
West Virginia
University

Slide 1CS 736 Software Performance Engineering Copyright © K.Goseva 2009

PART II – SPE Models

Software Execution Models

West Virginia
University

Slide 2CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Outline

Purpose and properties of software execution
models (SEM)
Execution graph representation
Solving software execution models
Case study

West Virginia
University

Slide 3CS 736 Software Performance Engineering Copyright © K.Goseva 2009

SPE Models

Software
execution

model

Software
execution

model

System
execution

model

System
execution

model

Performance
metrics

Performance
metrics

Existing
work

Existing
work

West Virginia
University

Slide 4CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Purpose of Software Execution
Models

Early modeling is essential to ensure that the
software architecture will meet performance
objectives
Problem - Early in the development process
we do not have sufficient knowledge to model
performance precisely

Solution - Construct the simplest possible
models that capture essential performance
characteristics

West Virginia
University

Slide 5CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Properties of Software Execution
Models

Software execution model characterizes
resource requirements of the proposed
software alone, in the absence of

other workloads
multiple users
delays due to contention for resources

It provides analysis of
best-case response times
worst-case response times
average response times

West Virginia
University

Slide 6CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Properties of Software Execution
Models

Software execution models can identify serious
performance problems at early design phases

If the predicted performance is unsatisfactory there
is no need to build system execution model

The absence of problems in software
execution model does not mean that there are
no problems

Contention for system resources could cause
problems

These problems may be corrected with
Software design alternatives
Hardware configuration alternatives

West Virginia
University

Slide 7CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Outline

Purpose and properties of software execution
models (SEM)
Execution graph representation
Solving software execution models
Case study

West Virginia
University

Slide 8CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Execution graph representation

SEM are represented with execution graphs
For each key performance scenario we construct
execution graph

Execution graphs are based on elementary
graph theory

Nodes represent processing steps (program
statements that perform a function)
Arcs represent the order of execution

Execution graphs are similar to program
flowcharts but not the same; they show

only those paths that are key to performance
frequency of path execution

West Virginia
University

Slide 9CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Execution graph representation -
contd

It is possible to construct different execution
graphs that represent the same software
These graphs may differ in representation of

Software hierarchy
Details of abstraction

There is no single “right way”

West Virginia
University

Slide 10CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Basic execution graph notation

n

Basic node

Expanded node

Repetition node

Case node

Pardo node

Split node

Functional component at the current level
of detail

Function will be refined; details will be given
in an associated subgraph

Subsequent nodes are repeated n times; the last
node in the loop has an arc to this node

Attached nodes are conditionally executed;
Each has an execution probability

Attached nodes are executed in parallel;
all must complete before proceeding

Attached nodes represent new processing threads;
They need not all complete before proceeding

West Virginia
University

Slide 11CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Sequence diagrams for ATM
Withdrawal

: User :ATM
Card Inserted
Request PIN
aPIN

Request Transaction

Response
Request Account

Account
Request Amount

Amount
Transaction Request

:Host Bank

Transaction Authorization
Dispense Cash

Cash Taken

Transaction Complete
ack

Print Receipt
Receipt Taken

West Virginia
University

Slide 12CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Sequence diagrams for ATM
Withdrawal - contd

For single-threaded scenarios or scenarios with
sequential flow of control transforming sequence
diagram to execution graph is straightforward

Each message received by an object triggers an
action – follow the message arrows through the
sequence diagram and make each action a basic
node in the execution graph

In many cases, individual actions are not interesting
from the performance prospective, so several of them
may be combined together in a single basic node

West Virginia
University

Slide 13CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Execution graph for ATM
withdrawal

Transaction Request

Dispense Cash

Print Receipt

Terminate Session

Request Account

Get Card Info

Request Amount

Request PIN

Request Transaction

One-to-one correspondence
to the sequence diagram

Dispense Cash
Print Receipt

Initiate Session

Terminate Session

Get Request

Process Withdrawal

Abbreviated
graph

West Virginia
University

Slide 14CS 736 Software Performance Engineering Copyright © K.Goseva 2009

General ATM sequence diagram

: User :Host Bank:ATM
Card Inserted
Request PIN
aPIN

Request Transaction
response

Process Deposit

Process Withdrawal

Process Balance Inquiry

[type]alt

loop *[until done]

Terminate session

Repetition

Alternation
(choice)

Reference
to other

sequence
diagram

West Virginia
University

Slide 15CS 736 Software Performance Engineering Copyright © K.Goseva 2009

General ATM sequence diagram -
contd

If UML with MSC extension is used (UML 2.0
or later) repetition and case nodes are easy to
identify
If not

to identify repetitions - walkthrough the sequence
diagram
to identify alternative steps (case node) – look at
different sequence diagrams that represent
scenarios from the same use case

West Virginia
University

Slide 16CS 736 Software Performance Engineering Copyright © K.Goseva 2009

General ATM sequence diagram -
contd

Reference is most easily represented as an
expanded node
For scenarios that involve multiple threads of
control or distributed objects more effort is
needed to account for communication and
synchronization delays

West Virginia
University

Slide 17CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Execution graph for general ATM
sequence diagram

get Card Info

get PIN

process
Transaction

terminate
Session

n

Expansion of process Transaction

get
Transaction

process
Deposit

process
Withdrawal

process
Balance Inquiry

0.02

0.9

0.08

West Virginia
University

Slide 18CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Case node for optional step

Probabilities of conditional paths on the case
node need not sum to 1

p

1- p

Optional step executes with
probability p

With probability 1- p
execution continues to the

step following the case node

West Virginia
University

Slide 19CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Example for Pardo (parallel do)
node

get User
Input

Display
screen

Put Data in
Screen

Create Results
Screen

Execute Remote
Query

West Virginia
University

Slide 20CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Execution graph restrictions

Initial node restriction: graphs and subgraphs
can have only one initial node

process
Deposit

Update
Balance

process
Withdrawal

process
Balance Inquiry

0.02

0.9

0.08

process
Deposit

process
Withdrawal

process
Balance Inquiry

Update
Balance

West Virginia
University

Slide 21CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Execution graph restrictions -
contd

Loop restriction: All loops in the graph must be
repetition loops

Initiate Session

Get Request

Process Request

Terminate Session

n

Initiate Session

Get Request

Process Request

Terminate Session

West Virginia
University

Slide 22CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Execution graph restrictions -
contd

Restrictions do not restrict the modeling power
of the execution graphs – for each graph that
violates restrictions there is an equivalent legal
representation

Restrictions simplify the solution algorithms
and enable quick solution of many alternatives

West Virginia
University

Slide 23CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Outline

Purpose and properties of software execution
models (SEM)
Execution graph representation
Solving software execution models
Case study

West Virginia
University

Slide 24CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Solving SEM – reduction rules

Graph reduction method
Identify basic structure
Compute the time for the structure
Replace the structure with a single node whose
“time” is the computed time

Basic structures
Sequences
Loops
Cases

West Virginia
University

Slide 25CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Sequential structure

Sequential structure – sum of the times of the
nodes in sequence

t1

t2

tn

...

t

t = t1 + t2 + … + tn

West Virginia
University

Slide 26CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Loop structure

Loop structure – multiply node time with the
loop repetition factor

t1

n

t

t = n t1

West Virginia
University

Slide 27CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Case structure

Computation differs for the shortest path,
longest path, and average analysis

Shortest path – minimum of the times for the
conditionally executed nodes
Longest path – maximum of the times for the
conditionally executed nodes
Average analysis – sum of each node’s time
multiplied by its execution probability

t0

t1

t2

p1

p2

t

t = t0 + p1 t1 + p2 t2

West Virginia
University

Slide 28CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Parallel structure

Best case – use the longest of the concurrent
paths (other parallel paths are complete when
the longest concurrent path completes)

Worst case – sum of the concurrent paths
(serialize the parallel paths, i.e., when one
path completes the next begins)

West Virginia
University

Slide 29CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Illustration for reduction rules -
ATM example

get Card Info

get PIN

process
Transaction

terminate
Session

n

Expansion of process Transaction

get
Transaction

process
Deposit

process
Withdrawal

process
Balance Inquiry

0.02

0.9

0.08 100terminate Session
50process Balance Inquiry

200process Withdrawal
500process Deposit

30get Transaction
20get PIN

50get Card info

West Virginia
University

Slide 30CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Illustration for reduction rules -
ATM example

Process Transaction:

Shortest path = get Transaction + ALT + process Balance Inquiry = 30 + 50 = 80
Longest path = get Transaction + ALT + process Deposit = 30 + 500 = 530
Average path = 30 + 0.02*500 + 0.9*200 + 0.08*50 = 224

Session:

Shortest path = get Card Info + get PIN + n*process Transaction-SP + terminate Session
= 50 + 20 + 2*80 + 100 = 330

Longest path = get Card Info + get PIN + n*process Transaction-LP + terminate Session
= 50 + 20 + 2*530 + 100 = 1,230

Average path = get Card Info + get PIN + n*process Transaction-AV + terminate Session
= 50 + 20 + 2*224 + 100 = 618

West Virginia
University

Slide 31CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Solving SEM – example authorize
Transaction

0Messages

2DB

1Work Units

Validate User

Validate Transaction

Send Result

0Messages

3DB

2Work Units

1Messages

1DB

2Work Units

Work Units specify relative CPU
consumption

Range of values from 1 to 5
• 1 - simple task
• 5 - the most complex task

The processing overhead then
specifies an approximate number
of machine instructions for the
simple task

Software
resources

West Virginia
University

Slide 32CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Solving SEM – example authorize
Transaction

Phys. I/OKInstr.Service Units

11Quantity
DiskCPUDevices

210Massages
2500DB
020Work Unit

0.020.00001Service Time

Msgs.
1

Network

0.01

1
0
0

Connection between software
resources and computer device
usage; for example DB requires
500K CPU instructions,
2 I/Os, and 0 network messages
Service time

Name, quantities, and service units
of the computer devices

1143,110Total
14550Send Result
061,540Validate Transaction
041,020Validate User

Network
msgs

Phys.
I/O

CPU
Kinstr

Processing step

Step 1: Estimate total computer
resources for each node

Step 2: Estimate total computer
resources using reduction rules

West Virginia
University

Slide 33CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Solving SEM – example authorize
Transaction

Step 3: Estimate elapsed time by multiplying total
resource requirements for each computer resource
by the service time for that resource (from the last
row), and summing the result for each resource

3,110 * 0.00001 + 14 * 0.02 + 1 * 0.01 = 0.3211 sec

This is the optimistic estimate of the elapsed time
because it excludes queuing delays when multiple
processes want to use the same computer resources
in the same time

West Virginia
University

Slide 34CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Outline

Purpose and properties of software execution
models (SEM)
Execution graph representation
Solving software execution models
Case study

West Virginia
University

Slide 35CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Case study - ICAD

Interactive computer-aided design (ICAD) application
used to

draw the model structures such as aircraft wings
store a model in a database (several versions of the model
may exist within the database)
interactively assess the design’s correctness, feasibility,
and suitability

ICAD drawing consists of
Nodes – position (x,y,z) and additional information
Elements

Beams – connect two nodes
Triangles – connect three nodes
Plates – connect four or more nodes

West Virginia
University

Slide 36CS 736 Software Performance Engineering Copyright © K.Goseva 2009

ICAD use cases

ICAD use cases
Draw – draw a model
Solve – solve a model

We will focus on Draw use case and its
scenario DrawMod

Typical model consists of nodes and 2,000 beams
(no triangles or plates)
Performance objective is to draw a typical model in
10 seconds or less

West Virginia
University

Slide 37CS 736 Software Performance Engineering Copyright © K.Goseva 2009

High-level sequence diagram of
DrawMod scenario

: ICAD

:Model

draw()

:Database

<<create>>

open()

find(modelID)

retrieve(beams,nodes)

draw()

close()

West Virginia
University

Slide 38CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Architecture 1

Use an object to represent each node and
element

Flexible
All types of elements can be treated in a uniform
way
New types of elements can be added without
changing any other aspect of the application

West Virginia
University

Slide 39CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Architecture 1 – class diagram

draw()
elementNo: int

Element

draw()

nodes[]: int
…

Plate

draw()

node1: int
node2: int
node3: int
…

Triangle

draw()

node1: int
node2: int
…

Beam

draw()

nodeNo: int
x: int
y: int
z: int
…

Node

modelID: int
…

Model
1..n

2

3

4..n

West Virginia
University

Slide 40CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Expanded sequence diagram of
DrawMod scenario

: ICAD
:Model

draw()

:Database
<<create>>

find(modelID)
open()

find(modelID,beams)
sort(beams)

:Beam

:Node

retrieve(beam)
<<create>>

find(modelID,node1,node2)

retrieve(node1)
<<create>>

:Node
retrieve(node2)

<<create>>
draw() draw()

draw()
draw()

close()

loop *[each beam]

West Virginia
University

Slide 41CS 736 Software Performance Engineering Copyright © K.Goseva 2009

ICAD deployment diagram

<<processor>>
Workstation

GUI

DBMS

ICAD

West Virginia
University

Slide 42CS 736 Software Performance Engineering Copyright © K.Goseva 2009

DrowMod execution graph

findBeams

sortBeams

drawBeam

each beam

initialize

close

CreateModel

drawMod

openDB

createBeam

findNodes

each node

drawNode

retrieveBeam

setupNode

Expanded initialize
(before find(ModelID))

Expanded drawBeam
(steps within the loop)

retrieve(node) &
<<create>>

West Virginia
University

Slide 43CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Specify software resource
requirements

Software resources for ICAD example
EDMS – number of calls to the DB process
CPU – estimate of the number of instructions executed
I/O – number of disk accesses to obtain data from DB
Get/Free – number of calls to the memory management
operations
Screen – number of times graphics operations “draw” to the
screen

We need
values for software resource requirements for each
processing step in the software execution model
number of loop repetitions
probability for each case alternative (does not exist in this
example)

West Virginia
University

Slide 44CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Values for DrawMod software
resource requirements

1000.550drawNode
004.0241setupNode
004.14.51findNodes
00020createBeam
004.0321retrieveBeam
0121.51close
0242.283391sortBeams
007.083461findBeams
0162.31openDB
22310drawModel
00020createModel

ScreenGet/
FreeI/OCPUEDMSProcessing

steps

* One table for software resource requirements is given instead of separate tables
associated with each step

West Virginia
University

Slide 45CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Values for DrawMod computer
resource requirements

UnitsPhys. I/OK instr.Service Units

121Quantity
DisplayDiskCPUDevices

0.0020.253EDMS

10.05Screen

0.1Get/Free
10.1I/O

1CPU

0.0010.030.000005Service time

West Virginia
University

Slide 46CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Time for initialize step

CreateModel

drawMod

openDB

Expanded initialize
(before find(ModelID))

2.0009.0026.853Total
0.0006.0023.253openDB
2.0003.0001.600drawMod
0.0000.0002.000CreateModel

Display
Units

Disk
Phys.I/O

CPU
Kinstr

Processing
step

0.0010.030.000005Service time

0.0020.273.4265e-5Time

West Virginia
University

Slide 47CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Time for drawBeam step

createBeam

findNodes

each
node

drawNode

retrieveBeam

setupNode

Expanded drawBeam
(steps within the loop)

04.1025.163findNodes
04.0224.655setupNode

116.17819.729Total
10.0000.600drawNode

00.0002.000createBeam
04.0322.656retrieveBeam

Display
Units

Disk
Phys.I/O

CPU
Kinstr

Processing
step

0.0010.030.000005Service time

0.0010.485349.8645e-5Time

X 2

West Virginia
University

Slide 48CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Elapsed time for DrawMod -
Architecture 1

findBeams

sortBeams

drawBeam

each
beam

initialize

close

042.282343.681sortBeams
116.17819.729drawBeam

200232416.36840157.648Total
02.0022.153close

07.082346.961findBeam
29.0026.853Initialize

Display
Units

Disk
Phys.I/O

CPU
Kinstr

Processing
step

0.0010.030.000005Service time

2.002972.4910.200788Time

X 2000

Total elapsed time = 974.69

West Virginia
University

Slide 49CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Elapsed time for DrawMod -
Architecture 1

findBeams

sortBeams

drawBeam

each
beam

initialize

close

0.00Display
0.27Disk
0.00CPU

0.00Display
0.21Disk
0.00CPU

0.00Display
1.27Disk
0.00CPU

2.00Display
970.68Disk

0.20CPU

0.00Display
0.06Disk
0.00CPU

(for all 2,000
iterations)

Best-case elapsed time (no contention)
is 974.69 seconds which clearly does not
meet the performance objective of 10 seconds

Time spent at the Disk devices for drawBeam
accounts for 970.68 of the 974.69 seconds

Disk time is fairly evenly spread in the drawBeam
Submodel between retrieveBeam, findNodes,
and setupNode (retrieve(node) & create)

Total elapsed time = 974.69

West Virginia
University

Slide 50CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Architecture 2

New operation to retrieve a block of data -
retrieveBlock()

Retrieve blocks containing 20K of data at a time
instead of retrieving individual nodes and beams
Single RetrieveBlock() can fetch 64 beams or 170
nodes

West Virginia
University

Slide 51CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Sequence diagram of DrawMod scenario
– Architecture 2

: ICAD
:Model

draw()

:Database
<<create>>

find(modelID)
open()

:Beam
:Node

Find(nodes)

draw(point1)

close()

loop

<<create>>

<<create>>

retrieveBlock(beams)loop

loop retrieveBlock(nodes)

match()

draw(point2)

draw(point1,point2)

West Virginia
University

Slide 52CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Execution graph and results for
Architecture 2

initialize

getData

each
beam

close

matchAnd
Draw

0.4125

6.0389

2.0012

0.0601

Total elapsed time = 8.5126

West Virginia
University

Slide 53CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Modeling Hints

Combine related steps that do not have
significant effect on performance

SEM is an abstraction which includes only details
that are relevant to performance

Use hierarchy
Models are easier to understand and modify
Expand nodes as your knowledge of the software
increases

West Virginia
University

Slide 54CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Modeling Hints - contd

Use best-case and worst-case estimates for
resource requirements

If the best-case results indicate that there is a
problem, fix it before proceeding
If the worst-case results indicate that there is no
problem, proceed
If there is a problem, look at the processing steps
that consume the most resources

West Virginia
University

Slide 55CS 736 Software Performance Engineering Copyright © K.Goseva 2009

Modeling Hints - contd

Study the sensitivity of the performance results
to the input parameters; identify critical
resources and components whose use of
these resources should be monitored
Sensitivity may due to

Processing in loops
Significant synchronization and resource-sharing
delays

