several constant values. The model function is called whenever
new cost and attainment values are needed. The topology of the mitigation network
is represented as terms in equations within these functions. As our models grow more
complex, so do these equations. For example, our biggest model, which contains 99
mitigations, generates 1427 lines of code. Figure 5 compares this biggest model to four
other real-world DDP models.

While not a linear process, knowledge compilation is not the bottleneck in our abil-
ity to handle real-time requirements optimization. Currently it takes about two seconds
to compile a model with 50 requirements, 31 risks, and 58 mitigations. Note that:

– This compilation only has to happen once, after which we will run our 2W what-if
scenarios.

– These runtimes come from an unoptimized Visual Basic implementation which we
can certainly significantly speed up.

– Usually, experts change a small portion of the model then run 2W what-if scenarios
to understand the impact of that change. An incremental knowledge compiler (that
only updates changed portions) would run much faster than a full compilation of
an entire DDP model.
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Initially, it was hoped that knowledge compilation by itself would suffice for real-
time requirements optimization. However, on experimentation, we found that it reduced
our runtimes by only one to two orders of magnitude. While an impressive speed up,
this is still two orders of magnitude too slow to to achieve the 10−2 seconds response
time required for real-time requirements optimization of 2W scenarios for (W ≤ 10)
what-if queries. Hence, in this paper, we combined knowledge compilation with AI
search methods.

Note that knowledge compilation is useful for more than just runtime optimization.
Without it, the collaborative research that led to this paper would have been impossible.
Knowledge compilation allows JPL to retain their proprietary information while at the
same time, allowing outsiders to access these models. For our experiments, JPL ran the
knowledge compiler and passed models like those shown in Figure 4 to West Virginia
University. These models have been anonymized to remove proprietary information
while still maintaining their computational nature. In this way, JPL could assure its
clients that any project secrets would be safe while allowing outside researchers to
perform valuable experiments.

5 Scoring Outputs

When the model function is called, a pairing of the total cost of the selected miti-
gations and the number of reachable requirements (attainment) is returned. All of our
algorithms then use that information to obtain a “score” for the current set of mitiga-
tions. The two numbers are normalized to a single score that represents the distance to
a sweet spot of maximum requirement attainment and minimum cost:

score =
√

cost
2 + (attainment− 1)2 (1)

Here, x is a normalized value 0 ≤ x−min(x)
max(x)−min(x) ≤ 1. Hence, our scores ranges

0 ≤ score ≤ 1 and higher scores are better.
The search methods presented below can be categorized many ways. However, for

our purposes, the following will be insightful:

– One group proposes settings to all variables, at each step of their search. For such
full solutions, scoring is a simple matter: just call the DDP model (e.g. Figure 4)
then execute Equation 1 on the returns cost and attainment values.

– Another group of search methods proposes settings to some subset of the variables.
For such partial solutions, the scoring procedure must be modified. Given fixed
settings to some of the variables, and free settings to the rest, call the DDP model
and Equation 1 N times (each time with randomly selected settings to the free
variables) and report the median of the generated scores.

In the following work, the following observation will be important. Scoring partial
solutions requires N calls to the models while scoring full solutions requires only one
call.
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6 Keys-Based Search

Our proposed solution to real-time requirements optimization assumes that the behavior
of a large system is determined by a very small number of key variables. For a system
with collars, the state space within the model keys to a small fraction of the possible
reachable states.

The following small example illustrates key variables. Within a model, there are
chains of reasons that link inputs to the desired goals. As one might imagine, some of
the links in the chain clash with others. Some of those clashes are most upstream; they
are not dependent on other clashes. In the following chains of reasoning the clashes are
{e,¬e}, {g,¬g} & {j,¬j}; the most upstream clashes are {e¬e}, & {g¬g},

a −→ b −→ c −→ d −→ e
input1 −→f −→ g −→ h −→ i −→ j −→ goal
input2 −→k → ¬g −→ l −→ m → ¬j −→ goal

n −→ o −→ p −→ q −→ ¬e

In order to optimize decision making about this model, we must first decide about these
upstream clashing reasons. We refer to these decisions as the collars as they have the
most impact on the rest of the model.

Returning to the above reasoning chains, any of {a, b, ..q} are subject to discussion.
However, most of this model is completely irrelevant to the task of inputi ` goal. For
example, the {e,¬e} clash is unimportant to the decision making process as no reason
uses e or¬e. In the context of reaching goal from inputi, the only important discussions
are the clashes {g,¬g, j,¬j}. Further, since {j,¬j} are dependent on {g,¬g}, then the
core decision must be about variable g with two disputed values: true and false.

We call g the collar since it restricts the entire model. The collar may be internal to
a model and may not be directly controllable. We refer to the controllable variables that
can influence the collar as the keys In the previous example, those keys are inputi.

Using the keys to set the collars reduces the number of reachable states within the
model. Formally, the reachable states reduce to the cross-product of all of the ranges of
the collars. We call this the clumping effect. Only a small fraction of the possible states
are actually reachable. The effects of clumping can be quite dramatic. Without knowl-
edge of these chains and the collar, the above model has 220 > 1, 000, 000 possible con-
sistent states. However, in the context of inputi ` goal, those 1,000,000 states clumps
to just the following two states: {input1, f, g, h, i, j, goal} or {input2, k,¬g, l, m,¬j, goal}.

Our reading of the literature is that keys, collars have been discovered and redis-
covered many times. Elsewhere [55], we have documented dozens of papers that have
reported this effect under different names including narrows, master-variables, back
doors, and feature subset selection:

– Amarel [4] observed that search problems contain narrow sets of variables or col-
lars that must be used in any solution. In such a search space, what matters is not so
much how you get to these collars, but what decision you make when you get there.
Amarel defined macros encoding paths between narrows, effectively permitting a
search engine to jump between them.
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– In a similar theoretical analysis, Menzies & Singh [55] computed the odds of a
system selecting solutions to goals using complex, or simpler, sets of preconditions.
In their simulations, they found that a system will naturally select for tiny sets of
preconditions (a.k.a. the keys) at a very high probability.

– Numerous researchers have examined feature subset selection; i.e. what happens
when a data miner deliberately ignores some of the variables in the training data.
For example, Kohavi and John [48] showed in numerous datasets that as few as 20%
of the variables are key - the remaining 80% of variables can be ignored without
degrading a learner’s classification accuracy.

– Williams et.al. [75] discuss how to use keys (which they call “back doors”) to opti-
mize search. Constraining these back doors also constrains the rest of the program.
So, to quickly search a program, they suggest imposing some set values on the key
variables. They showed that setting the keys can reduce the solution time of certain
hard problems from exponential to polytime, provided that the keys can be cheaply
located, an issue on which Williams et.al. are curiously silent.

– Crawford and Baker [20] compared the performance of a complete TABLEAU
prover to a very simple randomized search engine called ISAMP. Both algorithms
assign a value to one variable, then infer some consequence of that assignment
with forward checking. If contradictions are detected, TABLEAU backtracks while
ISAMP simply starts over and re-assigns other variables randomly. Incredibly, ISAMP
took less time than TABLEAU to find more solutions using just a small number of
tries. Crawford and Baker hypothesized that a small set of master variables set the
rest and that solutions are not uniformly distributed throughout the search space.
TABLEAU’s depth-first search sometimes drove the algorithm into regions con-
taining no solutions. On the other hand, ISAMP’s randomized sampling effectively
searches in a smaller space.

In summary, the core assumption of our algorithms are supported in many domains.
If a model contains keys, then a general search through a large space of options is
superfluous. A better (faster, simpler) approach would be to just explore the keys. KEYS
uses support-based Bayesian sampling to quickly find these important variables.

6.1 The KEYS Algorithm, Version 1

There are two main components to KEYS - a greedy search and the BORE ranking
heuristic.

The greedy search explores a space of M mitigations over the course of M “eras”.
Initially, the entire set of mitigations is set randomly. During each era, one more mitiga-
tion is set to Mi = Xj , Xj ∈ {true, false}. In the original version of KEYS [53], the
greedy search fixes one variable per era. This paper experimented with a newer version,
called KEYS2, that fixes an increasing number of variables as the search progresses
(see below for details).

For both KEYS and KEYS2, each era e generates a set < input, score > as fol-
lows:

1: MaxTries times repeat:
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– Selected[1. . .(e− 1)] are settings from previous eras.
– Guessed are randomly selected values for unfixed mitigations.
– Input = selected ∪ guessed.
– Call model to compute score = ddp(input);

2: The MaxTries scores are divided into β% “best” while the remainder are sent to
“rest”.

3: The mitigation values in the input sets are then scored using BORE (described
below).

4: The top ranked mitigations (the default is one, but the user may fix multiple miti-
gations at once) are fixed and stored in selected[e].

The search moves to era e + 1 and repeats steps 1,2,3,4. This process stops when ev-
ery mitigation has a setting. The exact settings for MaxTries and β must be set via
engineering judgment. After some experimentation, we used MaxTries = 100 and
β = 10. For full details, see Figure 6.

1. Procedure KEYS
2. while FIXED_MITIGATIONS != TOTAL_MITIGATIONS
3. for I:=1 to 100
4. SELECTED[1...(I-1)] = best decisions up to this step
5. GUESSED = random settings to the remaining mitigations
6. INPUT = SELECTED + GUESSED
7. SCORES= SCORE(INPUT)
8. end for
9. for J:=1 to NUM_MITIGATIONS_TO_SET
10. TOP_MITIGATION = BORE(SCORES)
11. SELECTED[FIXED_MITIGATIONS++] = TOP_MITIGATION
12. end for
13. end while
14. return SELECTED

Fig. 6. Pseudocode for KEYS

KEYS ranks mitigations by combining a novel support-based Bayesian ranking
measure. BORE [16] (short for “best or rest”) divides numeric scores seen over K runs
and stores the top 10% in best and the remaining 90% scores in the set rest (the best set
is computed by studying the delta of each score to the best score seen in any era). It then
computes the probability that a value is found in best using Bayes theorem. The theo-
rem uses evidence E and a prior probability P (H) for hypothesis H ∈ {best, rest}, to
calculate a posteriori probability P (H|E) = P (E|H)P (H) / P (E). When applying
the theorem, likelihoods are computed from observed frequencies. These likelihoods
(called ”like” below) are then normalized to create probabilities. This normalization
cancels out P (E) in Bayes theorem. For example, after K = 10, 000 runs are divided
into 1,000 best solutions and 9,000 rest, the value mitigation31 = false might appear
10 times in the best solutions, but only 5 times in the rest. Hence:
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E = (mitigation31 = false)

P (best) = 1000/10000 = 0.1

P (rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01

freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) · P (best) = 0.001

like(rest|E) = freq(E|rest) · P (rest) = 0.000504

P (best|E) =
like(best|E)

like(best|E) + like(rest|E)
= 0.66 (2)

Previously [16], we have found that Bayes theorem is a poor ranking heuristic since it
is easily distracted by low frequency evidence. For example, note how the probability
of E belonging to the best class is moderately high even though its support is very low;
i.e. P (best|E) = 0.66 but freq(E|best) = 0.01.

To avoid the problem of unreliable low frequency evidence, we augment Equation 2
with a support term. Support should increase as the frequency of a value increases,
i.e. like(best|E) is a valid support measure. Hence, step 3 of our greedy search ranks
values via

P (best|E) ∗ support(best|E) =
like(best|E)2

like(best|E) + like(rest|E)
(3)

6.2 KEYS2: a Second Version of Keys

For each era, KEYS samples the DDP models and fixes the top N = 1 settings. The
following observation suggested that N = 1 is, perhaps, an overly conservative search
policy.

At least for the DDP models, we have observed that the improvement in costs and
attainments generally increase for each era of KEYS. This lead to the speculation that
we could jump further and faster into the solution space by fixing N ≥ 1 settings per
era. Such a jump policy can be implemented as a small change to KEYS:

– Standard KEYS assigns the value of one to NUM MITIGATIONS TO SET (see the
pseudo-code of Figure 6);

– Other variants of KEYS assigns larger values.

We experimented with several variants before settling on the following: in this variant,
era i sets i settings. We call this variant “KEYS2”. Note that, in era 1, KEYS2 behaves
exactly the same as KEYS while in (say) era 3, KEYS2 will fix the top 3 ranked ranges.
Since it sets more variables at each era, KEYS2 terminates earlier than KEYS.

7 Other Algorithms

In order to assess KEYS and KEYS2, we benchmarked those algorithms against al-
ternate algorithms. We selected the comparison algorithms with much care. Numerous
researchers stress the difficulties associated with comparing radically different algo-
rithms. For example, Uribe and Stickel [74] struggled valiantly to make some general
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statement about the value of Davis-Putnam proof (DP) procedures or binary-decision
diagrams (BDD) for constraint satisfaction problems. In the end, they doubted that it
was fair to compare algorithms that perform constraint satisfaction and no search (like
BDDs) and methods that perform search and no constraint satisfaction (like DP). For
this reason, researchers in model checking researchers like Holzmann (pers. communi-
cation) eschew companions of tools like SPIN [41], which are search-based, with tools
like NuSMV [14], which are BDD-based. Hence we take care to compare algorithms
similar to KEYS.

In terms of the Gu et al. survey [33], our selected algorithms (simulated anneal-
ing, a-star and MaxWalkSat) share four properties with KEYS and KEYS2. They are
each discrete, sequential, unconstrained algorithms (constrained algorithms work to-
wards a pre-determine the number of possible solutions while unconstrained methods
are allowed to adjust the goal space.)

Also, the selected algorithms have other properties that make them informative:

– Simulated annealing is the de facto standard in search-based software engineering,
perhaps because it is so simple to implement. By comparing KEYS with SA, we
can see how well our new method improves over alternatives in widespread use.

– SA is very old (first defined in the 1950s) while algorithms like MaxWalkSat are
widely regarded as current state-of-the-art.

– ASTAR and KEYS2 offer full and partial solutions (respectively) over all or some
of the model input variables. As we shall see, KEYS2’s solutions are better than
ASTAR. This lets us comment on what is lost by KEYS2’s partial solutions (as we
shall see, there is no lose associated with using KEYS2’s partial solutions).

7.1 SimpleSA: Simulated Annealing

Simulated Annealing is a classic stochastic search algorithm. It was first described in
1953 [56] and refined in 1983 [47]. The algorithm’s namesake, annealing, is a technique
from metallurgy, where a material is heated, then cooled. The heat causes the atoms in
the material to wander randomly through different energy states and the cooling process
increases the chances of finding a state with a lower energy than the starting position.

For each round, SimpleSA “picks” a neighboring set of mitigations. To calculate this
neighbor, a function traverses the mitigation settings of the current state and randomly
flips those mitigations (at a 5% chance). If the neighbor has a better score, SimpleSA
will move to it and set it as the current state. If it isn’t better, the algorithm will decide
whether to move to it based on the mathematical function:

prob(w, x, y, temp(y, z)) = e
((w−x)∗ y

temp(y,z) ) (4)

temp(y, z) =
(z − y)

z
(5)

If the value of the prob function is greater than a randomly generated number, Sim-
pleSA will move to that state anyways. This randomness is the very cornerstone of the
Simulated Annealing algorithm. Initially, the “atoms” (current solutions) will take large
random jumps, sometimes to even sub-optimal new solutions. These random jumps al-
low simulated annealing to sample a large part of the search space, while avoiding being
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1. Procedure SimpleSA
2. MITIGATIONS:= set of mitigations
3. SCORE:= score of MITIGATIONS
4. while TIME < MAX_TIME && SCORE < MIN_SCORE //minScore is a constant score (threshold)
5. find a NEIGHBOR close to MITIGATIONS
6. NEIGHBOR_SCORE:= score of NEIGHBOR
7. if NEIGHBOR_SCORE > SCORE
8. MITIGATIONS:= NEIGHBOR
9. SCORE:= NEIGHBOR_SCORE
10. else if prob(SCORE, NEIGHBOR_SCORE, TIME, temp(TIME, MAX_TIME)) > RANDOM)
11. MITIGATIONS:= NEIGHBOR
12. SCORE:= NEIGHBOR_SCORE
13. TIME++
14. end while
15. return MITIGATIONS

Fig. 7. Pseudocode for SimpleSA

trapped in local minima. Eventually, the “atoms” will cool and stabilize and the search
will converge to a simple hill climber.

As shown in line 4 of Figure 7, the algorithm will continue to operate until the
number of tries is exhausted or a score meets the threshold requirement.

7.2 MaxFunWalk

The design of simulated annealing dates back to the 1950s. In order to benchmark
our new search engine (KEYS) against a more recent state-of-the-art algorithm, we
implemented the variant of MaxWalkSat described below.

WalkSat is a local search method designed to address the problem of boolean satis-
fiability [46]. MaxWalkSat is a variant of WalkSat that applies weights to each clause in
a conjunctive normal form equation [68]. While WalkSat tries to satisfy the entire set of
clauses, MaxWalkSat tries to maximize the sum of the weights of the satisfied clauses.

In one respect, both algorithms can be viewed as a variant of simulated annealing.
Whereas simulated annealing always selects the next solution randomly, the WalkSat
algorithms will sometimes perform random selection while, other times, conduct a local
search to find the next best setting to one variable.

We have adapted MaxWalkSat to the DDP problem as follows. Our MaxFunWalk
algorithm is a variant of MaxWalkSat:

– Like MaxWalkSat, MaxFunWalk makes decisions about settings to variables.
– Unlike MaxWalkSat, MaxFunWalk scores those decisions by passing those settings

to some function. In the case of DDP optimization, that function is the scoring
function of Equation 1.

The MaxFunWalk procedure is shown in Figure 8. When run, the user supplies an
ideal cost and attainment. This setting is normalized, scored, and set as a goal threshold.
If the current setting of mitigations satisfies that threshold, the algorithm terminates.

MaxFunWalk begins by randomly setting every mitigation. From there, it will at-
tempt to make a single change until the threshold is met or the allowed number of

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1. Procedure MaxFunWalk
2. for TRIES:=1 to MAX-TRIES
3. SELECTION:=A randomly generate assignment of mitigations
4. for CHANGED:=1 to MAX-CHANGES
5. if SCORE satisfies THRESHOLD return
6. CHOSEN:= a random selection of mitigations from SELECTION
7. with probability P
8. flip a random setting in CHOSEN
9. with probability (P-1)
10. flip a setting in CHOSEN that maximizes SCORE
11. end for
12. end for
13. return BESTSCORE

Fig. 8. Pseudocode for MaxFunWalk

changes runs out (100 by default). A random subset of mitigations is chosen and a ran-
dom number P between 0 and 1 is generated. The value of P will decide the form that
the change takes:

– P≤ α: A stochastic decision is made. A setting is changed completely at random
within subset C.

– P> α: Local search is utilized. Each mitigation in C is tested until one is found that
improves the current score.

The best setting of α is a domain-specific engineering decision. For this study, we
used α = 0.3.

If the threshold is not met by the time that the allowed number of changes is ex-
hausted, the set of mitigations is completely reset and the algorithm starts over. This
measure allows the algorithm to avoid becoming trapped in local maxima. For the DDP
models, we found that the number of retries has little effect on solution quality.

If the threshold is never met, MaxFunWalk will reset and continue to make changes
until the maximum number of allowed resets is exhausted. At that point, it will return
the best settings found.

As an additional measure to improve the results found by MaxFunWalk, a heuristic
was implemented to limit the number of mitigations that could be set at one time. If too
many are set, the algorithm will turn off a few in an effort to bring the cost factor down
while minimizing the effect on the attainment.

7.3 A* (ASTAR)

A* is a best-first path finding algorithm that uses distance from origin (G) and estimated
cost to goal (H) to find the best path [38]. The algorithm has been proven to be optimal
for a given scoring heuristic [22], and has seen widespread use in multiple fields [42,
63, 65, 72].

A* is a natural choice for DDP optimization since the scoring function described
above is actually a Euclidean distance measure to the desired goal of maximum attain-
ment and minimum costs. Hence, for H, we can make direct use of Equation 1.
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1. Procedure ASTAR
2. CURRENT_POSITION:= Starting assignment of mitigations
3. CLOSED[0]:= Add starting position to closed list
4.
5. while END:= false
6. NEIGHBOR_LIST:=list of neighbors
7. for each NEIGHBOR in NEIGHBOR_LIST
8. if NEIGHBOR is not in CLOSED
9. G:=distance from start
10. H:=distance to goal
11. F:=G+H
12. if F<BEST_F
13. BEST_NEIGHBOR:=NEIGHBOR
14. end for
15. CURRENT_POSITION:= BEST_NEIGHBOR
16. CLOSED[++]:=Add new state to closed list
17. if STUCK
18. END:= true
19. end while
20. return CURRENT_POSITION

Fig. 9. Pseudocode for ASTAR

The ASTAR algorithm keeps a closed list in order to prevent backtracking. We
begin by adding the starting state to the closed list. In each “round”, a list of neighbors
is populated from the series of possible states reached by making a change to a single
mitigation. If that neighbor is not on the closed list, two calculations are made:

– G = Distance from the start to the current state plus the additional distance between
the current state and that neighbor.

– H = Distance from that neighbor to the goal (an ideal spot, usually 0 cost and a
high attainment determined by the model). For DDP models, we use Equation 1 to
compute H.

The best neighbor is the one with the lowest F=G+H. The algorithm “travels” to that
neighbor and adds it to the closed list. Part of the optimality of the A* algorithm is that
the distance to the goal is underestimated. Thus, the final goal is never actually reached
by ASTAR. Our implementation terminates once it stops finding better solutions for a
total of ten rounds. This number was chosen to give ample time for ASTAR to become
“unstuck” if it hits a corner early on.

7.4 Scoring Costs

Return now to the issue of scoring full versus partial solutions, we note that:

– At each era, KEYS and KEYS2 generate partial solutions that fix 1, 2, 3, ..|V | vari-
ables (where V is the set of variables).

– Simulated Annealing, MaxWalkSat, and MaxFunWalk work with full solutions
since, at each step, they offer settings to all v ∈ V variables.

– ASTAR could produce either full or partial solutions. If implemented as a full so-
lution generator, algorithm, each member of the closed list will contain a solution
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with fixed settings for all v ∈ V variables. If implemented as a partial solution
generator, then the open list will contain the current list of free variables and each
step of the search will fix one more setting.

As mentioned above, such a partial solution generator will require N calls to the model
in order to score the current solution; for example, KEYS and KEYS2 calls the models
100 times in each era. Since our concern is with runtimes, for this study, we used a full
solution generator for ASTAR.

8 Results

Each of the above algorithms was tested on the five models of Figure 5. Final attainment
and costs, runtimes, and (for KEYS/KEYS2), the convergence towards the final result
were recorded. That information is shown below.

Note that:

– Models one and three are trivially small and we used them to debug our code. We
report our results using models two, four and five since they are large enough to
stress test real-time optimization.

– Model 4 was discussed in [54] in detail. The largest, model 5 was optimized previ-
ously in [27]. As mentioned in the introduction, on contemporary machines, model
5 takes 300 seconds to optimize using our old, very slow, rule learning method.

8.1 Attainment and Costs

We ran each of our algorithms 1000 times on each model. This number was chosen
because it yielded enough data points to give a clear picture of the span of results. At
the same time, it is a low enough number that we can generate a set of results in a fairly
short time span.

The results are pictured in Figure 10. Attainment is along the x-axis and cost (in
thousands) is along the y-axis. Note that better solutions fall towards the bottom right
of each plot; i.e. lower costs and higher attainment. Also better solutions exhibit less
variance, i.e. are clumped tighter together.

These graphs give a clear picture of the results obtained by our four algorithms. Two
methods are clearly inferior:

– SimpleSA exhibit the worst variance, lowest attainments, and highest costs.
– MaxFunWalk is better than SimpleSA (less variance, lower costs, higher attain-

ment) but it is clearly inferior to the other methods.

As to the others:

– On smaller models such as model2, ASTAR produces higher attainments and lower
variance than the KEYS algorithms. However, this advantage disappears on the
larger models.

– On larger models such as model4 and model5 KEYS and KEYS2 exhibit lower
variance, lower costs, higher attainments than ASTAR.
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8.2 Runtime Analysis

Measured in terms of attainment and cost, there is little difference between KEYS and
KEYS2. However, as shown by Figure 11, KEYS2 runs twice to three times as fast
as KEYS. Interestingly, Figure 11 ranks two of the algorithms in a similar order to
Figure 10:

– SimpleSA is clearly the slowest;
– MaxFunWalk is somewhat better but not as fast as the other algorithms.

As to ASTAR versus KEYS or KEYS2:

– ASTAR is faster than KEYS;
– and KEYS2 runs in time comparable to ASTAR.

Measured in terms of runtimes, there is little to recommend KEYS2 over ASTAR. How-
ever, the two KEYS algorithms offer certain functionality which, if replicated in AS-
TAR, would make that algorithm much slower. To understand that functionality, we
return to the issue of solution stability within the full versus partial solutions discussed
in §3.2.

Figure 12 shows the effects of the decisions made by KEYS and KEYS2. For KEYS
and KEYS2, at x = 0, all of the mitigations in the model are set at random. During each

Model 2 Model 4 Model 5
(31 mitigations) (58 mitigations) (99 mitigations)
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Fig. 10. 1000 results of running four algorithms on three models (12,000 runs in all). The y-axis shows cost and the x-axis
shows attainment. The size of each model is measured in number of mitigations. Note that better solutions fall towards the
bottom right of each plot; i.e. lower costs and higher attainment. Also better solutions exhibit less variance, i.e. are clumped
tighter together.
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Model 2 Model 4 Model 5
(31 mitigations) (58 mitigations) (99 mitigations)

SimpleSA 0.577 1.258 0.854
MaxFunWalk 0.122 0.429 0.398

ASTAR 0.003 0.017 0.048
KEYS 0.011 0.053 0.115
KEYS2 0.006 0.018 0.038

Fig. 11. Runtimes in seconds, averaged over 100 runs, measured using the “real time” value from
the Unix times command. The size of each model is measured in number of mitigations (and
for more details on model size, see Figure 5).

subsequent era, more mitigations are fixed (KEYS sets one at a time, KEYS2 sets one
or more at a time). The lines in each of these plots show the median and spread seen in
the 100 calls to the model function during each round. We define median as the 50th
percentile and spread (the measure of deviation around the median) as (75th percentile
- median). Interestingly, as we can see in the plots, the spread is generally quite small
compared to the median, particularly after 20 decisions. This indicates that our median
estimates are good descriptions of the tendencies of the models.

The plots for KEYS and KEYS2 are nearly identical:

– On termination (at maximum value of x), KEYS and KEYS2 arrive at nearly iden-
tical median results (caveat: for model2, KEYS2 attains slightly more requirements
at a slightly higher cost than KEYS).

– The spread plots for both algorithms are almost indistinguishable (exception: in
model2, the KEYS2 spread is less than KEYS).

Since these results are so similar, and KEYS2 runs faster than KEYS, we recommend
KEYS2 over KEYS.

9 Discussion

Returning now to the issue of robust solutions for SBSE discussed in §2.3, one key
feature of KEYS and KEYS2 is the ease with which they support partial solutions as
well as neighborhood and trade-off information.

– Suppose a manager is advocating a policy based on the mitigations found by KEYS2
in some range 1..X . Figure 12 lets them readily discuss the effects of solutions in
the neighborhood of X . For example, the effects of applying (say) x/2 (half) or
double 2x that solution is readily seen, just by glancing at Figure 12

– Neighborhood information allows managers to explore trade offs in how they ad-
just their projects. If they lack sufficient resources to implement all of KEYS2’s
recommendations, they can consider the merits of partial solutions. For example,
in model4 and model5, most of the improvement comes making just 20 decisions.
Hence, for these models, managers might decide to implement a succinct partial
solution (i.e. all the recommendations 1 ≤ x ≤ 20).
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Figure 12a: Internal Decisions on Model 2.
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Figure 12b: Internal Decisions on Model 4.

 0

500

1000

1500

 1  10  20  30  40  50  60  70  80  90

C
os

t (
K

)

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

 0

 50

 100

 150

 200

 250

 1  10  20  30  40  50  60  70  80  90

A
tta

in
m

en
t

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

Figure 12c: Internal Decisions on Model 5.

Fig. 12. Median and spread of partial solutions learned by KEYS and KEYS2. X-axis shows the
number of decisions made. “Median” shows the 50-th percentile of the measured value seen in
100 runs at each era. “Spread” shows the difference between the 75th and 50th percentile.

KEYS2 and KEYS generate neighborhood information as a side-effect of their pro-
cessing. The other algorithms discussed here also generate neighborhood information,
but at the expense of greatly increased runtimes. For example, as mentioned above (end
of §6), ASTAR could be modified to produce partial solutions but this would increase
the runtimes of that algorithm since it would require multiple calls to the scoring func-
tion.
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The lesson of KEYS is that such multiple scoring is avoidable, at least for some
requirements models. Historically, KEYS was originally designed as a post-processor
to other algorithms. We proposed a greedy forward select search to prune solutions gen-
erated by other means. That order of that search was to have been informed by minimal
instrumentation of other methods. Then, just as an experiment, we tried replacing (a)
the other algorithms with a random input generator; and (b) replacing the minimal in-
strumentation with the Bayes sampling methods of Equation 3. As shown above, this
approach ran much faster. That is, at least for the models we have explored so far, it
may well be that the post-processor can replace the original processing.

10 Conclusion

As our requirements engineering tools grow better, and they will be used by larger
groups who will build and debate increasingly complex models. In the net-enabled 21st

century, it is hard to keep a group’s attention focused on the same set of issues.
We propose a model-based solution that runs fast enough to keep up with the group’s

dialogue and debates. We define real-time requirement optimization as the task of gen-
erating conclusions from requirements models before an expert’s attention wanders to
other issues. Our hope is that these conclusions will be so riveting (either startling, en-
couraging, or worrying) that the group will stop entering into side-debates, focusing
instead on the conclusions from the requirements optimizer.

Based on a back-of-the-envelope calculation (presented in the appendix) we advised
that that real-time requirements optimization of current models running on contempo-
rary machines must terminate in time at least 10−2 seconds. The generated solution
must have two properties:

– Partial solutions, since software project managers may be unable or unwilling to
precisely control all aspects of a project; and

– Robustness information commenting on the brittleness of that solution within the
space of nearby solutions.

The experiments of this paper recommend knowledge compilation and KEYS2 for
real-time requirements optimization:

– Knowledge compilation speeds up optimization by one to two orders of magnitude.
While this is not enough by itself to support (say) the JPL models of the kind we
expect to see in the near future, it is certainly useful when combined with AI search
algorithms.

– KEYS2 runs faster than KEYS and four orders of magnitude faster than our previ-
ous rule-learning based approach (for model5, 300 seconds from rule learning [27]
to 0.038 seconds for KEYS2). That is, KEYS2 is fast enough for real-time require-
ments optimization.

– KEYS2 is an incremental keys-based search algorithm. A log of its incremental
findings can be presented in simple diagrams like Figure 12. Glancing at that dia-
gram, it is simple to understand the trade space around the neighborhood of partial
solutions.
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We have shown that, at least for the DDP models, KEYS2 out-performs other meth-
ods. When compared to those of ASTAR, we see that ASTAR can over-specify a solu-
tion. KEYS2’s partial solutions achieve the same, or better, goals that ASTAR and but,
as shown by the trade space of Figure 12 can often do so using only part of the solutions
proposed by ASTAR. As to other search algorithms, SimpleSA and MaxFunWalk run
slower than KEYS2 and result in solutions with much larger variance.

We attribute the success of KEYS2 to the presence of keys in our models; i.e.
variables that control everything else. These key variables were exploited by KEYS2
using two methods: BORE finds promising keys with high probabilistic support; and
KEYS2’s greedy search sets the most promising key, before exploring the remaining
options.

Elsewhere [55], we have documented dozens of papers that have reported the keys
effect under different names including narrows, master-variables, back doors, and fea-
ture subset selection. That is, in theory, a keys-aware search like KEYS2 could optimize
the processing of many other models. Our intent for this paper is to motivate other keys-
based optimizations for other kinds of models.
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Appendix

This appendix shows a “back of the envelope” calculation on how fast trade space anal-
ysis needs to run on current machines in order to handle larger requirement models of
the kind we expect to see in five years time. We will assume that those models are in
the DDP format and that our goal is five seconds to complete a 2W trade space analysis
of W ≤ 10 DDP scenarios.

Figure 13 shows the growth rate (historical and projected) of variables within DDP
models. Note that by 2013, it is expected that DDP models will be eight times larger
than today.

It is possible to estimate the required speed of our algorithms on contemporary
computers, such that by the year 2013, DDP optimization will terminate in 5 seconds.
Assuming a doubling of CPU speed every two years, then by 2013 our computers will
run 2(2013−2008)/2 = 560% faster. However, DDP optimization time tends to grow
exponentially with the number of variables since larger models have more interconnec-
tions.

year #variables
2004 30
2008 100
2010 300
2013 800

Fig. 13. Growth trends: number of variables in the data dictionaries of NASA’s requirements
models.
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Fig. 14. Estimated time required on contemporary machines in order to handle W what-if sce-
narios of NASA requirements models in 2013 (when the models are assumed to be eight times
larger than those currently seen at JPL). The x-axis represents a range of assumptions on the size
of the exponential scale up factor X8.

Figure 14 shows those calculations assuming that we are exploring 2W scenarios in
the space of 1 ≤ W ≤ 10 what-ifs. We assume the larger models are slower to process
by some amount X8 where X is an exponential scale-up factor. Since we do not know
the exact value of X , Figure 14 explores a range of possible values.

These plots show that our current runtimes are orders of magnitude too slow for
real-time requirements optimization. If we run only one what-if query, the W = 1
curve shows that for even modest scale up facts (X ≥ 2), we require runtimes on
contemporary machines of 10−1 seconds; i.e. four orders of magnitude faster than the
rule learning approach we used in 2002 [27]. Worse, handling multiple what-ifs (e.g.
W <= 10) requires response times of at least of 10−2 seconds.
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