
West Virginia
University

Slide 1Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

PART II – SPE Models

System Execution Models
Basics

West Virginia
University

Slide 2Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Outline

Introduction
System execution model basics
Some basic performance results
Different system execution models

M/M/1 queue (infinite population / infinite queue)
M/M/1/n queue (infinite population / finite queue)
M/M/m queue (infinite population / infinite queue / m
servers)
Queuing networks

Open queuing networks
Closed queuing networks

Case studies

West Virginia
University

Slide 3Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

SPE Models

Software
execution

model

Software
execution

model

System
execution

model

System
execution

model

Performance
metrics

Performance
metrics

Existing
work

Existing
work

• Proposed software alone
• best-case response time
• worst-case response time
• average response time

• Optimistic

• other workloads
• multiple users
• delays due to contention for resources

West Virginia
University

Slide 4Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Software execution models

Software execution models can identify serious
performance problems at early design phases

If the predicted performance is unsatisfactory there
is no need to build system execution model
If the predicted performance is satisfactory then
build the system execution model

The absence of problems in software execution model
does not mean that there are no problems

contention for system resources could cause problems; these
problems may be corrected with

– software design alternatives
– hardware configuration alternatives

West Virginia
University

Slide 5Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

System execution models

Provide the following additional information
More precise metrics that account for resource contention
Identification of bottleneck resources
Sensitivity of performance metrics to variations in workload
Effect of new software on service level objectives of other
software that executes on the same system
Scalability of hardware and software to meet future
demands
Data on improving performance via workload changes,
software changes, hardware upgrades, and various
combinations of these

West Virginia
University

Slide 6Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Outline

Introduction
System execution model basics
Some basic performance results
Different system execution models
Case study

West Virginia
University

Slide 7Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

System execution model basics

Sources of contention for resources
Multiple users of the system - several customers at
different ATM machines may request transactions
from the host bank computer at the same time
Other applications executing on the same hardware
resources – in addition to the application that
handles ATM transactions, at the bank host may
execute applications that handle teller transactions,
payroll system, etc.
Application may consists of several concurrent
processes or threads – often case in embedded
real-time systems

West Virginia
University

Slide 8Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

System execution model – single
resource

Computer resources are represented as
queues and servers

Server – component that provides some service to
the software (CPU, disk, network)
Queue – jobs waiting for service

queue server

Response time

waiting time service time

West Virginia
University

Slide 9Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

System execution model – input
parameters

Job arrival
Amount of service they need
Time required for the server to process
individual jobs
Policy used for server to process individual
jobs from the queue

West Virginia
University

Slide 10Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

System execution model –
Performance metrics

Response time – average time that jobs spend
at the server (includes service time and waiting
time)
Utilization – average percent of time that the
server is busy providing service
Throughput – average number of jobs that
complete service per time unit (average rate at
which jobs complete service)
Queue length – average number of jobs at the
server (include both those receiving service
and those waiting)

West Virginia
University

Slide 11Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Outline

Introduction
System execution model basics
Some basic performance results
Different system execution models
Case study

West Virginia
University

Slide 12Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Some basic performance results

Let
T – length of time we observe the system
A – number of request arrivals
C - number of request completions
B – length of time the resource was busy

Arrival rate λ=A/T
Throughput X=C/T
Utilization U = B/T
Service time per request S=B/C

West Virginia
University

Slide 13Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Some basic performance results

Simple and general relationships known as
fundamental laws
1.Utilization law
2.Forced flow law
3.Service demand law
4.Liitle’s law
5.Flow balance assumption

West Virginia
University

Slide 14Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Some basic performance results -
Utilization law

U = B/T = C/T · B/C
U = X · S
Utilization of a resource is equal to the product
of the throughput of that resource and the
average service time
Example: A network segment transmits 1,000
packets/sec. Each packet has an average
transmission time equal to 0.15 msec. What is the
utilization of the LAN segment?

U = 1,000 · 0.00015 = 0.15 = 15%

West Virginia
University

Slide 15Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Some basic performance results -
Forced flow law

Establishes relationship between individual
resource view and entire system view
Define visit count of a resource as a ratio of
the number of completions at that resource to
the number of system completions (i.e.,
average number of visits that a system level
request makes to that resource) Vi=Ci/C
Ci =Vi C
Ci /T=Vi C/T
Xi = Vi X

West Virginia
University

Slide 16Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Some basic performance results -
Forced flow law

Example: Database transactions perform an average
of 4.5 I/O operations on the database server. The
database server was monitored during one hour and
during this period 7,200 transactions were executed.
What is the average throughput of the disk? If each
disk I/O takes 20 msec on the average, what was the
disk utilization?
Database throughput X = 7,200 / 3,600 = 2 trans/sec
Average number of visits to the disk Vd = 4.5
Disk throughput Xd = Vd X = 4.5 · 2 = 9 trans/sec
Disk utilization Ud = Xd Sd = 9 · 0.02 = 0.18 = 18%

West Virginia
University

Slide 17Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Some basic performance results –
Service demand law

Define service demand as Di= Vi Si

Combining the Utilization (Ui= Xi ·Si) and
Forced Flow (Xi= Vi ·X) laws we get
Di = Vi ·Si = (Xi /X)·(Ui /Xi)
Di = Ui /X
Example: What is the service demand of the disk in
the previous example?
Dd = Ud /X = 0.18/2 = 0.09 sec
(also Dd = Vd Sd = 4.5 · 0.02 = 0.09 sec)

West Virginia
University

Slide 18Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Some basic performance results -
Little’s law

Little’s formula - mean number of jobs in the queuing
system in steady state is equal to the product of the
mean departure rate (throughput) and the mean
response time

Note: Little’s formula holds for a broad variety of
queuing systems - the box could contain a simple
device such as disk, or complex queuing system
such as an entire intranet provided that it does not
create or destroys customers

_
N

R

XRXN ⋅=
_

West Virginia
University

Slide 19Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Some basic performance results -
Little’s law

R=W+S
(average response time = average waiting time +
average service time)
Appling Little’s formula we get

Average number of jobs at the waiting queue
Average number of jobs receiving service

(in case of a single resource queue this is a number between 0 and
1 that can be interpreted as the fraction of the time that the resource
is busy, i.e., the utilization of the resource)

_
⋅= WXNw

⋅= SXNs

_

West Virginia
University

Slide 20Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Some basic performance results - Flow
balance assumption

Assume that systems satisfy the flow balance
property, namely, that the number of arrivals
equals the number of completions, and thus
the arrival rate equals the throughput

A=C, therefore λ

= X

West Virginia
University

Slide 21Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Outline

Introduction
System execution model basics
Some basic performance results
Different system execution models

M/M/1 queue (infinite population / infinite queue)
Case study

West Virginia
University

Slide 22Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Simple server model – Infinite
population / infinite queue

λ μ

• Customer arrival – Poisson
process with rate λ
(customer inter-arrival times
are exponentially distributed
with mean 1/λ)

• Single class (homogeneous
workload)

Service times are independent
identically distributed random
variables - exponential
distribution with mean 1/μ

Policy – first come
first served (FCFS)

M/M/1 queue

Requests arrive at rate of λ

request / sec,
queue for service,
get served at a rate of μ

request / sec,
and depart

We want to compute:
• probability pk that there are k jobs in the system
• average number of jobs in the system
• server’s utilization and throughput
• average response time of a job

West Virginia
University

Slide 23Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Simple server model – M/M/1

State – number of jobs present in the server
(waiting or receiving service)

Continuous time Markov chain (CTMC)

0 1 2 k

λ

μ

λ λ λ λ

μ μ μ μ

… …

West Virginia
University

Slide 24Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1 queue – probability pk

Probability pk that there are k jobs in the server (steady-state
probability)

0 1 2 k

λ

μ

λ λ λ λ

μ μ μ μ

flow-in = flow-out
μ

p1 = λ

p0

μ

p2 = λ

p1
...

μ

pk = λ

pk-1

… …

,...2,1... 021 =⎟
⎠

⎞
⎜
⎝

⎛==⎟
⎠

⎞
⎜
⎝

⎛== −− kforpppp
k

kkk μ
λ

μ
λ

μ
λ

μ
λ

West Virginia
University

Slide 25Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1 queue – probability pk

k
∑∑
∞

=

∞

=
=⎟

⎠

⎞
⎜
⎝

⎛==++++
0

0
0

10 1......
kk

kk ppppp
μ
λ

μ
λ

μ
λ

−=

⎟
⎠

⎞
⎜
⎝

⎛
=

∑
∞

=

11

0

0

k

kp

0,1 ≥⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −= kforp
k

k μ
λ

μ
λ

West Virginia
University

Slide 26Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Traffic intensity
ρ= λ/μ= mean service time / mean interarrival time

If ρ=λ/μ < 1 (arrival rate is smaller than service rate)
Probability that there are k jobs in the server is

Probability that the server is idle (0 jobs)

If ρ ≥ 1 the system is unstable – number of customers
in the system tends to increase without a bound

M/M/1 queue – probability pk

() k 0,1 ≥−= kforpk ρρ

ρ−=10p

West Virginia
University

Slide 27Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1 queue - average number of
jobs in the server

ρ
ρρρρρ
−

=−=−=== ∑∑∑
∞

=

∞

=

∞

= 1
)1()1(][

000

_

k

k

k

k

k
k kkpkNEN

Average number of jobs in the server

1ρ

N
_

West Virginia
University

Slide 28Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1 queue – server utilization and
throughput

Utilization – proportion of time the server is
busy
U = 1 - p0 = ρ

Throughput - average rate at which jobs
complete service
X = μ

• U + 0 • (1-U) = μ

• λ/μ

= λ

(requests are not lost, the average arrival rate
is equal to the average departure rate)

West Virginia
University

Slide 29Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1 queue – average response
time

Appling Little’s formula to M/M/1 queue

where is the average service time
When the probability that server is
idle is close to 1 (utilization U=ρ

close

to 0) the average response time is
close to the average service time
When the probability that server is
idle is close to 0 (utilization U=ρ
close to 1) the average response
time goes to infinity (delays build
rapidly due to congestion)

idleisserverthethatyprobabilit
timeserviceaverage

X
NR =

−
=

−
== −

ρ
μ

ρ
ρλ

1
/1

1
1

_

μ/1=S

1ρ

R

West Virginia
University

Slide 30Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1 queue – other measures

Average waiting time in the queue

Average number of jobs waiting in the queue
(excluding those in service) – apply Little’s
formula

_

1
11

)1(
1 NSSRW =

−
=−

−
=−=

ρ
ρ

μμρμ

ρ
ρ
−

=⋅=
1

2_
WXNw

West Virginia
University

Slide 31Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1 queue - Example

Requests arrive at the database server at a rate of 30
requests / sec. Each request takes 0.02 sec on the
average to be processed. What is the fraction of time
that k (k=0,1,…) requests are found in the database
server? What is the average response time of the
server? What is the average response time if the
server is replaced with a server twice as fast? What
would be the response time if the arrival rate doubles
when the server becomes twice as fast?
λ = 30 request / sec
S = 0.02 sec
μ = 1 / 0.02 = 50 request /sec

West Virginia
University

Slide 32Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Fraction of time the server is idle p0=1-(λ/μ)=1-0.6=40%
pk= (1-λ/μ)(λ/μ)k = 0.4 ·0.6k

Utilization U = 1 - p0 = λ/μ = 0.6 = 60%
Throughput X = λ = 30 request /sec
Average number of requests at the server

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

0 1 2 3 4 5 6 7 8

M/M/1 queue - Example

ρ
ρ
−1

_
N = = 0.6

1 - 0.6
= 1.5

West Virginia
University

Slide 33Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1 queue - Example

Average response time

Server twice as fast μ = 100 request /sec; U = ρ = λ/μ = 0.3

Using twice as fast server reduces the response time to about
28% of its original value

Server twice as fast μ = 100 request /sec
Double arrival rate λ

= 60 request / sec; U=ρ= λ/μ

= 0.6

_

X
NR ==

1.5

30
= 0.05 sec

X
NR =

−
=

−
== −

ρ
μ

ρ
ρλ

1
/1

1
1 1/100

1-0.3
= 0.014 sec

X
NR =

−
=

−
== −

ρ
μ

ρ
ρλ

1
/1

1
1 1/100

1-0.6
= 0.025 sec

_

_

West Virginia
University

Slide 34Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Outline

Introduction
System execution model basics
Different system execution models

M/M/1 queue (infinite population / infinite queue)
M/M/1/n queue (infinite population / finite queue)

Case study

West Virginia
University

Slide 35Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Simple server model – Infinite
population / finite queue

λ

μ
M/M/1/n queue

Requests arrive at rate of λ

request / sec ,
if the system is full the job is rejected,
otherwise the job enters the queue for service, gets
served at a rate of μ

request / sec, and departs

We want to compute:
• probability pk that there are k jobs in the server
• average number of jobs in the server
• server’s utilization and throughput
• average response time of a job

Limited buffer space –
at most n jobs can be
in the system at a time

West Virginia
University

Slide 36Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Simple server model – M/M/1/n

State – number of jobs present in the server
(waiting or receiving service)

Continuous time Markov chain (CTMC)

0 1

λ

μ

λ

μ

k

λ λ

μ μ

… … n

λ

μ

West Virginia
University

Slide 37Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1/n queue – probability pk

Probability pk that there are k jobs in the server
(steady-state probability)
Write “flow-in = flow-out” equations

nkforpp
k

k ,...,2,10 =⎟
⎠
⎞

⎜
⎝
⎛=

μ
λ

West Virginia
University

Slide 38Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1/n queue – probability pk

k
∑∑
=

+

=
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−=⎟

⎠

⎞
⎜
⎝

⎛==+++
n

k

nn

k
kn pppppp

0
0

1
0

0
10 1

/1
)/(1...
μλ

μλ
μ
λ

10
)/(1

/1
+−

−
=

np
μλ

μλ

0,
)/(1

/1
1

≥
−

−
⎟
⎠

⎞
⎜
⎝

⎛= + kforp n

k

k μλ
μλ

μ
λ

West Virginia
University

Slide 39Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1/n queue - average number of
jobs in the server

kn

k

n

k
k kppkNEN)/(][

0
0

0

_
μλ∑∑

==
===

Average number of jobs in the server

Using the fact that [] 212

0
)1/()1(aaananak nnn

k

k −++−= ++

=
∑

and the equation for p0 we get

)/1]()/(1[
]1)/)(1()/()[/(][1

1_

μλμλ
μλμλμλ

−−

++−
== +

+

n

nn nnNEN

West Virginia
University

Slide 40Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1/n queue – server utilization
and and throughput

Utilization – proportion of time the server is busy

Throughput - average rate at which jobs complete
service

1)/(1
])/(1[)1(0 +−

−
=−⋅+⋅=

n

n
UUX

μλ
μλλμ

= 1- p0 =U
− n

1)/(1
])/(1)[/(

+− nμλ
μλμλ

West Virginia
University

Slide 41Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1/n queue

Average response time - applying Little’s formula

where is the average service time

_
[]

)/1(])/(1[
1)/)(1()/(1

μλμλ
μλμλ

−−

++−
==

+

n

nn nnS
X
NR

μ/1=S

West Virginia
University

Slide 42Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1/n queue – Example

Consider the same database server of Slide 31, but
now assume that at most four requests can be
queued at the server (including requests being
processed).
λ = 30 request / sec
S = 0.02 sec
μ = 1 / 0.02 = 50 request /sec
n=4
p0=0.43 = 43%
pk= 0.43 ·0.6k

Fraction of request that are lost because the queue is
full pn= 0.43 ·0.6n = 0.0557 = 5.57%

West Virginia
University

Slide 43Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

M/M/1/n queue – Example

What should be the minimum value of the buffer size
(maximum number of accepted requests) so that less
than 1% of the requests are rejected?

n > - ln(40.6)/ln(0.6)
n > 7.25055
n ≥

8

)/(1
/1

1−

−
⎟
⎠

⎞
⎜
⎝

⎛= +p n

n

n μλ
μλ

μ
λ

= 0.4 · 0.6n / (1-0.6n+1) < 0.01

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

1 2 3 4 5 6 7 8 9

n

pn

West Virginia
University

Slide 44Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Outline

Introduction
System execution model basics
Different system execution models

M/M/1 queue (infinite population / infinite queue)
M/M/1/n queue (infinite population / finite queue)
M/M/m queue (infinite population / infinite queue /
m servers)

Case study

West Virginia
University

Slide 45Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Simple server model – M/M/m

M/M/m queue

μ

λ

μ

...
m servers...

0 1 2 m-1

λ

μ

λ λ λ λ

2μ 3μ (m-1)μ mμ

… m m+1

λ λ

mμ mμ

…

West Virginia
University

Slide 46Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Example

μλ/2

μλ/2

Two separate
Poisson streams

Two separate
Poisson streams

μ

μ

λ/2

λ/2

Pooled
Poisson
stream

Compare the two different queuing schemes based on the response times.

West Virginia
University

Slide 47Copyright © K.Goseva 2009 CS 736 Software Performance Engineering

Example

First scheme – two independent M/M/1 queues with
arrival rates λ/2, service rates μ; and ρ = λ/(2 μ)

Second scheme – M/M/2 queue with ρ = λ/(2 μ)

Compare

Common-queue scheme is better than a separate-
queue scheme

Rs =
−

=
ρ
μ

1
/1 2

2 μ− λ

1
Rc =

−
=

ρ2

μ/1 4 μ
4 μ2− λ2

Rs = 2
2 μ− λ

= 4 μ+2λ

λ
4 μ2− λ2 > Rc

	PART II – SPE Models
	Outline
	SPE Models
	Software execution models
	System execution models
	Outline
	System execution model basics
	System execution model – single resource
	System execution model – input parameters
	System execution model – Performance metrics
	Outline
	Some basic performance results
	Some basic performance results
	Some basic performance results - Utilization law
	Some basic performance results - Forced flow law
	Some basic performance results - Forced flow law
	Some basic performance results – Service demand law
	Some basic performance results - Little’s law
	Some basic performance results - Little’s law
	Some basic performance results - Flow balance assumption
	Outline
	Simple server model – Infinite population / infinite queue
	Simple server model – M/M/1
	M/M/1 queue – probability pk
	M/M/1 queue – probability pk
	M/M/1 queue – probability pk
	M/M/1 queue - average number of jobs in the server
	M/M/1 queue – server utilization and throughput
	M/M/1 queue – average response time
	M/M/1 queue – other measures
	M/M/1 queue - Example
	M/M/1 queue - Example
	M/M/1 queue - Example
	Outline
	Simple server model – Infinite population / finite queue
	Simple server model – M/M/1/n
	M/M/1/n queue – probability pk
	M/M/1/n queue – probability pk
	M/M/1/n queue - average number of jobs in the server
	M/M/1/n queue – server utilization and and throughput
	M/M/1/n queue
	M/M/1/n queue – Example
	M/M/1/n queue – Example
	Outline
	Simple server model – M/M/m
	Example
	Example

