
Finding Robust Solutions in Requirements Models

Gregory Gay1, Tim Menzies1, Omid Jalali1, Gregory Mundy2,
Beau Gilkerson1, Martin Feather3, and James Kiper4

1 West Virginia University, Morgantown, WV, USA
2 Alderson-Broaddus College, Philippi, WV

3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
4 Dept. of Computer Science and Systems Analysis, Miami University, Oxford, OH, USA

greg@greggay.com, tim@menzies.us, jalali.omid@gmail.com,
beau.gilkerson@gmail.com, mundyge@ab.edu,

martin.s.feather@jpl.nasa.gov, kiperjd@muohio.edu

Abstract. Solutions to non-linear requirements engineering problems may be
“brittle”; i.e. small changes may dramatically alter solution effectiveness. Hence,
it is not enough to just generate solutions to requirements problems- we must also
assess solution robustness. The KEYS2 algorithm can generate decision ordering
diagrams. Once generated, these diagrams can assess solution robustness in linear
time. In experiments with real-world requirements engineering models, we show
that KEYS2 can generate decision ordering diagrams in O(N2). When assessed
in terms of terms of (a) reducing inference times, (b) increasing solution quality,
and (c) decreasing the variance of the generated solution, KEYS2 out-performs
other search algorithms (simulated annealing, ASTAR, MaxWalkSat).

1 Introduction

Consider a “requirements model” where stakeholders write:

– Their various goals;
– Their different methods to reach those goals;
– Their view of the possible risks that compromise those goals;
– What mitigations they believe might reduce those risks.

A “solution” to such models is a least cost set of mitigations that reduce the most risks,
thereby enabling the most requirements. In theory, software can find the solution that
best exploits and most satisfies the various goals of our different stakeholders. Such
tools might find good solutions that were missed by stakeholders. Finding solutions to
these requirements models is a non-linear optimization problem (minimize the sum of
the mitigation costs while maximizing the number of achieved requirements).

There are many heuristic methods that can generate solutions to non-linear problems
(see Related Work, below). However, such heuristic methods can be brittle; i.e. small
changes may dramatically alter the effectiveness of the solution. Therefore, it important
to understand the neighborhood around the solution. A naive approach to understanding
the neighborhood might be to run a system N times then report:

– the solutions appearing in more than (say) N
2 cases;

– results with a ±95% confidence interval.

Note that both these approaches requires multiple runs of an analysis method. Multiple
runs are undesirable since, in our experience [20], stakeholders often ask questions
across a range of “scenarios”; i.e. hard-wired constraints that cannot be changed in
that scenario. For example, three scenarios might be “what can be achieved assuming a
maximum budget of one, two, or five million dollars?”. Scenario analysis can be time
consuming. Reflecting over (say) d = 10 possible decisions a statistically significant
number of times (e.g. N = 20) requires up to 20∗210 > 20, 000 repeats of the analysis.

Therefore, this paper proposes a rapid method for exploring decision neighbor-
hoods. Decision ordering diagrams are a visual representation of the effects of changing
a solution. We show below that:

– Using these diagrams, the region around a solution can be explored in linear time.
– A greedy Bayesian-based method called KEYS2 can generate the decision ordering

diagrams in O(N2) time.
– KEYS2 yields solutions of higher quality that several other methods (simulated

annealing, MaxWalkSat, ASTAR).
– Also, the variance of the solutions found by KEYS2 is less (and hence, better) than

those found by the other methods.

This paper is structured as follows:

– After some background notes on the solution robustness, we describe the DDP
requirements engineering tool used at NASA’s Jet Propulsion Laboratory (the case
studies for this paper come from real-world early lifecycle DDP models);

– DDP inputs and outputs are then reviewed;
– Next, decision ordering diagrams are introduced;
– We then define and compare five different algorithms for generating solutions from

DDP models: KEYS, KEYS2, Simulated Annealing, MaxWalkSat, ASTAR. Exper-
imental results will show that KEYS2 out-performs the other methods (measured
in terms of quickly generating high quality solutions that allow us to reflect over
solution robustness).

– Finally, we offer some notes on related work and conclusions.

This paper extends a prior publication [39] in several ways:

– That paper did not address concerns of solution robustness.
– That paper did not explore a range of alternate algorithms.
– This paper introduces KEYS2, which is an improved version of KEYS,.
– This paper offers extensive notes on related work.

2 Background

According to Harman [30], understanding the neighborhood of solutions is an open
and pressing issue in search-based software engineering (SBSE). He argues that many
software engineering problems are over-constrained and no precise solution over all
variables is achievable; therefore partial solutions based on heuristic search methods
are preferred. Solution robustness is a major problem for such partial heuristic searches.

2

The results of such partial heuristic search may be “brittle”; i.e. small changes to the
search results may dramatically alter the effectiveness of the solution [31].

When offering partial solutions, it is very important to also offer insight into the
space of options around the proposed solution. Such neighborhood information is very
useful for managers with only partial control over their projects since it can give them
confidence that even if only some of their recommendations are effected, then at least
the range of outcomes is well understood. Harman [30] comments that understanding
the neighborhood of our solutions is an open and pressing issue in search-based soft-
ware engineering (SBSE):

“In some software engineering applications, solution robustness may be as im-
portant as solution functionality. For example, it may be better to locate an area
of the search space that is rich in fit solutions, rather than identifying an even
better solution that is surrounded by a set of far less fit solutions.”

“Hitherto, research on SBSE has tended to focus on the production of the fittest
possible results. However, many application areas require solutions in a search
space that may be subject to change. This makes robustness a natural second
order property to which the research community could and should turn its at-
tention [30].”

This paper reports a set of experiments on AI search for robust solutions. Our exper-
iments address two important concerns. Firstly, is demonstrating solution robustness a
time consuming task? Secondly, is it necessary, as Harman suggests that solution quality
must be traded off against solution robustness? That is, in our search for the conclusions
that were stable within their local neighborhood, would we have to reject better solu-
tions because they are less stable across their local neighborhood?

At least for the NASA models described in the next section, both these concerns are
unfounded. KEYS2 terminates in hundreths of a second (where as our prior implemen-
tations took minutes to terminate [22]). Also, the solutions found by KEYS2 where not
only of highest quality, they were also exhibited the lowest variance. Further, KEYS2
generates the decision ordering diagrams that can assess solution robustness in linear
time.

3 Requirements Modeling Using “DDP”

This section introduces the DDP requirements modeling tool [15, 20]. used to inter-
actively document the “Team-X” early lifecycle meetings at NASA’s Jet Propulsion
Laboratory (JPL). These meetings are the source of the real-world requirements models
used in this paper.

At “Team X” meetings, a large and diverse group of up to 30 experts from various
fields (propulsion, engineering, communication, navigation, science, etc) meet for very
short periods of time (hours to days) to produce a “mission concept” document. This
document may commit the project to, say, solar power rather nuclear power or a par-
ticular style of guidance software. All of the subsequent work is based on the initial
decisions documented in the mission concept.

3

1. Requirement goals:
– Spacecraft ground-based testing & flight problem monitoring
– Spacecraft experiments with on-board Intelligent Systems Health Management (ISHM)

2. Risks:
– Obstacles to spacecraft ground-based testing & flight problem monitoring

• Customer has no, or insufficient, money available for our use
• Difficulty of building the models / design tools

– ISHM Experiment is a failure (without necessarily causing flight failure)
– Usability, User/Recipient-system interfaces undefined
– V&V (certification path) untried and scope unknown
– Obstacles to Spacecraft experiments with on-board ISHM

• Bug tracking / fixes / configuration management issues, Managing revisions and
upgrades (multi-center tech. development issue)

• Concern about our technology interfering with in-flight mission
3. Mitigations:

– Mission-specific actions
• Spacecraft ground-based testing & flight problem monitoring
• Become a team member on the operations team
• Use Bugzilla and CVS

– Spacecraft experiments with on-board ISHM
• Become a team member on the operations team
• Utilize xyz’s experience and guidance with certification of his technology

Fig. 1. Sample DDP requirements, risks, mitigations.

DDP allows for the representation of the goals, risks, and risk-removing mitiga-
tions that belong to a specific project. During a Team X meeting, users of DDP explore
combinations of mitigations that cost the least and support the most number of require-
ments. DDP propagate influences over matrices. For example, here is a trivial DDP
model where mitigation1 costs $10,000 to apply and each requirement is of equal
value (100). Note that the mitigation can remove 90% of the risk. Also, unless mitigated,
the risk will disable 10% to 99% of requirements one and two (respectively):

$10,000︷ ︸︸ ︷
mitigation1 →︸︷︷︸

0.9

risk1 →
〈 0.1︷︸︸︷→ (requirement1 = 100)
→︸︷︷︸
0.99

(requirement2 = 100) (1)

The other numbers show the impact of mitigations on risks, and the impact of risks on
requirements. The core of DDP is two matrices: one for mitigations*risks and another
for risks*requirements.

DDP is used as follows. A dozen experts, or more, gather together for short, inten-
sive knowledge acquisition sessions (typically, 3 to 4 half-day sessions). These sessions
must be short since it is hard to gather together these experts for more than a very short
period of time. The DDP tool supports a graphical interface for the rapid entry of the as-
sertions. Such rapid entry is essential, time is crucial and no tool should slow the debate.

4

Therefore, DDP uses a lightweight representations for its model. Such representations
are essential for early lifecycle decision making since only high-level assertions can be
collected in short knowledge acquisition sessions (if the assertions get more elaborate,
then experts may be unable to understand technical arguments from outside their own
field of expertise). Therefore, DDP uses the following lightweight ontology:

– Requirements (free text) describing the objectives and constraints of the mission
and its development process;

– Weights (numbers) of each requirements, reflecting their relative importance;
– Risks (free text) are events that damage requirements;
– Mitigations: (free text) are actions that reduce risks;
– Costs: (numbers) effort associated with mitigations, and repair costs for correcting

Risks detected by Mitigations;
– Mappings: directed edges between requirements, mitigations, and risks that capture

quantitative relationships among them.
– Part-of relations structure the collections of requirements, risks and mitigations;

Note that DDP models are the same as the “requirements models” we defined in the
introduction. For examples of risks, requirements, and mitigations, see Figure 1. For an
example of the network of connections between risks and requirements and mitigations,
see Figure 2.

Sometimes, we are asked if the analysis of DDP requirements models is a real prob-
lem. The usual question is something like: “With these ultra-lightweight languages,
aren’t all open issues just obvious?”. Such a question is usually informed by the small
model fragments that appear in the ultra-lightweight modeling literature. Those sample
model fragments are typically selected according to their ability to fit on a page or to
succinctly illustrate some point of the authors. Real world ultra-lightweight models can
be much more complex, paradoxically perhaps due to their simplicity: if a model is easy
to write then it is easy to write a lot of it. Figure 2, for example, was generated in under
a week by four people discussing one project. It is complex and densely-connected (a
close inspection of the left and right hand sides of Figure 2 reveals the requirements and
fault trees that inter-connect concepts in this model) and it is, by no means, the biggest
or most complex DDP model that has ever been built.

We base our experimentation around DDP for three reasons. Firstly, one potential
drawback with ultra-lightweight models is that they are excessively lightweight and
contain no useful information. DDP’s models are demonstrably useful (that is, we are
optimizing a real-world problem of some value). Clear project improvements have been
seen from DDP sessions at JPL. Cost savings in at least two sessions have exceeded $1
million, while savings of over $100,000 have resulted in others [20]. Cost savings are
not the only benefits of these DDP sessions. Numerous design improvements such as
savings of power or mass have come out of DDP sessions. Likewise, a shifting of risks
has been seen from uncertain architectural ones to more predictable and manageable
ones. At some of these meetings, non-obvious significant risks have been identified and
subsequently mitigated.

Our second reason to use DDP is that we can access numerous real-world require-
ments models written in this format, both now and in the future. The DDP tool can be
used to document not just final decisions but also to review the rationale that led to those

5

Fig. 2. An example of a model formed by the DDP tool. Red lines connect risks (middle) to
requirements (left). Green lines connect mitigations (right) to the risks.

6

decisions. Hence, DDP remains in use at JPL: not only for its original purpose (group
decision support), but also as a design rationale tool to document decisions. Recent
DDP sessions included:

– An identification of the challenges of intelligent systems health management (ISHM)
technology maturation (to determine the most cost-effective approach to achieving
maturation) [23];

– A study on the selection and planning of deployment of prototype software [21].

Our third, and most important reason to use DDP in our research is that the tool is
representative of other requirements modeling tools in widespread use. At its core, DDP
is a set of influences expressed in a hierarchy, augmented with the occasional equation.
Edges in the hierarchy have weights that strengthen or weaken influences that flow
along those edges. At this level of abstraction, DDP is just another form of QOC [64]
or a quantitative variant of Mylopoulos’ s qualitative soft goal graphs [54].

4 Model Inputs and Outputs

Before describing experimental comparisons of different methods for generating deci-
sion ordering diagrams, we will first offer more details on the DDP models.

4.1 Pre-Processing

To enable fast runtimes, a simple compiler exports the DDP models into a form acces-
sible by our algorithms. This compiler stores a flattened form of the DDP requirements
tree. In our compiled form, all computations are performed once and added as a con-
stant to each reference of the requirement. For example, the compiler converts the trivial
model of Equation 1 into setupModel and model functions similar to those in Fig-
ure 3. The setupModel function is called only once and sets several constant values.
The model function is called whenever new cost and attainment values are needed.
The topology of the mitigation network is represented as terms in equations within
these functions. As our models grow more complex, so do these equations. For exam-
ple, our biggest model, which contains 99 mitigations, generates 1427 lines of code.
Figure 4 compares the largest model to four other real-world DDP models.

Currently it takes about two seconds to compile a model with 50 requirements,
31 risks, and 58 mitigations. This compilation only has to happen once, after which
we will run our 2|d| what-if scenarios. While this is not a significant bottleneck, the
current compiler (written in unoptimized Visual Basic code) can certainly be sped up.
Experts usually change a small portion of the model then run 2|d| what-if scenarios to
understand the impact of that change. Therefore, an incremental compiler (that only
updates changed portions) would run much faster than a full compilation of the entire
DDP model.

4.2 Objective Function

When the model function is called, a pairing of the total cost of the selected miti-
gations and the number of reachable requirements (attainment) is returned. All of our

7

#include "model.h"

#define M_COUNT 2
#define O_COUNT 3
#define R_COUNT 2

struct ddpStruct
{

float oWeight[O_COUNT+1];
float oAttainment[O_COUNT+1];
float oAtRiskProp[O_COUNT+1];

float rAPL[R_COUNT+1];
float rLikelihood[R_COUNT+1];
float mCost[M_COUNT+1];
float roImpact[R_COUNT+1][O_COUNT+1];
float mrEffect[M_COUNT+1][R_COUNT+1];

};

ddpStruct *ddpData;

void setupModel(void)
{

ddpData = (ddpStruct *) malloc(sizeof(ddpStruct));
ddpData->mCost[1]=11;
ddpData->mCost[2]=22;
ddpData->rAPL[1]=1;
ddpData->rAPL[2]=1;
ddpData->oWeight[1]=1;
ddpData->oWeight[2]=2;
ddpData->oWeight[3]=3;
ddpData->roImpact[1][1] = 0.1;
ddpData->roImpact[1][2] = 0.3;
ddpData->roImpact[2][1] = 0.2;
ddpData->mrEffect[1][1] = 0.9;
ddpData->mrEffect[1][2] = 0.3;
ddpData->mrEffect[2][1] = 0.4;

}

void model(float *cost, float *att, float m[])
{

float costTotal, attTotal;
ddpData->rLikelihood[1] = ddpData->rAPL[1] * (1 - m[1] * ddpData->mrEffect[1][1])

* (1 - m[2] * ddpData->mrEffect[2][1]);
ddpData->rLikelihood[2] = ddpData->rAPL[2] * (1 - m[1] * ddpData->mrEffect[1][2]);
ddpData->oAtRiskProp[1] = (ddpData->rLikelihood[1] * ddpData->roImpact[1][1])

+ (ddpData->rLikelihood[2] * ddpData->roImpact[2][1]);
ddpData->oAtRiskProp[2] = (ddpData->rLikelihood[1] * ddpData->roImpact[1][2]);
ddpData->oAtRiskProp[3] = 0;
ddpData->oAttainment[1] = ddpData->oWeight[1] * (1 - minValue(1, ddpData->oAtRiskProp[1]));
ddpData->oAttainment[2] = ddpData->oWeight[2] * (1 - minValue(1, ddpData->oAtRiskProp[2]));
ddpData->oAttainment[3] = ddpData->oWeight[3] * (1 - minValue(1, ddpData->oAtRiskProp[3]));
attTotal = ddpData->oAttainment[1] + ddpData->oAttainment[2] + ddpData->oAttainment[3];
costTotal = m[1] * ddpData->mCost[1] + m[2] * ddpData->mCost[2];

*cost = costTotal;
*att = attTotal;

}

Fig. 3. A trivial DDP model after knowledge compilation

8

Model LOC Objectives Risks Mitigations
model1.c 55 3 2 2
model2.c 272 1 30 31
model3.c 72 3 2 3
model4.c 1241 50 31 58
model5.c 1427 32 70 99

Fig. 4. Details of Five DDP Models.

algorithms then use that information to obtain a “score” for the current set of mitiga-
tions. The two numbers are normalized to a single score that represents the distance to
a sweet spot of maximum requirement attainment and minimum cost:

score =
√

cost
2 + (attainment− 1)2 (2)

Here, x is a normalized value 0 ≤ x−min(x)
max(x)−min(x) ≤ 1. Hence, our scores ranges

0 ≤ score ≤
√

2 and lower scores are better.

4.3 Decision Ordering Diagrams

The objective function described above summarizes one call to a DDP model. This
section describes decision ordering diagrams, which are a tool for summarizing the
results of thousands of calls to DDP models.

Consider some recommendation for changes to a project that requires decisions d of
size |d|. In the general case, d is a subset of the space of all solutions D (d ⊆ D). When
checking for solution robustness, or reflecting over modifications to d, a stakeholder
may need to consider up to d′ ⊆ N |d| possibilities (and N = 2 for binary decisions of
the form “should I or should I not do this”). This can be a slow process, especially if
evaluating each decision requires invoking a complex and slow simulator.

Decision ordering diagrams are a linear time method for studying the robustness and
neighborhood of a set of decisions. The diagrams assume that some method could offer
a linear ordering of the decisions x ∈ d ranked from most-important to least-important.
They also assume that some method offers information on the effects of applying the
top-ranked 1 ≤ x ≤ |d| decisions (e.g. the median and variance seen in the model’s
objective function after applying solution {d1..dx}). For example, the decision ordering
diagram of Figure 5 shows such a linear ordering (this figure presents benefit and cost
results). In that figure:

– The x-axis denotes the number of decisions made.
– The y-axis shows performance statistics of an objective function seen after impos-

ing the conjunction of decisions 1 ≤ i ≤ x.

For performance, we run some objective function and report the median (50th per-
centile) and spread (the range given by the 75th percentile - the 50th percentile). We
use median and spread to avoid any parametric assumptions.

9

Fig. 5. A Decision Ordering Diagram. The median and spread plots show 50%-the percentile and
the (75-50)%-th percentile range (respectively) values generated from some objective function.

These diagrams can comment on the robustness and neighborhood of solution {d1..dx}
as follows:

– By considering the variance of the performance statistics after applying {d1..dx}.
– By comparing the results of using the first x decisions to that of using the first x−1

or x + 1 actions.

The neighborhood of a solution that uses decisions {d1..dx} are solutions that use the
decisions {d1..dx±j}. Since j is bounded 0 ≤ |d| − 1, this means that reflecting over
solution neighborhoods takes time linear on the number of decisions d.

Decision ordering diagrams are a natural representation for “trade studies,” the ac-
tivity of a multidisciplinary team to identify the most balanced technical solution among
a set of proposed viable solutions [2]. For example, minimum costs and maximum bene-
fits are achieved at point x2 of Figure 5. However, after applying only half the decisions
(see x1) most of the benefits could be achieved, albeit at a somewhat higher cost.

Decision ordering diagrams are useful under at least three conditions:

– The scores output by the objective functions are well-behaved; i.e. move smoothly
to a plateau.

– The decisions tame the variance; i.e. the spread falls to value much lower than then
median (otherwise, it is hard to show that decisions have any effect on the system
performance).

– The are generated in a timely manner. Fast runtimes are required in order to keep
up with fast moving discussion.

According to these definitions, Figure 5 is a useful decision ordering diagram if it can
be generated in a timely manner.

It is an open issue if real worlds requirements models generate useful decision or-
dering diagrams. The following experiments test if, in practice, decision ordering di-
agrams generated from real world requirements models are timely to generate while
being well-behaved and tame.

10

5 Searching for Solutions

Our experiments compare the results of numerous algorithms. We selected these com-
parison algorithms with much care. Numerous researchers have stressed the difficul-
ties associated with comparing radically different algorithms. For example, Uribe and
Stickel [67] tried to make some general statement about the value of Davis-Putnam
proof (DP) procedures or binary-decision diagrams (BDD) for constraint satisfaction
problems. In the end, they doubted that it was fair to compare algorithms that perform
constraint satisfaction and no search (like BDDs) and methods that perform search and
no constraint satisfaction (like DP). For this reason, model checking researchers like
Holzmann (pers. communication) eschew comparisons of tools like SPIN [35], which
are search-based, with tools like NuSMV [11], which are BDD-based. Hence we take
care to only select algorithms which are similar to KEYS.

In terms of the Gu et al. survey [27], our selected algorithms (simulated annealing,
ASTAR and MaxWalkSat) share four properties with KEYS and KEYS2. They are each
discrete, sequential, unconstrained algorithms (constrained algorithms work towards a
pre-determined number of possible solutions while unconstrained methods are allowed
to adjust to the goal space).

For full details on simulated annealing, ASTAR, and MaxFunWalk, see below. We
observe that these algorithms share the property that at each step of their processing,
they comment on all model inputs. KEYS2, on the other hand, explores the conse-
quences of setting only a subset of the possible inputs.

5.1 SA: Simulated Annealing

Simulated Annealing is a classic stochastic search algorithm. It was first described in
1953 [51] and refined in 1983 [43]. The algorithm’s namesake, annealing, is a technique
from metallurgy, where a material is heated, then cooled. The heat causes the atoms in
the material to wander randomly through different energy states and the cooling process
increases the chances of finding a state with a lower energy than the starting position.

For each round, SA “picks” a neighboring set of mitigations. To calculate this neigh-
bor, a function traverses the mitigation settings of the current state and randomly flips
those mitigations (at a 5% chance). If the neighbor has a better score, SA will move to
it and set it as the current state. If it isn’t better, the algorithm will decide whether to
move to it based on the mathematical function:

prob(w, x, y, temp(y, z)) = e
((w−x)∗ y

temp(y,z)) (3)

temp(y, z) =
(z − y)

z
(4)

If the value of the prob function is greater than a randomly generated number, SA will
move to that state anyways. This randomness is the very cornerstone of the Simulated
Annealing algorithm. Initially, the “atoms” (current solutions) will take large random
jumps, sometimes to even sub-optimal new solutions. These random jumps allow simu-
lated annealing to sample a large part of the search space, while avoiding being trapped
in local minima. Eventually, the “atoms” will cool and stabilize and the search will
converge to a simple hill climber.

11

1. Procedure SA
2. MITIGATIONS:= set of mitigations
3. SCORE:= score of MITIGATIONS
4. while TIME < MAX_TIME && SCORE < MIN_SCORE //minScore is a constant score (threshold)
5. find a NEIGHBOR close to MITIGATIONS
6. NEIGHBOR_SCORE:= score of NEIGHBOR
7. if NEIGHBOR_SCORE > SCORE
8. MITIGATIONS:= NEIGHBOR
9. SCORE:= NEIGHBOR_SCORE
10. else if prob(SCORE, NEIGHBOR_SCORE, TIME, temp(TIME, MAX_TIME)) > RANDOM)
11. MITIGATIONS:= NEIGHBOR
12. SCORE:= NEIGHBOR_SCORE
13. TIME++
14. end while
15. return MITIGATIONS

Fig. 6. Pseudocode for SA

As shown in line 4 of Figure 6, the algorithm will continue to operate until the
number of tries is exhausted or a score meets the threshold requirement.

5.2 MaxFunWalk

The design of simulated annealing dates back to the 1950s. In order to benchmark our
own search engine (KEYS2) against a more state-of-the-art algorithm, we implemented
the variant of MaxWalkSat described below.

WalkSat is a local search method designed to address the problem of boolean sat-
isfiability [42]. MaxWalkSat is a variant of that algorithm that applies weights to each
clause in a conjunctive normal form equation [62]. While WalkSat tries to satisfy the en-
tire set of clauses, MaxWalkSat tries to maximize the sum of the weights of the satisfied
clauses.

In one respect, both algorithms can be viewed as a variant of simulated annealing.
Whereas simulated annealing always selects the next solution randomly, the WalkSat
algorithms will sometimes perform random selection while, other times, conduct a local
search to find the next best setting to one variable.

MaxFunWalk is a generalization of MaxWalkSat:

– MaxWalkSat is defined over CNF formulae. The success of a collection of vari-
able settings is determined by how many clauses are “satisfiable” (defined using
standard boolean truth tables).

– MaxWalkFun, on the other hand, assumes that there exist an arbitrary function
that can assess a collection of variable settings. Here, we use the DDP model as a
assessment function.

Note that MaxWalkFun = MaxWalkSat if the assessment is conducted via a logi-
cal truth table.

The MaxFunWalk procedure is shown in Figure 7. When run, the user supplies an
ideal cost and attainment. This setting is normalized, scored, and set as a goal threshold.
If the current setting of mitigations satisfies that threshold, the algorithm terminates.

12

1. Procedure MaxFunWalk
2. for TRIES:=1 to MAX-TRIES
3. SELECTION:=A randomly generate assignment of mitigations
4. for CHANGED:=1 to MAX-CHANGES
5. if SCORE satisfies THRESHOLD return
6. CHOSEN:= a random selection of mitigations from SELECTION
7. with probability P
8. flip a random setting in CHOSEN
9. with probability (P-1)
10. flip a setting in CHOSEN that maximizes SCORE
11. end for
12. end for
13. return BESTSCORE

Fig. 7. Pseudocode for MaxFunWalk

MaxFunWalk begins by randomly setting every mitigation. From there, it will at-
tempt to make a single change until the threshold is met or the allowed number of
changes runs out (100 by default). A random subset of mitigations is chosen and a ran-
dom number P between 0 and 1 is generated. The value of P will decide the form that
the change takes:

– P≤ α: A stochastic decision is made. A setting is changed completely at random
within the set CHOSEN.

– P> α: Local search is utilized. Each mitigation in CHOSEN is tested until one is
found that improves the current score.

The best setting of α is domain-specific. For this study, we used α = 0.3.
If the threshold is not met by the time that the allowed number of changes is ex-

hausted, the set of mitigations is completely reset and the algorithm starts over. This
measure allows the algorithm to avoid becoming trapped in local maxima. For the DDP
models, we found that the number of retries has little effect on solution quality.

If the threshold is never met, MaxFunWalk will reset and continue to make changes
until the maximum number of allowed resets is exhausted. At that point, it will return
the best settings found.

As an additional measure to improve the results found by MaxFunWalk, a heuristic
was implemented to limit the number of mitigations that could be set at one time. If too
many are set, the algorithm will turn off a few in an effort to bring the cost factor down
while minimizing the effect on the attainment.

5.3 A* (ASTAR)

A* is a best-first path finding algorithm that uses distance from origin (G) and estimated
cost to goal (H) to find the best path [33]. The algorithm is widely used [36,57,59,66].

A* is a natural choice for DDP optimization since the objective function described
above is actually a Euclidean distance measure to the desired goal of maximum attain-
ment and minimum costs. Hence, for the second potion of the ASTAR heuristic, we can
make direct use of Equation 2.

13

The ASTAR algorithm keeps a closed list in order to prevent backtracking. We
begin by adding the starting state to the closed list. In each “round,” a list of neighbors
is populated from the series of possible states reached by making a change to a single
mitigation. If that neighbor is not on the closed list, two calculations are made:

– G = Distance from the start to the current state plus the additional distance between
the current state and that neighbor.

– H = Distance from that neighbor to the goal (an ideal spot, usually 0 cost and a high
attainment). For DDP models, we use Equation 2 to compute H.

The best neighbor is the one with the lowest F=G+H. The algorithm “travels” to that
neighbor and adds it to the closed list. Part of the optimality of the A* algorithm is that
the distance to the goal is underestimated. Thus, the final goal is never actually reached
by ASTAR. Our implementation terminates once it stops finding better solutions for a
total of ten rounds. This number was chosen to give ample time for ASTAR to become
“unstuck” if it hits a corner early on.

1. Procedure ASTAR
2. CURRENT_POSITION:= Starting assignment of mitigations
3. CLOSED[0]:= Add starting position to closed list
4.
5. while END:= false
6. NEIGHBOR_LIST:=list of neighbors
7. for each NEIGHBOR in NEIGHBOR_LIST
8. if NEIGHBOR is not in CLOSED
9. G:=distance from start
10. H:=distance to goal
11. F:=G+H
12. if F<BEST_F
13. BEST_NEIGHBOR:=NEIGHBOR
14. end for
15. CURRENT_POSITION:= BEST_NEIGHBOR
16. CLOSED[++]:=Add new state to closed list
17. if STUCK
18. END:= true
19. end while
20. return CURRENT_POSITION

Fig. 8. Pseudocode for ASTAR

5.4 KEYS and KEYS2

The core premise of KEYS and KEYS2 is that the above algorithms perform over-
elaborate searches. Suppose that the behavior of a large system is determined by a small
number of key variables. If so, then a very rapid search for solutions can be found by
(a) finding these keys then (b) explore the ranges of the key variables.

As documented in our Related Work section, this notion of keys has been discov-
ered and rediscovered many times by many researchers. Historically, finding the keys

14

has seen to be a very hard task. For example, finding the keys is analogous to find-
ing the minimal environments of DeKleer’ ATMS algorithm [17]. Formally, this logical
abduction, which is an NP-hard task [8].

Our method for finding the keys uses a Bayesian sampling method. If a model con-
tains keys then, by definition, those variables must appear in all solutions to that model.
If model outputs are scored by some oracle, then the key variables are those with ranges
that occur with very different frequencies in high/low scored model outputs. Therefore,
we need not search for the keys- rather, we just need to keep frequency counts on how
often ranges appear in best or rest outputs.

KEYS contains an implementation of this Bayesian sampling method. It has two
main components - a greedy search and the BORE ranking heuristic. The greedy search
explores a space of M mitigations over the course of M “eras.” Initially, the entire set
of mitigations is set randomly. During each era, one more mitigation is set to Mi = Xj ,
Xj ∈ {true, false}. In the original version of KEYS [48], the greedy search fixes one
variable per era. A newer variant, KEYS2, fixes an increasing number of variables as
the search progresses (see below for details).

In KEYS (and KEYS2), each era e generates a set < input, score > as follows:

1: MaxTries times repeat:
– Selected[1. . .(e− 1)] are settings from previous eras.
– Guessed are randomly selected values for unfixed mitigations.
– Input = selected ∪ guessed.
– Call model to compute score = ddp(input);

2: The MaxTries scores are divided into β% “best” and remainder become “rest”.
3: The input mitigation values are then scored using BORE (described below).
4: The top ranked mitigations (the default is one, but the user may fix multiple miti-

gations at once) are fixed and stored in selected[e].

1. Procedure KEYS
2. while FIXED_MITIGATIONS != TOTAL_MITIGATIONS
3. for I:=1 to 100
4. SELECTED[1...(I-1)] = best decisions up to this step
5. GUESSED = random settings to the remaining mitigations
6. INPUT = SELECTED + GUESSED
7. SCORES= SCORE(INPUT)
8. end for
9. for J:=1 to NUM_MITIGATIONS_TO_SET
10. TOP_MITIGATION = BORE(SCORES)
11. SELECTED[FIXED_MITIGATIONS++] = TOP_MITIGATION
12. end for
13. end while
14. return SELECTED

Fig. 9. Pseudocode for KEYS

The search moves to era e + 1 and repeats steps 1,2,3,4. This process stops when ev-
ery mitigation has a setting. The exact settings for MaxTries and β must be set via

15

engineering judgment. After some experimentation, we used MaxTries = 100 and
β = 10. For full details, see Figure 9.

KEYS ranks mitigations using a support-based Bayesian ranking measure called
BORE. BORE [12] (short for “best or rest”) divides numeric scores seen over K runs
and stores the top 10% in best and the remaining 90% scores in the set rest (the best set
is computed by studying the delta of each score to the best score seen in any era). It then
computes the probability that a value is found in best using Bayes theorem. The theorem
uses evidence E and a prior probability P (H) for hypothesis H ∈ {best, rest}, to
calculate a posteriori probability P (H|E) = P (E|H)P (H) / P (E). When applying
the theorem, likelihoods are computed from observed frequencies. These likelihoods
(called ”like” below) are then normalized to create probabilities. This normalization
cancels out P (E) in Bayes theorem. For example, after K = 10, 000 runs are divided
into 1,000 best solutions and 9,000 rest, the value mitigation31 = false might appear
10 times in the best solutions, but only 5 times in the rest. Hence:

E = (mitigation31 = false)

P (best) = 1000/10000 = 0.1

P (rest) = 9000/10000 = 0.9

freq(E|best) = 10/1000 = 0.01

freq(E|rest) = 5/9000 = 0.00056

like(best|E) = freq(E|best) · P (best) = 0.001

like(rest|E) = freq(E|rest) · P (rest) = 0.000504

P (best|E) =
like(best|E)

like(best|E) + like(rest|E)
= 0.66 (5)

Previously [12], we have found that Bayes theorem is a poor ranking heuristic since it
is easily distracted by low frequency evidence. For example, note how the probability
of E belonging to the best class is moderately high even though its support is very low;
i.e. P (best|E) = 0.66 but freq(E|best) = 0.01.

To avoid the problem of unreliable low frequency evidence, we augment Equation 5
with a support term. Support should increase as the frequency of a value increases,
i.e. like(best|E) is a valid support measure. Hence, step 3 of our greedy search ranks
values via

P (best|E) ∗ support(best|E) =
like(best|E)2

like(best|E) + like(rest|E)
(6)

For each era, KEYS samples the DDP models and fixes the top N = 1 settings.
KEYS2 assigns progressively larger values. In era 1, KEYS2 behaves exactly the same
as KEYS while in (say) era 3, KEYS2 will fix the top 3 ranked ranges. Since it sets
more variables at each era, KEYS2 terminates earlier than KEYS.

Note that decision ordering diagrams could be directly generated during execution,
just by collection statistics from the SCORES array used in line 7 of Figure 9.

6 Results

Each of the above algorithms was tested on the five models of Figure 4. Note that:

16

– Models one and three are trivially small. They were used them to debug our code,
but not in the core experiments. We report our results using models two, four and
five since they are large enough to stress test real-time optimization.

– Model 4 was discussed in [49] in detail. The largest, model 5 was optimized previ-
ously in [22]. At that time (2002), it took 300 seconds to generate solutions using
our old, very slow, rule learning method.

We also studied how well KEYS and KEYS2 scale to larger models. Further, we
instrumented KEYS and KEYS2 to generate decision ordering diagrams. The results
from all of these experiments are shown below.

6.1 Attainment and Costs

We ran all of our algorithms 1000 times on each model. This number was chosen be-
cause it yielded enough data points to give a clear picture of the span of results. At the
same time, it is a low enough number that we can generate a set of results in a fairly
short time span.

Model 2 Model 4 Model 5
(31 mitigations) (58 mitigations) (99 mitigations)

SA 0
15
30

 0 0.2 0.4 0.6 0.8
 0

2000
4000

 0 1000 2000 3000
 0

500
1000

 0 100 200

M
ax

Fu
nW

al
k

 0
15
30

 0 0.2 0.4 0.6 0.8
 0

2000
4000

 0 1000 2000 3000
 0

500
1000

 0 100 200

A
ST

A
R

 0
15
30

 0 0.2 0.4 0.6 0.8
 0

2000
4000

 0 1000 2000 3000
 0

500
1000

 0 100 200

K
EY

S

 0
15
30

 0 0.2 0.4 0.6 0.8
 0

2000
4000

 0 1000 2000 3000
 0

500
1000

 0 100 200

K
EY

S2

 0
15
30

 0 0.2 0.4 0.6 0.8
 0

2000
4000

 0 1000 2000 3000
 0

500
1000

 0 100 200

Fig. 10. 1000 results of running five algorithms on three models (15,000 runs in all). The y-axis shows cost and the x-axis
shows attainment. The size of each model is measured in number of mitigations. Note that better solutions fall towards the
bottom right of each plot; i.e. lower costs and higher attainment. Also better solutions exhibit less variance, i.e. are clumped
tighter together.

17

Model 2 (31 mitigations) Model 4 (58 mitigations) Model 5 (99 mitigations)
SA 0.577 1.258 0.854

MaxFunWalk 0.122 0.429 0.398
ASTAR 0.003 0.017 0.048
KEYS 0.011 0.053 0.115

KEYS2 0.006 0.018 0.038

Fig. 11. Runtimes in seconds, averaged over 100 runs, measured using the “real time” value from
the Unix times command. The size of each model is measured in number of mitigations (and
for more details on model size, see Figure 4).

The results are pictured in Figure 10. Attainment is along the x-axis and cost (in
thousands) is along the y-axis. Note that better solutions fall towards the bottom right
of each plot; i.e. lower costs and higher attainment. Also, better solutions exhibit less
variance; that is, the results are clumped closely together.

These graphs give a clear picture of the results obtained by our various algorithms.
Two methods are clearly inferior:

– Simulated annealing exhibits the worst variance, lowest attainments, and highest
costs.

– MaxFunWalk is better than SA (less variance, lower costs, higher attainment) but
its variance is still far too high to use in any critical situation.

As to the others:

– On larger models such as model4 and model5, KEYS and KEYS2 exhibit lower
variance, lower costs, and higher attainments than ASTAR.

– On smaller models such as model2, ASTAR usually produces higher attainments
and lower variance than the KEYS algorithms (this advantage disappears on the
larger models). However, observe the results near the (0, 0) point of model2’s AS-
TAR results: sometimes ASTAR’s heuristic search failed completely for that model

6.2 Runtime Analysis
Measured in terms of attainment and cost, there is little difference between KEYS and
KEYS2. However, as shown by Figure 11, KEYS2 runs twice to three times as fast as
its predecessor. Interestingly, Figure 11 ranks two of the algorithms in a similar order
to Figure 10:

– Simulated annealing is clearly the slowest;
– MaxFunWalk is somewhat better but not as fast as the other algorithms.

As to ASTAR versus KEYS or KEYS2:

– ASTAR is faster than KEYS;
– and KEYS2 runs in time comparable to ASTAR.

Measured purely in terms of runtimes, there is little to recommend KEYS2 over AS-
TAR. However, ASTAR’s heuristic guesses were sometimes observed to be sub-optimal
(recall the above discussion on the (0, 0) results in model2’s ASTAR results). Such sub-
optimality was never observed for KEYS2.

18

Runtime (secs) KEYS
KEYS2

model expansion model size KEYS KEYS2
2 1 62 0.01 0.01 1.07
2 2 124 0.03 0.02 1.23
4 1 139 0.04 0.02 2.29
5 1 201 0.13 0.04 3.18
2 4 248 0.10 0.05 2.09
4 2 278 0.17 0.05 3.48
5 2 402 0.50 0.12 4.26
2 8 496 0.44 0.14 3.21
4 4 556 0.73 0.16 4.66
5 4 804 1.98 0.38 5.21
4 8 1112 2.97 0.52 5.71
5 8 1608 8.06 1.35 5.96

 0

 2.5

 5

 7.5

 10

 0 500 1000 1500
model size

runtimes (secs)

KEYS
KEYS2

Fig. 12. Runtimes KEYS vs KEYS2 (medians over 1000 repeats) as models increase in size. The
“model” number in column one corresponds to Figure 4. The “expansion factor” of column two
shows how much the instance generator expanded the model. The “model sizes” of column three
are the sum of mitigations, requirements, and risks seen in the expanded model.

Calls to model KEYS
KEYS2

model expansion model size KEYS KEYS2
2 1 62 3100 800 3.9
2 2 124 6200 1100 5.6
4 1 139 5800 1100 5.3
5 1 201 9900 1400 7.1
2 4 248 12400 1600 7.8
4 2 278 11600 1500 7.7
5 2 402 19800 2000 9.9
2 8 496 24800 2200 11.3
4 4 556 23200 2200 10.5
5 4 804 39600 2800 14.1
4 8 1112 46400 3000 15.5
5 8 1608 79200 4000 19.8

 0

25,000

50,000

75,000

100,000

 0 500 1000 1500
model size

model calls

KEYS
KEYS2

Fig. 13. Number of model calls made by KEYS vs KEYS2 (medians over 1000 results) as models
increase in size. This figure uses the same column structure as Figure 12.

6.3 Scale-Up Studies

Figure 12 and Figure 13 shows the effect of changing the size of the model on the
number of times that the model is asked to generate a score for both KEYS and KEYS2.
To generate these graph, an instance generator was created that:

– Examined the real-world DDP models of Figure 4;
– Extracted statistics related to the different types of nodes (mitigations or risks or

requirements) and the number of edges between different types of nodes;
– Used those statistics to build random models that were 1,2,4 and 8 times larger than

the original models.

Figure 14 shows the results of curve fitting to the plots of Figure 12 and Figure 13. The
KEYS and KEYS2 performance curves fit a low-order polynomial (of degree two) with
very high coefficients of determination (R2 ≥ 0.98).

Figure 14 suggests that we could scale either KEYS or KEYS2 to larger models.
However we still recommend KEYS2. The column marked KEY S

KEY S2 in Figure 13 shows
the ratio of the number of calls made by KEYS vs KEYS2. As models get larger, the

19

KEYS KEYS2
runtimes model calls runtimes model calls

exponential 0.82 0.83 0.88 0.93
polynomial (of degree 2) 0.99 0.99 0.99 0.98

Fig. 14. Coefficients of determination R2 of KEYS/KEYS2 performance figures, fitted to two
different functions: exponential or polynomial of degree two. Higher values indicate a better
curve fit. In all cases, the best fit is not exponential.

number of calls to the model are an order of magnitude greater in KEYS than in KEYS2.
If applied to models with slower runtimes than DDP, then this order of magnitude is
highly undesirable.

6.4 Decision Ordering Algorithms

The decision ordering diagrams of Figure 15 show the effects of the decisions made by
KEYS and KEYS2. For both algorithms, at x = 0, all of the mitigations in the model
are set at random. During each subsequent era, more mitigations are fixed (KEYS sets
one at a time, KEYS2 an incrementally increasing number). The lines in each of these
plots show the median and spread seen in the 100 calls to the model function during
each round.

Note that the these diagrams are tame and well-behaved:

– Tame: The ”spread” values quickly shrink to a small fraction of the median.
– Well-behaved: The median values move smoothly to a plateau of best performance

(high attainment, low costs).

On termination (at maximum value of x), KEYS and KEYS2 arrive at nearly identi-
cal median results (caveat: for model2, KEYS2 attains slightly more requirements at a
slightly higher cost than KEYS). The spread plots for both algorithms are almost in-
distinguishable (exception: in model2, the KEYS2 spread is less than KEYS). That is,
KEYS2 achieves the same results as KEYS, but (as shown in Figure 11 and Figure 12)
it does so in less time.

A core assumption of this work is the “keys” concept; i.e. a small number of vari-
ables set the remaining model variables. Figure 15 offers significant support for this as-
sumption: observe how most of the improvement in costs and attainments were achieved
after KEYS and KEYS2 made only a handful of decisions (often ten or fewer).

On another matter, it is insightful to reflect on the effectiveness of different algo-
rithms for generating decision ordering diagrams. KEYS2 is the most direct and fastest
method. As mentioned above, all of the required information can be collected dur-
ing one execution. On the other hand, simulated annealing, ASTAR, and MaxWalkSat
would require a post-processor to generate the diagrams:

– Given D possible decisions, At each era, KEYS and KEYS2 collects statistics on
partial solutions where 1, 2, 3, ..|d| variables are fixed (where d is the set of deci-
sions) while the remaining D − d decisions are made at random.

20

 0

10

20

30

 1 10 20 30

Co
st

 (K
)

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 1 10 20 30

At
ta

in
m

en
t

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

Figure 15a: Internal Decisions on Model 2.

 0

1000

2000

3000

4000

 1 10 20 30 40 50

Co
st

 (K
)

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

 0
 500

 1000
 1500
 2000
 2500
 3000

 1 10 20 30 40 50

At
ta

in
m

en
t

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

Figure 15b: Internal Decisions on Model 4.

 0

500

1000

1500

 1 10 20 30 40 50 60 70 80 90

Co
st

 (K
)

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

 0

 50

 100

 150

 200

 250

 1 10 20 30 40 50 60 70 80 90

At
ta

in
m

en
t

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

Figure 15c: Internal Decisions on Model 5.

Fig. 15. Median and spread of partial solutions learned by KEYS and KEYS2. X-axis shows the
number of decisions made. “Median” shows the 50-th percentile of the measured value seen in
100 runs at each era. “Spread” shows the difference between the 75th and 50th percentile.

21

– ASTAR, Simulated Annealing, and MaxFunWalk work with full solutions since
at each step they offer settings to all di ∈ D variables. In the current form, they
cannot comment on partial solutions. Modified forms of these algorithms could add
in extra instrumentation and extra post-processing to comment on partial solutions
using methods like feature subset selection [28] or a sensitivity analysis [61].

7 Related Work

7.1 Early vs Later Life-cycle Requirements Engineering

The case studies presented in this paper come from the NASA Jet Propulsion Lab’s
Team X meetings. Team X conducts early life-cycle requirement discussions.

Once a system is running, released, and being maintained or extended, another prob-
lem is release planning; i.e. what features to add to the next N releases. To solve this
problem, an inference engine must reason about how functionality extensions to cur-
rent software can best satisfy outstanding stakeholder requirements. The challenge of
release planning is that the benefits of added functionality must be weighed against the
cost of implementing those extensions.

Several approaches have been applied to this problem including:

– The OPTIMIZE tool of Ngo-The and Ruhe [56], which combines linear program-
ming with genetic programming to optimize release plans for software projects

– The weighted Pareto optimal genetic algorithm approach of Zhang et al. [70]

(See also the earlier comparison of exact vs greedy algorithms by Bagnall et al. [5]).
Without further experimentation, we cannot assert that KEYS2 will work as well

on later life-cycle models (such as those used in release planning) as it did above (on
the earlier life-cycle Team X models). However, at this time, we can see no reason why
KEYS2 would not work as a non-linear optimizer of these later life-cycle models. This
could be a productive area for future work.

7.2 Other Optimizers

As documented by the search-based SE literature [13,31,32,58] and Gu et al [27], there
are many possible optimization methods. For example:

– Gradient descent methods assume that an objective function F (X) is differentiable
at any single point N . A Taylor-series approximation of F (X) can be shown to
decrease fastest if the negative gradient (−∆F (N)) is followed from point N .

– Sequential methods run on one CPU while parallel methods spread the work over
a distributed CPU farm.

– Discrete methods assume model variables have a finite range (that may be quite
small) while continuous methods assume numeric values with a very large (possibly
infinite) range.

– The search-based SE literature prefers meta-heuristic methods like simulated an-
nealing, genetic algorithms and tabu search.

22

– Some methods map discrete values true/false into a continuous range 1/0 and then
use integer programming methods like CPLEX [53] to achieve results.

– Other methods find overlaps in goal expressions and generate a binary decision
diagram (BDD) where parent nodes store the overlap of children nodes.

This list is hardly exhaustive: Gu et al. list hundreds of other methods and no single
paper can experiment with them all. All the algorithms studied here are discrete and
sequential. We are currently exploring parallel versions of our optimizers but, so far,
the communication overhead outweighs the benefits of parallelism.

As to the general class of gradient descent methods, we do not use them since they
assume the objective function being optimizing is essentially continuous. Any model
with an “if” statement in it is not continuous since, at the “if” point, the program’s
behavior may become discontinuous. The requirements models studied here are dis-
continuous about every subset of every possible mitigation.

As to the more specific class of integer programming methods, we do not explore
them here for two reasons. Coarfa et al. [14] found that integer programming-based
approaches ran an order of magnitude slower than discrete methods like the MaxWalk-
Sat and KEYS2 algorithms that we use. Similar results have been reported by Gu et.al
where discrete methods ran one hundred times faster than integer programming [27].

Harman offers another reason to avoid integer programming methods. In his search-
based SE manifest, Harman [31] argues that many SE problems are over-constrained
and so there may exist no precise solution that covers all constraints. A complete solu-
tion over all variables is hence impossible and partial solution based on heuristic search
methods are preferred. Such methods may not be complete; however, as Clarke et al
remark, “...software engineers face problems which consist, not in finding the solution,
but rather, in engineering an acceptable or near-optimal solution from a large number
of alternatives.” [13]

7.3 Models of Requirements Engineering

DDP is a ultra-lightweight modeling tool. The value of ultra-lightweight ontologies
in early life cycle modeling is widely recognized. For example Mylopoulos’ soft-goal
graphs [54, 55] represent knowledge about non-functional requirements. Primitives in
soft goal modeling include statements of partial influence such as helps and hurts. An-
other commonly used framework in the design rationale community is a “questions-
options-criteria” (QOC) graph [64]. In QOC graphs:

– Questions suggest options. Deciding on one option can raise other questions;
– Options shown in a box denote selected options;
– Options are assessed by criteria;
– Criteria are gradual knowledge; i.e. they tend/reject to support options.

QOCs can succinctly summarize lengthy debates; e.g. the 480 sentences uttered in a
debate on interface options can be displayed in a QOC graph on a single page [45].
Saaty’s Analytic Hierarchy Process (AHP) [60] is a variant of QOC.

While DDP shares many of the design aspects of softgoals & QOC & AHP, it dif-
fers in its representations and inference method. As explained above around Equation 1,

23

where as AHP and QOC and softgoals propagate influences over hierarchies, DDP prop-
agate influences over matrices.

7.4 Formal Models of Requirements Engineering

Zave & Jackson [69] define requirements engineering as finding the specification S for
the domain assumptions K that satisfies the given requirements R; i.e.

find S such that S * R (7)

Jureta, Mylopoulous & Faulkner [41] (hereafter JMF) take issue with Equation 7, saying
that it implicitly assume that K, S,R are precise and complete enough for the satisfac-
tion relation to hold. More specifically, JMF complain that Equation 7 does not permit
partial fulfillment of (some) non-functional requirements. Also, the Zave&Jackson def-
inition does not allow any preference ordering of specification1 over specification2.
JMF offer a replacement ontology where classical inference is replaced with operators
that supports the generation and ranking of subsets of domain assumptions that lead to
maximal (w.r.t. size) subsets of the possible goals, and softgoal quality criteria5.

DDP reinterprets “*” in Equation 7 as an inference across numeric quantities, rather
than the inference over discrete logical variables suggested by Zave&Jackson. Hence,
it can achieve the same goals as JMF (ranking of partial solutions with weighted goals)
without requiring the JMF ontology.

7.5 Requirements Analysis Tools

There exist many powerful requirements analysis tools including continuous simula-
tion (also called system dynamics) [1, 65], state-based simulation (including petri net
and data flow approaches) [3,29,47], hybrid-simulation (combining discrete event sim-
ulation and systems dynamics) [19, 46, 63], logic-based and qualitative-based meth-
ods [7, chapter 20] [37], and rule-based simulations [52]. One can find these models
being used in the requirements phase (i.e. the DDP tool described below), design refac-
toring using patterns [25], software integration [18], model-based security [40], and
performance assessment [6]. Many researchers have proposed support environments to
help explore the increasingly complex models that engineers are developing. Gray et
al [26] have developed the Constraint-Specification Aspect Weaver (C-Saw), which
uses aspect-oriented approaches [24] to help engineers in the process of model trans-
formation. Cai and Sullivan [9] describe a formal method and tool called Simon that
“supports interactive construction of formal models, derives and displays design struc-
ture matrices... and supports simple design impact analysis.” Other tools of note are
lightweight formal methods such as ALLOY [38] and SCR [34] as well as UML tools
that allow for the execution of life cycle specifications (e.g. CADENA [10]).

5 According to JMF: “a salient characteristic of softgoals is that they cannot be satised to the
ideal extent, not only because of subjectivity, but also because the ideal level of satisfaction is
beyond the resources available to (and including) the system. It is therefore said that a softgoal
is not satised, but satisced.”

24

Many of the above tools were built to maximize the expressive power of the rep-
resentation language or the constraint language used to express invariants. What dis-
tinguishes our work is that we are willing to trade off representational or constraint
expressiveness for faster runtimes. There exists a class of ultra-lightweight model lan-
guages which, as we show above, can be processed very quickly. Any of the tools listed
in the last paragraph are also candidate solutions to the problem explored in this paper,
if it can be shown that their processing can generate tame and well-behaved decision
ordering diagrams in a timely manner.

7.6 Other Work on “Keys”

Elsewhere [50], we have documented dozens of papers that have reported the keys
effect (that a small number of variables set the rest) under different names including
narrows, master-variables, back doors, and feature subset selection:

– Amarel [4] observed that search problems contain narrow sets of variables or col-
lars that must be used in any solution. In such a search space, what matters is not so
much how you get to these collars, but what decision you make when you get there.
Amarel defined macros encoding paths between narrows, effectively permitting a
search engine to jump between them.

– In a similar theoretical analysis, Menzies & Singh [50] computed the odds of a
system selecting solutions to goals using complex, or simpler, sets of preconditions.
In their simulations, they found that a system will naturally select for tiny sets of
preconditions (a.k.a. the keys) at a very high probability.

– Numerous researchers have examined feature subset selection; i.e. what happens
when a data miner deliberately ignores some of the variables in the training data.
For example, Kohavi and John [44] showed in numerous datasets that as few as 20%
of the variables are key - the remaining 80% of variables can be ignored without
degrading a learner’s classification accuracy.

– Williams et.al. [68] discuss how to use keys (which they call “back doors”) to opti-
mize search. Constraining these back doors also constrains the rest of the program.
So, to quickly search a program, they suggest imposing some set values on the key
variables. They showed that setting the keys can reduce the solution time of certain
hard problems from exponential to polytime, provided that the keys can be cheaply
located, an issue on which Williams et.al. are curiously silent.

– Crawford and Baker [16] compared the performance of a complete TABLEAU
prover to a very simple randomized search engine called ISAMP. Both algorithms
assign a value to one variable, then infer some consequence of that assignment
with forward checking. If contradictions are detected, TABLEAU backtracks while
ISAMP simply starts over and re-assigns other variables randomly. Incredibly, ISAMP
took less time than TABLEAU to find more solutions using just a small number of
tries. Crawford and Baker hypothesized that a small set of master variables set the
rest and that solutions are not uniformly distributed throughout the search space.
TABLEAU’s depth-first search sometimes drove the algorithm into regions con-
taining no solutions. On the other hand, ISAMP’s randomized sampling effectively
searches in a smaller space.

25

In summary, the core assumption of our algorithms are supported in many domains.

8 Conclusion

Requirements tools such as the DDP tool (used at NASA for early lifecycle discus-
sions), contain a shared group memory that stores all of the requirements, risks, and
mitigations of each member of the group. Software tools can explore this shared mem-
ory to find consequences and interactions that may have been overlooked.

Studying that group memory is a non-linear optimization task: possible benefits
must be traded off against the increased cost of applying various mitigations. Har-
man [31] cautions that solutions to non-linear problems may be “brittle” - small changes
to the search results may dramatically alter the effectiveness of the solution. Hence,
when reporting an analysis of this shared group memory, it is vitally important to com-
ment on the robustness of the solution.

Decision ordering diagrams are a solution robustness assessment method. The dia-
grams rank all of the possible decisions from most-to-least influential. Each point x on
the diagrams shows the effects on imposing the conjunction of decisions 1 ≤ j ≤ x.
These diagrams can comment on the robustness and neighborhood of solution {d1..dx}
using two operators:

1. By considering the variance of the performance statistics after applying {d1..dx}.
2. By comparing the results of using the first x decisions to that of using the first x−1

or x + 1 actions.

Since the diagrams are sorted, this analysis of robustness and neighborhood takes, at
most, time linear of the number of decisions. That is, theoretically, it takes linear time
to use a decision ordering diagram (see §4.3).

Empirically, it take low-order polynomial time to generate a decision ordering di-
agram using KEYS2. This algorithm makes the “key” assumption (that a small group
of variables set everything else) and uses Bayesian ranking mechanism to quickly find
those keys. As discussed above in the Related Work section, this assumption holds over
a wide range of models used in a wide range of domains. This “keys” assumption can
be remarkably effective: our empirical results show that KEY2 can generate decision
ordering diagrams faster than the other algorithms studied here. Better yet, curve fits
to our empirical results show that KEYS runs in low-order polynomial time (of degree
two) and so should scale to very large models.

Prior to this work, our two pre-experimental concerns were that:

– We would need to trade solution robustness against solution quality. More robust
solutions may not have the highest quality.

– Demonstrating solution robustness requires multiple calls to an analysis procedure.

At least for the models studied here, neither concern was realized. KEYS2 generated
the highest quality solutions (lowest cost, highest attainments) and did so more quickly
than the other methods.

In §4.3 it was argued that decision ordering diagrams are useful when they are timely
to generate while being well-behaved and tame. KEYS2’s results are the most timely

26

(fastest to generate) of all of the methods studied here. As to the other criteria, Figure 15
shows that KEYS2’s decision ordering diagrams:

– Move smoothly to a plateau with only a small amount of “jitter”;
– Have very low spreads, compared to the median results.

That is, at least for the models explored here, KEYS2 generated decision ordering dia-
grams they are both well-behaved and tame.

In summary, we recommend KEYS2 for generating decision ordering diagrams
since, apart from the (slightly slower) KEYS algorithm, we are unaware of other search-
based software engineering methods that enable such a rapid reflection of solution ro-
bustness.

9 Acknowledgments

This research was conducted at West Virginia University, the Jet Propulsion Laboratory
under a contract with the National Aeronautics and Space administration, Alderson-
Broaddus College, and Miami University. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not constitute or imply its endorsement by the United States Government

References

1. T. Abdel-Hamid and S. Madnick. Software Project Dynamics: An Integrated Approach.
Prentice-Hall Software Series, 1991.

2. F. A. Administration. System engineering manual version 3.1, section 4.6: Trade
studies, 2006. Available from http://www.faa.gov/about/office_org/
headquarters_offices/ato/service_un%its/operations/sysengsaf/
seman/SEM3.1/Section%204.6.pdf.

3. M. Akhavi and W. Wilson. Dynamic simulation of software process models. In Proceedings
of the 5th Software Engineering Process Group National Meeting (Held at Costa Mesa,
California, April 26 - 29). Software engineering Institute, Carnegie Mellon University, 1993.

4. S. Amarel. Program synthesis as a theory formation task: Problem representations and so-
lution methods. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach: Volume II, pages 499–569. Kaufmann, Los
Altos, CA, 1986.

5. A. Bagnall, V. Rayward-Smith, and I. Whittley. The next release problem. Information and
Software Technology, 43(14), December 2001.

6. S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based performance prediction
in software development: A survey. IEEE Transactions on Software Engineering, 30(5), May
2004.

7. I. Bratko. Prolog Programming for Artificial Intelligence. (third edition). Addison-Wesley,
2001.

8. T. Bylander, D. Allemang, M. Tanner, and J. Josephson. The Computational Complexity of
Abduction. Artificial Intelligence, 49:25–60, 1991.

9. Y. Cai and K. J. Sullivan. Simon: modeling and analysis of design space structures. In ASE
’05: Proceedings of the 20th IEEE/ACM international Conference on Automated software
engineering, pages 329–332, New York, NY, USA, 2005. ACM Press.

27

10. A. Childs, J. Greenwald, G. Jung, M. Hoosier, and J. Hatcliff. Calm and cadena: Meta-
modeling for component-based product-line development. IEEE Computer, 39(2), Feburary
2006. Available from http://projects.cis.ksu.edu/docman/view.php/7/
129/CALM-Cadena-IEEE-Comp%uter-Feb-2006.pdf.

11. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking.
In Proc. International Conference on Computer-Aided Verification, 2002.

12. R. Clark. Faster treatment learning, Computer Science, Portland State University. Master’s
thesis, 2005.

13. J. Clarke, J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell, S. Man-
coridis, K. Rees, M. Roper, and M. Shepperd. Reformulating software engineering as a
search problem. IEE Proceedings-Software, 150(3):161–175, 2003.

14. C. Coarfa, D. D. Demopoulos, A. San, M. Aguirre, D. Subramanian, and M. Y. Vardi.
Random 3-sat: The plot thickens. In In Principles and Practice of Constraint Program-
ming, pages 143–159, 2000. Availabe from http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.42.3662.

15. S. Cornford, M. Feather, and K. Hicks. DDP a tool for life-cycle risk management. In IEEE
Aerospace Conference, Big Sky, Montana, pages 441–451, March 2001.

16. J. Crawford and A. Baker. Experimental results on the application of satisfiability algorithms
to scheduling problems. In AAAI ’94, 1994.

17. J. DeKleer. An Assumption-Based TMS. Artificial Intelligence, 28:163–196, 1986.
18. P. Denno, M. P. Steves, D. Libes, and E. J. Barkmeyer. Model-drven integration using exist-

ing models. IEEE Software, 20(5):59–63, Sept.-Oct. 2003.
19. P. Donzelli and G. Iazeolla. Hybrid simulation modelling of the software process. Journal

of Systems and Software, 59(3), December 2001.
20. M. Feather, S. Cornford, K. Hicks, J. Kiper, and T. Menzies. Application of a broad-spectrum

quantitative requirements model to early-lifecycle decision making. IEEE Software, 2008.
Available from http://menzies.us/pdf/08ddp.pdf.

21. M. Feather, K. Hicks, R. Mackey, and S. Uckun. Guiding technology deployment decisions
using a quantitative requirements analysis technique. In IEEE International Conference
on Requirements Engineering, Industrial Practice and Experience track Barcelona, Spain,
2008.

22. M. Feather and T. Menzies. Converging on the optimal attainment of requirements. In
IEEE Joint Conference On Requirements Engineering ICRE’02 and RE’02, 9-13th Septem-
ber, University of Essen, Germany, 2002. Available from http://menzies.us/pdf/
02re02.pdf.

23. M. Feather, S. Uckun, and K. Hicks. Technology maturation of integrated system health
management. In Space Technology and Applications International Forum (STAIF-2008)
Albuquerque, USA, February 2008.

24. R. E. Filman. Aspect-Oriented Software Development. Addison-Wesley, Boston, 2004.
25. R. France, S. Ghosh, E. Song, and D. Kim. A metamodeling approach to pattern-based moel

refractoringt. IEEE Software, 20(5):52–58, Sept.-Oct. 2003.
26. J. Gray, Y. Lin, and J. Zhang. Automating change evolution in model-driven engineering.

IEEE Computer, 39(2):51–58, February 2006.
27. J. Gu, P. W. Purdom, J. Franco, and B. W. Wah. Algorithms for the satisfiability (sat) prob-

lem: A survey. In DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, pages 19–152. American Mathematical Society, 1997.

28. M. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data
mining. IEEE Transactions On Knowledge And Data Engineering, 15(6):1437– 1447, 2003.
Available from http://www.cs.waikato.ac.nz/˜mhall/HallHolmesTKDE.
pdf.

28

29. D. Harel. Statemate: A working environment for the development of complex reactive sys-
tems. IEEE Transactions on Software Engineering, 16(4):403–414, April 1990.

30. M. Harman. The current state and future of search based software engineering. In Future of
Software Engineering, ICSE’07. 2007.

31. M. Harman and B. Jones. Search-based software engineering. Journal of Information and
Software Technology, 43:833–839, December 2001.

32. M. Harman and J. Wegener. Getting results from search-based approaches to software engi-
neering. In ICSE ’04: Proceedings of the 26th International Conference on Software Engi-
neering, pages 728–729, Washington, DC, USA, 2004. IEEE Computer Society.

33. P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of mini-
mum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4:100–107, 1968.

34. C. Heitmeyer. Software cost reduction. In J. J. Marciniak, editor, Encyclopedia of Soft-
ware Engineering, January 2002. Available from http://chacs.nrl.navy.mil/
publications/CHACS/2002/2002heitmeyer-encse.p%df.

35. G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, May 1997.

36. Y. Hui, E. Prakash, and N. Chaudhari. Game ai: artificial intelligence for 3d path finding. In
TENCON 2004. 2004 IEEE Region 10 Conference, volume 2, pages 306–309, 2004.

37. Y. Iwasaki. Qualitative physics. In P. C. A. Barr and E. Feigenbaum, editors, The Handbook
of Artificial Intelligence, volume 4, pages 323–413. Addison Wesley, 1989.

38. D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol., 11(2):256–290, 2002.

39. O. Jalali, T. Menzies, and M. Feather. Optimizing requirements decisions with keys.
In Proceedings of the PROMISE 2008 Workshop (ICSE), 2008. Available from http:
//menzies.us/pdf/08keys.pdf.

40. J. Jerjens and J. Fox. Tools for model-based security engineering. In ICSE ’06: Proceeding
of the 28th international conference on Software engineering, pages 819–822, New York,
NY, USA, 2006. ACM Press.

41. I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core ontology and problem in re-
quirements engineering. In International Requirements Engineering, 2008. RE ’08. 16th
IEEE, pages 71–80, Sept. 2008.

42. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic and stochastic
search. In Proceedings of the Thirteenth National Conference on Artificial Intelligence and
the Eighth Innovative Applications of Artificial Intelligence Conference, pages 1194–1201,
Menlo Park, Aug. 4–8 1996. AAAI Press / MIT Press. Available from http://www.cc.
gatech.edu/˜jimmyd/summaries/kautz1996.ps.

43. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

44. R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence,
97(1-2):273–324, 1997.

45. A. MacLean, R. Young, V. Bellotti, and T. Moran. Questions, options and criteria: Elements
of design space analysis. In T. Moran and J. Carroll, editors, Design Rationale: Concepts,
Techniques, and Use, pages 53–106. Lawerence Erlbaum Associates, 1996.

46. R. Martin and R. D. M. Application of a hybrid process simulation model to a software
development project. Journal of Systems and Software, 59(3), 2001.

47. R. Martin and D. M. Raffo. A model of the software development process using both con-
tinuous and discrete models. International Journal of Software Process Improvement and
Practice, June/July 2000.

48. T. Menzies, O. Jalali, and M. Feather. Optimizing requirements decisions with keys. In
Proceedings PROMISE ’08 (ICSE), 2008.

29

49. T. Menzies, J. Kiper, and M. Feather. Improved software engineering decision support
through automatic argument reduction tools. In SEDECS’2003: the 2nd International Work-
shop on Software Engineering Decision Support (part of SEKE2003), June 2003. Available
from http://menzies.us/pdf/03star1.pdf.

50. T. Menzies and H. Singh. Many maybes mean (mostly) the same thing. In M. Madravio,
editor, Soft Computing in Software Engineering. Springer-Verlag, 2003. Available from
http://menzies.us/pdf/03maybe.pdf.

51. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state
calculations by fast computing machines. J. Chem. Phys, 21:1087–1092, 1953.

52. P. Mi and W. Scacchi. A knowledge-based environment for modeling and simulation soft-
ware engineering processes. IEEE Transactions on Knowledge and Data Engineering, pages
283–294, September 1990.

53. H. Mittelmann. Recent benchmarks of optimization software. In 22nd Euorpean Conference
on Operational Research, 2007.

54. J. Mylopoulos, L. Cheng, and E. Yu. From object-oriented to goal-oriented requirements
analysis. Communications of the ACM, 42(1):31–37, January 1999.

55. J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional requirements:
A process-oriented approach. IEEE Transactions of Software Engineering, 18(6):483–497,
June 1992.

56. A. Ngo-The and G. Ruhe. Optimized resource allocation for software release planning.
Software Engineering, IEEE Transactions on, 35(1):109–123, Jan.-Feb. 2009.

57. J. Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

58. L. Rela. Evolutionary computing in search-based software engineering. Master’s thesis,
Lappeenranta University of Technology, 2004.

59. S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and D. D. Edwards. Artificial intelligence:
a modern approach. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2003.

60. T. Saaty. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation.
McGraw-Hill, 1980.

61. A. Saltelli, K. Chan, and E. Scott. Sensitivity Analysis. Wiley, 2000.
62. B. Selman, H. A. Kautz, and B. Cohen. Local search strategies for satisfiability testing.

In M. Trick and D. S. Johnson, editors, Proceedings of the Second DIMACS Challange on
Cliques, Coloring, and Satisfiability, Providence RI, 1993.

63. S. Setamanit, W. Wakeland, and D.Raffo. Using simulation to evaluate global software de-
velopment task allocation strategies. Software Process: Improvement and Practice, (Forth-
coming), 2007.

64. S. B. Shum and N. Hammond. Argumentation-based design rationale: What use at what
cost? International Journal of Human-Computer Studies, 40(4):603–652, 1994.

65. H. Sterman. Business Dynamics: Systems Thinking and Modeling for a Complex World.
Irwin McGraw-Hill, 2000.

66. B. Stout. Smart moves: Intelligent pathfinding. Game Developer Magazine, (7), 1997.
67. T. E. Uribe and M. E. Stickel. Ordered binary decision diagrams and the davis-putnam

procedure. In In Proc. of the 1st International Conference on Constraints in Computational
Logics, pages 34–49. Springer-Verlag, 1994.

68. R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In Pro-
ceedings of IJCAI 2003, 2003. http://www.cs.cornell.edu/gomes/FILES/
backdoors.pdf.

69. P. Zave and M. Jackson. Four dark corners of requirements engineering. ACM Trans. Softw.
Eng. Methodol., 6(1):1–30, 1997.

70. H. Zhang and X. Zhang. Comments on ’data mining static code attributes to learn defect
predictors’. IEEE Transactions on Software Engineering, September 2007.

30

Obtaining our System

We have placed on-line all the materials required for other researchers to conduct further
investigation into this problem. All the code, Makefiles, scripts, and so on used in this
paper are available at http://unbox.org/wisp/tags/ddpExperiment/install.
For security reasons, all the available JPL requirements models have been “sanitized”;
i.e. all words replaced with anonymous variables.

31

